JPH0649607A - Grain-oriented silicon steel sheet and its production - Google Patents

Grain-oriented silicon steel sheet and its production

Info

Publication number
JPH0649607A
JPH0649607A JP20516992A JP20516992A JPH0649607A JP H0649607 A JPH0649607 A JP H0649607A JP 20516992 A JP20516992 A JP 20516992A JP 20516992 A JP20516992 A JP 20516992A JP H0649607 A JPH0649607 A JP H0649607A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
less
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20516992A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yashiki
裕義 屋鋪
Teruo Kaneko
輝雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20516992A priority Critical patent/JPH0649607A/en
Publication of JPH0649607A publication Critical patent/JPH0649607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To provide a grain-oriented silicon steel sheet low in core loss and to provide its producing method. CONSTITUTION:(1) The grain-oriented silicon steel sheet contains <=0.01% C, 2.0 to 3.0% Si, >3.0 to 4.0% Mn, <=0.01% S, 0.003 to 0.015% acid soluble Al and <=0.010% N. (2) The steel slab in (1) (the content of N is regulated to 0.001 to 0.010%) is treated by the following steps of executing hot rolling; subjecting it to cold rolling for one or >=two times including process annealing as is hot- rolled or after being subjected to annealing after the hot rolling; allowing primary recrystallization to occur by continuous annealing; holding it to 825 to 925 deg.C for 7 to 100hr and allowing secondary recrystallization to occur; and holding it to >925 to 1050 deg.C for 4 to 100hr and purifying it. The grain-oriented silicon steel sheet low in core loss can be produced. Furthermore, the stock of this silicon steel sheet is excellent in cold workability as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、変圧器や発電機、電
動機の鉄心材料として広く用いられる方向性電磁鋼板お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet widely used as a core material for transformers, generators and electric motors, and a method for manufacturing the grain-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、ゴス方位と呼ばれる
{110}<001>方位を主方位とする結晶配向を持
ち、圧延方向に著しく優れた励磁特性と鉄損特性を有す
る軟磁性材料である。この材料は一般には次のような工
程を経て製造される。Siを 3.0%前後含有する低炭素鋼
のスラブを熱間圧延し、そのまま、あるいは焼鈍 (熱延
板焼鈍) を行った後、1回または中間焼鈍を挟んで2回
以上の冷延を施して最終板厚とし、その後連続脱炭焼鈍
を施して一次再結晶させた後、焼き付き防止のための焼
鈍分離剤を塗布してコイルに巻取り、更に1100〜1200℃
の超高温での仕上焼鈍を行う。
2. Description of the Related Art Grain-oriented electrical steel sheets are soft magnetic materials having a crystal orientation mainly called {110} <001> orientation called Goss orientation and having extremely excellent excitation characteristics and iron loss characteristics in the rolling direction. is there. This material is generally manufactured through the following steps. A slab of low carbon steel containing about 3.0% of Si is hot-rolled and then annealed (annealed hot-rolled sheet) and then cold-rolled once or twice with an intermediate annealing. After the final plate thickness, continuous decarburization annealing is performed to perform primary recrystallization, then an annealing separator is applied to prevent seizure, and the coil is wound up and further 1100 to 1200 ° C.
Finish annealing at ultra high temperature.

【0003】仕上焼鈍の目的は、二次再結晶を発生させ
てゴス方位に集積した集合組織を形成することと、その
あと二次再結晶を発生させるのに用いたインヒビターと
呼ばれる析出物(窒化物)を除去することにある。本発
明では、前者を第1の仕上焼鈍、後者を第2の仕上焼鈍
という。この析出物の除去のための第2の仕上焼鈍は、
純化焼鈍とも呼ばれ、二次再結晶を発生させる第1の仕
上焼鈍と共に良好な磁気特性を得るためには必須の工程
と言える。
The purpose of finish annealing is to generate secondary recrystallization to form a texture that is integrated in the Goss orientation, and to precipitate precipitates called inhibitors (nitriding) used to generate secondary recrystallization. Thing). In the present invention, the former is called the first finish annealing, and the latter is called the second finish annealing. The second finish annealing for removing this precipitate is
It is also called purification annealing, and can be said to be an essential step in order to obtain good magnetic properties together with the first finish annealing that causes secondary recrystallization.

【0004】以上のような製造方法による方向性電磁鋼
板は、その製造過程で連続脱炭焼鈍や1100℃以上での超
高温の仕上げ焼鈍というような特殊な工程が必要である
ので、極めてコストの高いものになる。
The grain-oriented electrical steel sheet produced by the above production method requires a special process such as continuous decarburization annealing or ultra-high temperature finish annealing at 1100 ° C. or more in the production process, which is extremely costly. It will be expensive.

【0005】このコストの問題を解決すべく、従来から
種々の研究開発が進められている。
In order to solve this cost problem, various researches and developments have been made in the past.

【0006】例えば、本発明者らは先に、その化学組成
が、Si:0.5〜2.5 %、Mn:1.0〜2.0 %、sol.Al:0.003〜
0.015 %で、かつC: 0.01%以下、N:0.001〜0.010 %
を含有することを主な特徴とする方向性電磁鋼板と、脱
炭焼鈍を必要とせず低温焼鈍が可能なその製造方法を発
明した (特開平1−119644号公報参照) 。この方法は、
連続脱炭焼鈍の省略と仕上焼鈍温度の低下によって、方
向性電磁鋼板の製造コストを低減するのに大きく貢献し
得るものである。
For example, the present inventors have previously described that the chemical composition is Si: 0.5 to 2.5%, Mn: 1.0 to 2.0%, sol.Al: 0.003 to
0.015%, C: 0.01% or less, N: 0.001 to 0.010%
The inventors have invented a grain-oriented electrical steel sheet which is mainly characterized by containing, and a method for producing the grain-oriented electrical steel sheet, which enables low-temperature annealing without the need for decarburizing annealing (see Japanese Patent Laid-Open No. 1-119644). This method
Omission of continuous decarburization annealing and reduction of finish annealing temperature can greatly contribute to the reduction of the manufacturing cost of grain-oriented electrical steel sheet.

【0007】[0007]

【発明が解決しようとする課題】近年、省エネルギーの
気運が一段と高まる趨勢の中で、方向性電磁鋼板に対し
てはその鉄損をさらに小さくすることが強く要望される
ようになってきている。
In recent years, with the trend of energy saving to be further enhanced, it has been strongly demanded that the core loss of grain-oriented electrical steel sheets be further reduced.

【0008】本発明は、上記の特開平1−119644号公報
に示した電磁鋼板およびその製造方法を更に改善するこ
とを課題とし、鉄損が低い方向性電磁鋼板とその製造方
法を提供することを目的とする。
An object of the present invention is to provide a grain-oriented electrical steel sheet having a low iron loss and a method for producing the same, which aims to further improve the electrical steel sheet and the method for producing the same disclosed in JP-A-1-119644. With the goal.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は下記のと
おりの方向性電磁鋼板およびその製造方法にある。
The gist of the present invention resides in the grain-oriented electrical steel sheet and its manufacturing method as described below.

【0010】(1) 重量%で、C: 0.01%以下、Si:2.0〜
3.0 %、Mn:3.0%を超え 4.0%まで、S: 0.01%以下、
酸可溶性Al:0.003〜0.015 %およびN:0.010%以下を含
有し、残部はFeおよび不可避的不純物からなることを特
徴とする方向性電磁鋼板。
(1) By weight%, C: 0.01% or less, Si: 2.0-
3.0%, Mn: more than 3.0% to 4.0%, S: 0.01% or less,
An grain-oriented electrical steel sheet comprising acid-soluble Al: 0.003 to 0.015% and N: 0.010% or less, and the balance being Fe and inevitable impurities.

【0011】(2) 重量%で、C: 0.01%以下、Si:2.0〜
3.0 %、Mn:3.0%を超え 4.0%まで、S: 0.01%以下、
酸可溶性Al:0.003〜0.015 %およびN:0.001〜0.010 %
を含有し、残部はFeおよび不可避的不純物からなる鋼の
スラブを下記〜の工程で処理することを特徴とする
方向性電磁鋼板の製造方法。
(2)%: C: 0.01% or less, Si: 2.0-
3.0%, Mn: more than 3.0% to 4.0%, S: 0.01% or less,
Acid-soluble Al: 0.003 to 0.015% and N: 0.001 to 0.010%
A method for producing a grain-oriented electrical steel sheet, comprising: treating a slab of steel containing Fe and unavoidable impurities in the balance in the following steps.

【0012】熱間圧延を行う工程、 熱間圧延のまま、または熱間圧延後に焼鈍してから、
1回または中間焼鈍を挟んだ2回以上の冷間圧延を行う
工程、 連続焼鈍により一次再結晶を起こさせる工程、 825〜925 ℃の温度域で7〜100 時間保持して二次再
結晶を起こさせる第1の仕上焼鈍工程、 925℃を超え、1050℃までの温度域で4〜100 時間保
持し純化する第2の仕上焼鈍工程。
The step of performing hot rolling, as hot rolling, or after annealing after hot rolling,
A step of performing cold rolling once or twice or more with intermediate annealing sandwiched between them, a step of causing primary recrystallization by continuous annealing, and a secondary recrystallization that is maintained at a temperature range of 825 to 925 ° C for 7 to 100 hours. The first finish annealing step to be caused to occur, and the second finish annealing step of purifying by holding in the temperature range above 925 ° C and up to 1050 ° C for 4 to 100 hours.

【0013】鉄損は大きく分けて、ヒステリシス損と渦
電流損との二種類の損失成分からなっており、鉄損の低
減はこれらの二つの鉄損成分を減少させることで達成さ
れる。そして、ヒステリシス損を低減するためには、ゴ
ス方位への集積度を上げたり、不純物の含有量を低減す
ることが有効である。一方、渦電流損を低減するために
は、鋼板の固有抵抗を増加することと、板厚を薄くする
ことが有効である。しかし、ゴス方位への集積度の向上
および不純物の含有量の低減に関しては、略々限界に近
いところまで改善が進んできている。板厚の薄手化によ
る鉄損改善の余地が残されているものの、薄手化では製
造コストの上昇が避けられない。
Iron loss is roughly divided into two types of loss components, hysteresis loss and eddy current loss, and reduction of iron loss is achieved by reducing these two iron loss components. In order to reduce the hysteresis loss, it is effective to increase the degree of integration in the Goss orientation and reduce the content of impurities. On the other hand, in order to reduce the eddy current loss, it is effective to increase the specific resistance of the steel plate and reduce the plate thickness. However, with regard to the improvement of the degree of integration in the Goth direction and the reduction of the content of impurities, the improvement has been progressing to the point of almost the limit. Although there is still room for iron loss improvement due to thinner sheet thickness, higher manufacturing costs cannot be avoided with thinner sheet thickness.

【0014】固有抵抗の増加は、一般にSi含有量の増加
でなされるが、Si含有量を増加すると鋼板の冷間加工性
を劣化させ冷間圧延が困難となるため、実際上は 3.3%
を超えるSiの添加は困難である。前述の特開平1−1196
44号公報に示した電磁鋼板のSi含有量の上限を 2.5%ま
でに限定しているのはこの観点からである。したがっ
て、Si含有量を増加して固有抵抗を増加させることもま
た限界にきている。
The increase in resistivity is generally made by increasing the Si content. However, if the Si content is increased, the cold workability of the steel sheet deteriorates and cold rolling becomes difficult, so in practice 3.3%.
It is difficult to add more than Si. The aforementioned Japanese Patent Laid-Open No. 1-1196
It is from this point of view that the upper limit of the Si content of the electrical steel sheet disclosed in Japanese Patent Publication No. 44 is limited to 2.5%. Therefore, increasing the Si content to increase the resistivity is also reaching its limit.

【0015】ところが、本発明者らは、特開平1−1196
44号公報に示した電磁鋼板をベースに、冷間加工性を劣
化させることなく固有抵抗を増加して鉄損を低減する方
法を検討した結果、以下の知見を得た。
However, the inventors of the present invention have disclosed in Japanese Unexamined Patent Publication No. 1-11961.
As a result of examining a method of increasing the specific resistance and reducing the iron loss without deteriorating the cold workability, based on the electromagnetic steel sheet shown in Japanese Patent Publication No. 44, the following findings were obtained.

【0016】(イ) 2.5%を超えるSi含有量の場合で
も、Mnを3.0 %を超え 4.0%までの範囲で含有させるこ
とにより、冷間加工性の劣化が抑制されるとともに、仕
上焼鈍時の二次再結晶の発達が安定化する。
(A) Even if the Si content is more than 2.5%, the deterioration of cold workability is suppressed and the finish annealing during finish annealing is suppressed by containing Mn in the range of more than 3.0% and up to 4.0%. The development of secondary recrystallization is stabilized.

【0017】(ロ)しかも、MnはSiと同様に鋼板の固有
抵抗を増加させる作用を有しており、鉄損の低減にも極
めて有効な元素である。
(B) Moreover, Mn has an action of increasing the specific resistance of the steel sheet like Si, and is an extremely effective element for reducing iron loss.

【0018】(ハ)このような高Si、高Mn鋼の場合、二
次再結晶を発生させるためには、仕上焼鈍の前半で 825
〜925 ℃の温度域で7〜100 時間保持し、次いでインヒ
ビターとなる窒化物を除去するためには、仕上焼鈍の後
半で 925℃を超え、1050℃までの温度域で純化を施すの
が有効である。
(C) In the case of such a high Si and high Mn steel, in order to generate the secondary recrystallization, 825 in the first half of the finish annealing.
It is effective to maintain the temperature in the temperature range of 〜 925 ℃ for 7 to 100 hours and then to remove the nitride that becomes the inhibitor, in the latter half of the finish annealing, it is effective to purify in the temperature range up to 1050 ℃ and over 925 ℃. Is.

【0019】本発明は、このような新しい知見を基にし
てなされたものである。
The present invention has been made based on these new findings.

【0020】[0020]

【作用】以下に、本発明の構成要件ごとに作用効果を説
明する。
The function and effect of each constituent of the present invention will be described below.

【0021】 I 素材となる鋼スラブおよび製品鋼板の組成 (a) C:製品中のCは、その含有量が多くなると鉄損に
悪影響を及ぼす。つまり、Cは製品中では基本的にその
含有量が少なければ少ないほど良好な磁気特性が得られ
る。この理由は、製品段階で残存したCは炭化物を生成
し、これが磁壁移動の障害物となり鉄損が増加するから
である。よって、製品中のCは0.01%以下、望ましくは
0.005 %以下にする必要がある。しかし、素材となる鋼
スラブの段階でC含有量を0.01%以下にしておけば、有
害な炭化物の生成量が少なくなるので、一次再結晶のた
めの連続焼鈍を脱炭焼鈍としなくとも、仕上焼鈍での望
ましい二次再結晶の発生にも悪影響はない。また、仕上
焼鈍の後半に実施される純化焼鈍時に所望の低いC含有
量にまで低減できる。よって、鋼スラブの段階でのC含
有量は、0.01%以下とする。
I Composition of Steel Slab and Product Steel Sheet as Material (a) C: C in the product adversely affects iron loss when the content thereof is large. That is, basically, the smaller the content of C in the product, the better the magnetic properties obtained. The reason for this is that C remaining at the product stage forms carbides, which serve as obstacles for domain wall movement and increase iron loss. Therefore, C in the product is 0.01% or less, preferably
It should be 0.005% or less. However, if the C content is set to 0.01% or less at the stage of the steel slab used as the raw material, the amount of harmful carbides will be reduced, so even if the continuous annealing for primary recrystallization is not decarburization annealing, the finish There is no adverse effect on the desired secondary recrystallization during annealing. Further, it is possible to reduce the content of C to a desired low value during the purification annealing performed in the latter half of the finish annealing. Therefore, the C content in the stage of the steel slab is 0.01% or less.

【0022】(b) Si:Siは磁気特性に大きな影響を与え
る元素であり、その含有量が増加するほど鋼板の固有抵
抗は上昇するため、渦電流損が低下し、結果として鉄損
が低減する。
(B) Si: Si is an element having a great influence on the magnetic properties, and as the content thereof increases, the specific resistance of the steel sheet increases, so that the eddy current loss decreases, and as a result, the iron loss decreases. To do.

【0023】しかし、 3.0%を超える含有量では飽和磁
束密度を低下させるので3.0 %を上限とした。一方、
2.0%未満の含有量では鋼板の固有抵抗が低く、本発明
が目標とする低鉄損の方向性電磁鋼板を製造することが
できない。したがって、Si含有量は 2.0〜3.0 %の範囲
とするのが適当である。
However, if the content exceeds 3.0%, the saturation magnetic flux density is lowered, so 3.0% was made the upper limit. on the other hand,
If the content is less than 2.0%, the specific resistance of the steel sheet is low, and the grain-oriented electrical steel sheet with low iron loss, which is the target of the present invention, cannot be manufactured. Therefore, it is appropriate that the Si content is in the range of 2.0 to 3.0%.

【0024】(c) Mn:Mnは、本発明鋼および本発明の方
法の対象となる鋼のような高Siの極低炭素鋼スラブにお
いて、α−γ変態を生じさせるのに有効な元素であり、
この変態の発生が熱間圧延中の熱延板の組織の微細化と
均質化を促進し、この結果として第1の仕上焼鈍でゴス
方位への集積度の高い二次再結晶が安定して発生すると
ともに、高Si鋼の冷間加工性が改善される。
(C) Mn: Mn is an element effective in causing α-γ transformation in an extremely low carbon steel slab of high Si such as the steel of the present invention and the steel to which the method of the present invention is applied. Yes,
The occurrence of this transformation promotes the refinement and homogenization of the structure of the hot-rolled sheet during hot rolling, and as a result, the secondary recrystallization with a high degree of integration in the Goss orientation is stabilized by the first finish annealing. In addition, the cold workability of high Si steel is improved.

【0025】α−γ変態の発生は、フェライト形成元素
であるSiとオーステナイト形成元素であるMnとの含有量
のバランスで決まるから、SiとMnの含有量は関連させて
調整しなければならない。Si含有量が上記の 2.0〜3.0
%の範囲であれば、Mnは 3.0%を超えて含有させると、
熱延板での好適なα−γ変態を生じさせることができ
る。
The occurrence of α-γ transformation is determined by the balance of the contents of Si, which is a ferrite-forming element, and Mn, which is an austenite-forming element. Therefore, the contents of Si and Mn must be adjusted in relation to each other. Si content above 2.0-3.0
%, If Mn exceeds 3.0%,
A suitable α-γ transformation in the hot rolled sheet can be generated.

【0026】Mnはまた、Siと同様に鋼板の固有抵抗を上
げるのに有効な元素であり、Siの下限含有量である 2.0
%の場合に、Mnを 3.0%を超えて含有させることによ
り、Siを単独で 3.5%含有させた場合と同じ程度の固有
抵抗が得られる。この程度の固有抵抗が、本発明が目標
とする鋼板の固有抵抗の増加による低鉄損化に必須の条
件であり、この面からもMnを 3.0%を超えて含有させる
ことが必要である。しかし、 4.0%を超える含有量で
は、Siと同様に飽和磁束密度を低下させるので4.0%を
上限とした。
Mn is also an element effective for increasing the specific resistance of the steel sheet, like Si, and is the lower limit content of Si of 2.0.
%, By adding Mn in excess of 3.0%, the same specific resistance as in the case where Si alone is included in 3.5% is obtained. This degree of specific resistance is an essential condition for reducing iron loss by increasing the specific resistance of the steel sheet, which is the target of the present invention, and from this aspect also, it is necessary to contain Mn in excess of 3.0%. However, when the content exceeds 4.0%, the saturation magnetic flux density is lowered similarly to Si, so 4.0% was made the upper limit.

【0027】(d) S:SはMnと結合して MnSを形成す
る。本発明では主要なインヒビターとしてAlN、 (Al、S
i)N、(Al 、Si、Mn)Nのような窒化物を用いている。従
って、一般の方向性電磁鋼板のように MnSを主要なイン
ヒビターとして用いないので、Sを多量に添加する必要
はない。製品段階で多量のMnS 粒子が鋼中に残存すると
鉄損の劣化をきたす。更に、本発明の方法では仕上焼鈍
温度の上限が1050℃と低いため、純化焼鈍において脱硫
効果は期待できない。このため、S含有量は製品におい
ても、素材の鋼スラブにおいても0.01%以下とする。な
お、鉄損低減の観点から、0.005%以下とすることが望
ましい。
(D) S: S combines with Mn to form MnS. In the present invention, AlN, (Al, S
i) N, (Al 2, Si, Mn) N nitrides are used. Therefore, since MnS is not used as a main inhibitor unlike general grain-oriented electrical steel sheets, it is not necessary to add a large amount of S. If a large amount of MnS particles remain in the steel at the product stage, iron loss will deteriorate. Further, in the method of the present invention, the upper limit of the finish annealing temperature is as low as 1050 ° C., and therefore the desulfurization effect cannot be expected in the purification annealing. Therefore, the S content is 0.01% or less in both the product and the steel slab as the raw material. From the viewpoint of reducing iron loss, it is desirable to set it to 0.005% or less.

【0028】(e) 酸可溶Al(sol.Al):Alは、二次再結晶
の発生に重要な役割を果たす主要なインヒビターである
AlN、 (Al、Si)N、(Al 、Si、Mn)Nのような窒化物を形
成する重要な元素である。適正なインヒビター効果を得
るには、sol.Alで 0.003%以上が必要である。しかし、
sol.Al含有量が 0.015%を超えると、インヒビター量が
多くなりすぎるとともに、その分散状態も不適切になり
安定した二次再結晶が生じない。
(E) Acid-soluble Al (sol.Al): Al is a major inhibitor that plays an important role in the occurrence of secondary recrystallization.
It is an important element that forms nitrides such as AlN, (Al, Si) N, and (Al 2, Si, Mn) N. In order to obtain a proper inhibitor effect, 0.003% or more of sol.Al is necessary. But,
If the sol.Al content exceeds 0.015%, the amount of the inhibitor will be too large and the dispersion state will be inadequate, and stable secondary recrystallization will not occur.

【0029】(f) N:Nはインヒビターとなる前記の窒
化物を形成するのに必要な元素であり、二次再結晶が完
了するまでは、その適切な量が鋼中に存在していること
が不可欠な元素である。鋼スラブの段階で 0.001%未満
では、窒化物の析出量が少なすぎて所望のインヒビター
効果が得られず、一方、 0.010%を超えて含有させると
その効果が飽和することから 0.001〜0.010 %の範囲が
適当である。
(F) N: N is an element necessary for forming the above-mentioned nitride as an inhibitor, and an appropriate amount thereof is present in the steel until secondary recrystallization is completed. Is an essential element. If it is less than 0.001% in the steel slab stage, the desired inhibitory effect cannot be obtained because the precipitation amount of nitride is too small, while if it exceeds 0.010%, the effect is saturated. The range is appropriate.

【0030】製品中のNは、その含有量が多くなると鉄
損に悪影響を及ぼす。つまり、Nは製品中では基本的に
その含有量が少なければ少ないほど良好な磁気特性が得
られる。この理由は、製品段階で残存したNは窒化物を
生成し、これが磁壁移動の障害物となり鉄損が増加する
からである。このため製品中のNは 0.010%以下にする
必要がある。さらに 0.006%以下にするのが望ましい。
しかし、鋼スラブの段階で上記の範囲にしておけば、仕
上焼鈍の後半に実施される純化焼鈍時に所望の低いN含
有量にまで低減できる。
When the content of N in the product increases, the iron loss is adversely affected. In other words, basically, the smaller the content of N in the product, the better the magnetic properties obtained. The reason for this is that N remaining at the product stage forms a nitride, which acts as an obstacle for domain wall movement and increases iron loss. Therefore, N in the product must be 0.010% or less. Furthermore, 0.006% or less is desirable.
However, if the above range is set at the stage of the steel slab, it is possible to reduce the N content to a desired low value during the purification annealing performed in the latter half of the finish annealing.

【0031】II 製造工程 (a) 第1の工程(熱間圧延):素材鋼のスラブは上記の
組成をもつものである。これは、転炉、電気炉等で溶製
し、必要があれば真空脱ガス等の処理を施した溶鋼を、
連続鋳造法でスラブにしたもの、またはインゴットにし
て分塊圧延したもののいずれでもよい。
II Manufacturing Process (a) First Process (Hot Rolling): The slab of the raw steel has the above composition. This is a molten steel that has been melted in a converter, electric furnace, etc. and, if necessary, vacuum degassed, etc.
It may be either a slab made by a continuous casting method or an ingot and slabbing rolled.

【0032】熱間圧延の条件については特に制約はない
が、望ましいのは、加熱温度1150〜1270℃、仕上温度 7
00〜900 ℃の範囲である。
There are no particular restrictions on the conditions of hot rolling, but it is preferable that the heating temperature is 1150 to 1270 ° C. and the finishing temperature is 7
It is in the range of 00 to 900 ° C.

【0033】(b) 第2の工程(冷間圧延):熱延鋼板を
1回または複数回の冷間圧延によって、所定の製品板厚
まで圧延する。このとき、冷間圧延開始前に焼鈍(いわ
ゆる熱延板焼鈍)を行ってもよい。
(B) Second step (cold rolling): The hot rolled steel sheet is cold-rolled once or plural times to a predetermined product sheet thickness. At this time, annealing (so-called hot rolled sheet annealing) may be performed before the start of cold rolling.

【0034】この熱延板焼鈍は、析出物の分散状態の適
正化と熱延板の再結晶によるミクロ組織の均質化を促進
し、二次再結晶の発生を安定化するのに有効である。
This hot-rolled sheet annealing is effective in optimizing the dispersion state of precipitates, promoting homogenization of the microstructure by recrystallization of the hot-rolled sheet, and stabilizing the occurrence of secondary recrystallization. .

【0035】熱延板焼鈍を連続焼鈍で行う場合は、 700
〜1100℃で10秒から5分間の均熱、箱焼鈍で行う場合
は、 650〜950 ℃で30分から24時間の均熱とするのが望
ましい。複数回の冷間圧延を行う場合には、中間に焼鈍
工程を挟む。この中間焼鈍は、700 〜1000℃の温度範囲
で行うのが望ましい。また、連続焼鈍で良好な一次再結
晶組織を得るためには、最終の冷間圧延の圧下率として
40〜90%が望ましく、更に言えば70〜90%が効果的であ
る。
If the hot-rolled sheet is annealed by continuous annealing, 700
When soaking at ˜1100 ° C. for 10 seconds to 5 minutes and box annealing, it is desirable to soaking at 650 to 950 ° C. for 30 minutes to 24 hours. When performing cold rolling a plurality of times, an annealing process is sandwiched in between. This intermediate annealing is preferably performed in the temperature range of 700 to 1000 ° C. Further, in order to obtain a good primary recrystallized structure by continuous annealing, the reduction ratio of the final cold rolling should be set as
40 to 90% is desirable, and more specifically 70 to 90% is effective.

【0036】(c) 第3の工程(仕上焼鈍前の連続焼鈍、
一次再結晶焼鈍):後述の仕上げ焼鈍で安定した二次再
結晶を発生させるためには、その前工程で急速加熱によ
る一次再結晶焼鈍が必要であり、このために連続焼鈍が
有効である。焼鈍温度としては、 700〜1000℃の範囲が
望ましい。
(C) Third step (continuous annealing before finish annealing,
Primary Recrystallization Annealing): In order to generate stable secondary recrystallization in the finish annealing described below, primary recrystallization annealing by rapid heating is necessary in the preceding step, and continuous annealing is effective for this purpose. The annealing temperature is preferably 700 to 1000 ° C.

【0037】(d) 第4の工程(仕上焼鈍の中の第1の焼
鈍、二次再結晶焼鈍):仕上焼鈍の工程は、二次再結晶
の発生を目的とする前半の焼鈍(第1の焼鈍)と、次の
(e) で述べるその後の析出物の除去(純化)を目的とす
る焼鈍(第2の焼鈍)とに分けられる。
(D) Fourth Step (First Annealing in Finish Annealing, Secondary Recrystallization Annealing): The finishing annealing step is the first half annealing (first annealing for the purpose of generating secondary recrystallization). Annealing) and the following
It is divided into the subsequent annealing (second annealing) for the purpose of removing (purifying) precipitates described in (e).

【0038】ゴス方位への集積度の高い二次再結晶を発
生させるためには、二次再結晶が発生する温度域でイン
ヒビターの効果すなわち強度を適切に制御することが重
要である。仕上焼鈍の中の第1の焼鈍を、 825〜925 ℃
の温度域で7〜100 時間保持して行うのは、この温度域
で最も適切なインヒビター強度が得られ、ゴス方位への
集積度の高い二次再結晶が発生するからである。 825℃
未満ではインヒビターの結晶粒成長抑制力効果が強すぎ
て二次再結晶が発生しない。一方、 925℃を超える温度
域ではインヒビター効果が弱いため、ゴス方位の集積度
の弱い二次再結晶が発生するか、あるいは正常粒の成長
により一次再結晶粒が粗大化するだけである。
In order to generate the secondary recrystallization having a high degree of integration in the Goss orientation, it is important to appropriately control the effect of the inhibitor, that is, the strength, in the temperature range where the secondary recrystallization occurs. The first annealing in the finish annealing, 825 ~ 925 ℃
The temperature is kept at 7 to 100 hours for the reason that the most suitable inhibitor strength is obtained in this temperature range and the secondary recrystallization having a high degree of integration in the Goss orientation occurs. 825 ° C
When the amount is less than the above, the inhibitory effect on the crystal grain growth is too strong and secondary recrystallization does not occur. On the other hand, in the temperature range above 925 ° C, the inhibitor effect is weak, so secondary recrystallization with a low degree of integration in the Goss orientation occurs, or primary recrystallized grains coarsen due to normal grain growth.

【0039】825〜925 ℃の範囲でゴス方位の選択成長
を発生させるための保持時間は、7時間未満では充分で
はなく、一方、100 時間を超える保持は意味がなく経済
的にも不利である。これらの理由で、仕上げ焼鈍工程の
第1の焼鈍の前半は、二次再結晶の発生を目的に、825
〜925 ℃で7〜100 時間保持することとした。なお、こ
の焼鈍はN2を5〜50%で含有する雰囲気中で施すのが望
ましい。これは、インヒビターとして作用する窒化物が
脱窒により減少し二次再結晶が不安定になるのを防止す
るためである。さらに積極的な意味としては、焼鈍雰囲
気からの吸窒によりインヒビターとなる窒化物の析出量
を増加して、ゴス方位への集積度の高い二次再結晶を発
生させるためである。
The holding time for generating the selective growth of the Goss orientation in the range of 825 to 925 ° C. is not sufficient if it is less than 7 hours, while holding for more than 100 hours is meaningless and economically disadvantageous. . For these reasons, the first half of the first annealing of the finish annealing process is performed with the purpose of producing 825
It was decided to hold at 925 ° C for 7 to 100 hours. It is desirable that this annealing be performed in an atmosphere containing 5 to 50% of N 2 . This is to prevent the nitride acting as an inhibitor from being reduced by denitrification and the secondary recrystallization becoming unstable. A more positive meaning is to increase the precipitation amount of the nitride that serves as an inhibitor due to the absorption of nitrogen from the annealing atmosphere to generate secondary recrystallization having a high degree of integration in the Goss orientation.

【0040】(e) 第5の工程(仕上焼鈍の中の第2の仕
上焼鈍、純化焼鈍):インヒビターとして作用した窒化
物は、二次再結晶が発生した後においては磁気特性上有
害なものであり、脱窒してこれを除去するための純化焼
鈍工程が必要である。この目的で、第2の仕上焼鈍では
雰囲気をH2 100%に置換して 925℃を超え、1050℃まで
の温度域で4〜100 時間保持する純化焼鈍を施す。
(E) Fifth step (second finish annealing in finish annealing, purification annealing): The nitride acting as an inhibitor is harmful in terms of magnetic properties after secondary recrystallization occurs. Therefore, a purification annealing step for denitrifying and removing this is necessary. For this purpose, in the second finish annealing, the atmosphere is replaced with H 2 100% and the purification annealing is carried out by maintaining the temperature range above 925 ° C and up to 1050 ° C for 4 to 100 hours.

【0041】この脱窒効果は 925℃以下の温度では充分
ではなく、一方、1050℃を超えると窒化物の除去効果は
飽和するので意味がない。脱窒反応を適切にするための
保持時間としては少なくとも4時間が必要であるが、 1
00時間を超える保持は不必要であり、経済的にも見合わ
ない。したがって、第2の仕上げ焼鈍(純化焼鈍)は、
925℃を超える温度から1050℃までの温度域で4〜100
時間保持することとした。
This denitrifying effect is not sufficient at a temperature of 925 ° C. or lower, while if it exceeds 1050 ° C., the effect of removing nitrides is saturated, so it is meaningless. At least 4 hours is required to maintain the denitrification reaction properly.
Retention for more than 00 hours is unnecessary and economically unprofitable. Therefore, the second finish annealing (purification annealing) is
4 to 100 in the temperature range from 925 ℃ to 1050 ℃
I decided to hold it for a while.

【0042】仕上焼鈍の前に焼鈍時の焼き付き防止のた
めの焼鈍分離剤を塗布することは、通常の方向性電磁鋼
板の製造方法と同じである。仕上焼鈍後の工程としては
通常の方向性電磁鋼板と同様に焼鈍分離剤を除去した
後、必要に応じて絶縁コーティングを施したり、あるい
は平坦化焼鈍を行うことになる。
Applying an annealing separating agent for preventing seizure during annealing before finish annealing is the same as in the usual method for producing grain-oriented electrical steel sheet. As a process after the finish annealing, after removing the annealing separator as in the case of the ordinary grain-oriented electrical steel sheet, an insulating coating is applied or flattening annealing is performed if necessary.

【0043】[0043]

【実施例】【Example】

(試験1)転炉で溶製し、真空処理で成分調整をして連
続鋳造により得られた表1に示す組成の鋼A、B、Cお
よびDのスラブを、加熱温度1250℃、仕上温度 840℃で
熱間圧延し 2.0mm厚に仕上げた。これらの供試鋼は、低
鉄損化を図るために一般の方向性電磁力鋼板(固有抵抗
が約50μΩ・cm) に比べ、大幅に固有抵抗を増加させて
おり、また、略々同一の固有抵抗となるようにSiとMnの
含有量のバランスを変えてある。
(Test 1) The slabs of steels A, B, C and D having the compositions shown in Table 1 obtained by continuous casting after melting in a converter, adjusting the components by vacuum treatment, and heating temperature 1250 ° C, finishing temperature It was hot rolled at 840 ℃ and finished to 2.0mm thickness. These test steels have significantly increased specific resistance compared to general grain-oriented electromagnetic steel sheets (with a specific resistance of approximately 50 μΩ ・ cm) in order to achieve low iron loss, and they have substantially the same specific resistance. The balance of the contents of Si and Mn is changed so that the specific resistance is obtained.

【0044】次に、連続焼鈍炉を用いて 880℃で1分間
均熱の熱延板焼鈍を行った後、酸洗により脱スケール
し、1回の冷間圧延で0.30mm厚まで圧延することを試み
た。その結果、本発明で定める組成範囲を外れた鋼Aお
よび鋼Bでは、冷間圧延中に鋼板エッジ部から亀裂が入
ったり、あるいは破断が発生するに至ったために、所定
の板厚まで冷間圧延することができなかった。一方、本
発明で定める組成範囲を有する鋼Cおよび鋼Dでは、亀
裂や破断の発生もなく所定の板厚まで冷間圧延すること
ができた。
Next, after hot-rolled sheet annealing with uniform heating at 880 ° C. for 1 minute using a continuous annealing furnace, descaling by pickling and rolling to 0.30 mm thickness by one cold rolling. Tried. As a result, in steels A and B having a composition outside the composition range defined by the present invention, cracks were formed from the steel plate edge portion during cold rolling, or fractures occurred, so that the steel sheet was cold-rolled to a predetermined thickness. Could not be rolled. On the other hand, Steel C and Steel D having the composition range defined in the present invention could be cold-rolled to a predetermined plate thickness without cracks or fractures.

【0045】[0045]

【表1】 [Table 1]

【0046】(試験2)前記の鋼Cおよび鋼Dから得ら
れた0.30mm厚の冷延鋼板を、非脱炭雰囲気(50%N2+50
%H2で露点は−20℃以下)中において、 870℃で30秒間
均熱する連続焼鈍で一時再結晶させた。次に、焼鈍分離
剤を塗布後、10%N2+90%H2雰囲気中で、 870℃に昇温
して24時間均熱保持する第1の仕上焼鈍に付し、引き続
き100 %H2雰囲気に置換して、 930℃で24時間均熱保持
後に炉冷する第2の仕上げ焼鈍(純化焼鈍)を行った。
(Test 2) A 0.30 mm-thick cold-rolled steel sheet obtained from Steel C and Steel D was subjected to a non-decarburizing atmosphere (50% N 2 +50).
% H 2 with a dew point of −20 ° C. or lower), and was temporarily recrystallized by continuous annealing at 870 ° C. for 30 seconds. Next, after annealing separating agent coated, with 10% N 2 + 90% H 2 atmosphere, subjected to a first finishing annealing for 24 hours soaking temperature was raised to 870 ° C., subsequently 100% H 2 atmosphere And a second finishing annealing (purification annealing) was performed in which the material was soaked at 930 ° C. for 24 hours and then cooled in the furnace.

【0047】このようにして得られた鋼板の磁気特性
は、鋼Cにおいては鉄損W17/50=1.10W/kg、磁束密度B8
=1.78T 、鋼Dにおいては鉄損W17/50=1.12W/kg、磁束
密度B8=1.78T を示し、極めて良好であった。
The magnetic properties of the steel sheet thus obtained are as follows: in steel C, iron loss W 17/50 = 1.10 W / kg, magnetic flux density B 8
= 1.78T, and in Steel D, the iron loss W 17/50 = 1.12W / kg and the magnetic flux density B 8 = 1.78T, which were extremely good.

【0048】(試験3)本発明で定める範囲の組成、
C: 0.0045%、Si: 2.85%、Mn: 3.14%、S: 0.0006
%、sol.Al:0.010%、N: 0.0045%を含有し、残部がFe
および不純物からなる鋼Eのスラブを、試験1と同様に
溶製して熱間圧延し、 1.8mm厚に仕上げた。
(Test 3) Composition within the range defined by the present invention,
C: 0.0045%, Si: 2.85%, Mn: 3.14%, S: 0.0006
%, Sol.Al: 0.010%, N: 0.0045%, balance Fe
A slab of steel E consisting of and impurities was melted and hot-rolled in the same manner as in Test 1, and finished to a thickness of 1.8 mm.

【0049】次に、酸洗により脱スケールしてから、 7
00℃で1時間均熱する箱焼鈍炉を用いた熱延板焼鈍を施
した後、0.30mm厚に冷間圧延し、非脱炭雰囲気(50%N2
+50%H2で露点は−15℃以下)中において、 890℃で30
秒間均熱する連続焼鈍で一時再結晶させた。次に、焼鈍
分離剤を塗布後、10%N2+90%H2雰囲気中で、 870℃に
昇温して24時間均熱保持する第1の仕上焼鈍に付し、引
き続き100 %H2雰囲気に置換して、表2に示す温度で24
時間均熱保持後に炉冷する第2の仕上げ焼鈍(純化焼
鈍)を行った。
Next, after descaling by pickling,
After hot-rolled sheet annealing using a box annealing furnace that soaks at 00 ° C for 1 hour, it is cold-rolled to a thickness of 0.30 mm in a non-decarburizing atmosphere (50% N 2
+ 50% H 2 and dew point -15 ℃ or less) at 890 ℃
It was temporarily recrystallized by continuous annealing for soaking for a second. Next, after annealing separating agent coated, with 10% N 2 + 90% H 2 atmosphere, subjected to a first finishing annealing for 24 hours soaking temperature was raised to 870 ° C., subsequently 100% H 2 atmosphere At the temperature shown in Table 2
A second finish annealing (purification annealing) was performed in which the furnace was cooled after the uniform heating for a time.

【0050】このようにして得られた鋼板の磁気特性を
表2に併せて示す。いずれも、純化焼鈍の温度条件によ
らず、良好な磁気特性特性が得られているが、本発明で
定める条件を全て満たす試験No.3とNo.4では、特に良好
である。
The magnetic properties of the steel sheet thus obtained are also shown in Table 2. In all cases, good magnetic property characteristics were obtained irrespective of the temperature condition of the purification annealing, but particularly good in tests No. 3 and No. 4 which satisfy all the conditions defined in the present invention.

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【発明の効果】本発明の鋼およびその製造方法によれ
ば、鉄損が低く、変圧器や発電機、電動機の鉄心材料や
磁気シールド材として用いるのに好適な方向性電磁鋼板
を製造することができる。さらにこの電磁鋼板の素材は
冷間加工性にも優れている。本発明の方法は、長時間を
要する脱炭焼鈍工程や超高温での仕上げ焼鈍工程を含ま
ないから、製造コストの低減にも寄与する。
According to the steel of the present invention and the method for manufacturing the same, it is possible to manufacture a grain-oriented electrical steel sheet which has a low iron loss and is suitable for use as a core material or a magnetic shield material for transformers, generators and electric motors. You can Furthermore, the material of this electromagnetic steel sheet is also excellent in cold workability. Since the method of the present invention does not include a decarburization annealing step and a finishing annealing step at an ultrahigh temperature that require a long time, it also contributes to a reduction in manufacturing cost.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C: 0.01%以下、Si:2.0〜3.0
%、Mn:3.0%を超え 4.0%まで、S: 0.01%以下、酸可
溶性Al:0.003〜0.015 %およびN:0.010%以下を含有
し、残部はFeおよび不可避的不純物からなることを特徴
とする方向性電磁鋼板。
1. By weight%, C: 0.01% or less, Si: 2.0 to 3.0
%, Mn: more than 3.0% to 4.0%, S: 0.01% or less, acid-soluble Al: 0.003 to 0.015% and N: 0.010% or less, and the balance is Fe and inevitable impurities. Grain-oriented electrical steel sheet.
【請求項2】重量%で、C: 0.01%以下、Si:2.0〜3.0
%、Mn:3.0%を超え 4.0%まで、S: 0.01%以下、酸可
溶性Al:0.003〜0.015 %およびN:0.001〜0.010 %を含
有し、残部はFeおよび不可避的不純物からなる鋼のスラ
ブを下記〜の工程で処理することを特徴とする方向
性電磁鋼板の製造方法。 熱間圧延を行う工程、 熱間圧延のまま、または熱間圧延後に焼鈍してから、
1回または中間焼鈍を挟んだ2回以上の冷間圧延を行う
工程、 連続焼鈍により一次再結晶を起こさせる工程、 825〜925 ℃の温度域で7〜100 時間保持して二次再
結晶を起こさせる第1の仕上焼鈍工程、 925℃を超え、1050℃までの温度域で4〜100 時間保
持し純化する第2の仕上焼鈍工程。
2. By weight%, C: 0.01% or less, Si: 2.0 to 3.0
%, Mn: more than 3.0% to 4.0%, S: 0.01% or less, acid-soluble Al: 0.003 to 0.015% and N: 0.001 to 0.010%, and the balance being a steel slab consisting of Fe and inevitable impurities. A method for manufacturing a grain-oriented electrical steel sheet, comprising the steps of: The step of performing hot rolling, as hot rolling, or after annealing after hot rolling,
A step of performing cold rolling once or twice or more with intermediate annealing sandwiched between them, a step of causing primary recrystallization by continuous annealing, and a secondary recrystallization that is maintained at a temperature range of 825 to 925 ° C for 7 to 100 hours. The first finish annealing step to be caused to occur, and the second finish annealing step of purifying by holding in the temperature range above 925 ° C and up to 1050 ° C for 4 to 100 hours.
JP20516992A 1992-07-31 1992-07-31 Grain-oriented silicon steel sheet and its production Pending JPH0649607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20516992A JPH0649607A (en) 1992-07-31 1992-07-31 Grain-oriented silicon steel sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20516992A JPH0649607A (en) 1992-07-31 1992-07-31 Grain-oriented silicon steel sheet and its production

Publications (1)

Publication Number Publication Date
JPH0649607A true JPH0649607A (en) 1994-02-22

Family

ID=16502568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20516992A Pending JPH0649607A (en) 1992-07-31 1992-07-31 Grain-oriented silicon steel sheet and its production

Country Status (1)

Country Link
JP (1) JPH0649607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113186381A (en) * 2021-03-19 2021-07-30 首钢智新迁安电磁材料有限公司 Preparation method of oriented silicon steel ultrathin strip for intermediate frequency and steel substrate thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113186381A (en) * 2021-03-19 2021-07-30 首钢智新迁安电磁材料有限公司 Preparation method of oriented silicon steel ultrathin strip for intermediate frequency and steel substrate thereof

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JP6350398B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP0076109B1 (en) Method of producing grain-oriented silicon steel sheets having excellent magnetic properties
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
US5425820A (en) Oriented magnetic steel sheets and manufacturing process therefor
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2001303131A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JP2671717B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0649607A (en) Grain-oriented silicon steel sheet and its production
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JPH075975B2 (en) Method for producing grain-oriented electrical steel sheet
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH06184707A (en) Grain-oriented silicon steel sheet and its production
JPH07310124A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3300034B2 (en) Method for producing oriented silicon steel sheet with extremely high magnetic flux density
EP4317471A1 (en) Production method for grain-oriented electrical steel sheet
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property