JPH0644609B2 - Junction break type PROM - Google Patents

Junction break type PROM

Info

Publication number
JPH0644609B2
JPH0644609B2 JP27801584A JP27801584A JPH0644609B2 JP H0644609 B2 JPH0644609 B2 JP H0644609B2 JP 27801584 A JP27801584 A JP 27801584A JP 27801584 A JP27801584 A JP 27801584A JP H0644609 B2 JPH0644609 B2 JP H0644609B2
Authority
JP
Japan
Prior art keywords
collector
electrode
region
type
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27801584A
Other languages
Japanese (ja)
Other versions
JPS61150367A (en
Inventor
稔秋 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP27801584A priority Critical patent/JPH0644609B2/en
Publication of JPS61150367A publication Critical patent/JPS61150367A/en
Publication of JPH0644609B2 publication Critical patent/JPH0644609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置にかかり特にプログラム可能な読
み出し専用の接合破壊型PROMに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a programmable read-only junction breakdown PROM.

〔従来の技術〕[Conventional technology]

プログラム可能な読み出し専用のPROM(Programabl
e Read Omly Memory)は、その用途からみて、特に確実
なプログラム(書き込み)が望まれている。このPRO
Mの確実なプログラムは、記憶するべき記憶素子を確実
に選択し、安定に電流を流し込むことにある。
Programmable read-only PROM (Programabl
The e Read Omly Memory) is required to have a particularly reliable program (writing) in view of its use. This PRO
The reliable program of M is to surely select the storage element to be stored and to stably supply the current.

従来、この種のPROMをバイポーラ素子によって構成
する場合は、通常、単位記憶素子として、互いに逆方向
に接続された2つのPN接合を含む素子を使用し、この
2つのPN接合のうちの一方を破壊して、情報の書き込
みがなされる接合破壊型PROMと、単位記憶素子とし
て、ヒューズとこれに接続された一つのPN接合を含む
素子を使用し、このヒューズを溶断して、情報の書き込
みがなされるヒューズ型PROMとが実用化されてい
る。
Conventionally, when a PROM of this type is configured by a bipolar element, an element including two PN junctions connected in opposite directions is usually used as a unit memory element, and one of the two PN junctions is used. A junction breakdown PROM that is destroyed to write information is used, and a fuse and a device including one PN junction connected to the fuse are used as a unit storage element, and the fuse is blown to write information. The fuse-type PROM to be used has been put into practical use.

従来、この種の接合破壊型PROMの回路構成には、第
4図に示すように、ワード線W,W…Wnとビット
線B,B…Bmの交差点に記憶素子Q11〜Qmn
が設けられ、、ワード線の端に、ワードドライバーWD
,WD…WDnが接続されている。
Conventionally, in the circuit configuration of this type of junction breakdown type PROM, as shown in FIG. 4, the storage elements Q 11 to Wn are connected to the intersections of the word lines W 1 , W 2 ... Wn and the bit lines B 1 , B 2 ... Bm. Qmn
Is provided, and the word driver WD is provided at the end of the word line.
1 , WD 2 ... WDn are connected.

今、記憶素子Q11に情報を書き込む場合には、ビット
線Bとワード線Wを選択し、かつ、ビット線B
ら書き込み電流を流し込みワードドライバーWDに吸
収される。
Now, the case where information is written into the storage element Q 11 selects the bit lines B 1 and the word line W 1, and is absorbed from the bit line B 1 word driver WD 1 pouring write current.

第5図は、第4図の要部を示す平面図であるが、半導体
基板1上に帯状の複数個のコレクタ領域4を設けその帯
状のコレクタ領域4の間に絶縁領域3を設けて、それぞ
れの帯状のコレクタ領域4を独立させている。帯状のコ
レクタ領域4内は、一列に複数のベース領域6、エミッ
タ領域7を設けて、記憶素子Q11〜Qnmを構成して
いる。帯状のコレクタ領域4内には、さらに、記憶素子
2〜8個毎にコレクタ電極8を設け、ワード線W,W
…Wnに接続されている。また、記憶素子Q11〜Q
mnのエミッタ領域7は、エミッタ電極7′を介して、
ビット線B,B…Bmに接続されている。
FIG. 5 is a plan view showing the main part of FIG. 4, in which a plurality of strip-shaped collector regions 4 are provided on the semiconductor substrate 1 and the insulating region 3 is provided between the strip-shaped collector regions 4. Each strip-shaped collector region 4 is independent. In the strip-shaped collector region 4, a plurality of base regions 6 and emitter regions 7 are provided in a row to form storage elements Q 11 to Qnm. Within the strip-shaped collector region 4, collector electrodes 8 are further provided for every 2 to 8 storage elements, and word lines W 1 and W
2 ... Connected to Wn. In addition, the memory elements Q 11 to Q
The emitter region 7 of mn is connected via the emitter electrode 7 ',
It is connected to the bit lines B 1 , B 2 ... Bm.

第6図は、従来のPROMの一列の要部を示す断面図であ
る。1は半導体基板、2と4はワード線に接続されコレ
クタ埋込層とコレクタ領域、3,3′は半導体基板電位
取り出し用の基板電極9から接地線11に接続される絶
縁領域、5は選択酸化領域、6はベース領域、7はビッ
ト線10に接続されているエミッタ領域である。
FIG. 6 is a cross-sectional view showing a main part of one row of a conventional PROM. Reference numeral 1 is a semiconductor substrate, 2 and 4 are connected to a word line, a collector buried layer and a collector region, 3 and 3'are insulating regions connected from a substrate electrode 9 for extracting a potential of the semiconductor substrate to a ground line 11, and 5 are selected. An oxide region, 6 is a base region, and 7 is an emitter region connected to the bit line 10.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このような従来のパターン構成では、第7図のチップの
平面図に示すように、記憶素子のマトリックス領域Aの
周辺に接地線Bがとりまくように配置される構成になる
ため、単位記憶素子から、接地線11までの距離が非常
に長く、ビット線10から、流した書き込み電流の一部
が、半導体基板1を通って、接地線11に吸収されるま
でに、接地線11に対して電位が上昇し、寄生サイリス
タ(寄生pnpn効果)が動作し、書き込み電流が分散す
る。そのため記憶素子へ十分な書き込み電流が流れず、
書き込み不良が発生する。
In such a conventional pattern configuration, as shown in the plan view of the chip of FIG. 7, the ground line B is arranged around the matrix area A of the storage element, so that the unit storage element The distance to the ground line 11 is very long, and a part of the write current that flows from the bit line 10 passes through the semiconductor substrate 1 and is absorbed by the ground line 11 before the potential with respect to the ground line 11. Rises, the parasitic thyristor (parasitic pnpn effect) operates, and the write current is dispersed. Therefore, a sufficient write current does not flow to the memory element,
Writing failure occurs.

次に、この機構を第8図(a),(b)で簡単に説明する。ビ
ット線Bとワード線Wと選択して、記憶素子Q
情報を書き込もうとする。この時、例えば、隣りのワー
ド線Wには、書き込み済み記憶素子Qがあるとする
と、第5図(b)の等価回路に示すように、ビット線B
とワード線Wとの間には、記憶素子Q(エミッタ・
ベース接合からなるダイオードDと、ベース、コレク
タ、基板(P型)からなるpnpトランジスタQ′に分
割される。)と、記憶素子Qのベース,コレクタ,基
板からなるpnpトランジスタQ′が、記憶素子Q
コレクタ,基板,記憶素子Qのコレクタからなるpnp
トランジスタQを介して並列に接続されて、いわゆる
pnpn構造の寄生サイリスタが接続されたのと同じ構造に
なる。
Next, this mechanism will be briefly described with reference to FIGS. 8 (a) and 8 (b). The bit line B 1 and the word line W 2 are selected to write information in the storage element Q 2 . At this time, for example, if there is a written storage element Q 1 in the adjacent word line W 1 , as shown in the equivalent circuit of FIG. 5B, the bit line B 1
Between the word line W 2 and the storage element Q 2 (Emitter
And a diode D consisting of base junction is divided base, a collector, a pnp transistor Q '2 consisting of the substrate (P-type). ) And a pnp transistor Q ′ 1 composed of a base, a collector and a substrate of the memory element Q 1 , and a pnp transistor Q ′ 1 composed of a collector of the memory element Q 2 , a substrate and a collector of the memory element Q 1.
Connected in parallel via a transistor Q T ,
It becomes the same structure as the parasitic thyristor of pnpn structure was connected.

ビット線Bから記憶素子Qへ書き込み電流Iが流し
込まれ、ワードドライバーWDへ吸収されていると
き、トランジスタQ′のコレクタ電流Iα(α
トランジスタQ′の電流増幅率である。)は、絶縁領
域又は、半導体基板を通って、接地線Gに向って流れ
る。このときの記憶素子Qから、接地線Gまでの等価
抵抗をRとすると、S点の電位は、接地線Gに対してI
αRまで上昇する。
The write current I from the bit line B 1 to the storage element Q 2 is poured, when it is absorbed to the word driver WD 2, 'the collector current I.alpha 2 (alpha 2 of 2 transistors Q' transistor Q in the current amplification factor of 2 Flow through the insulating region or the semiconductor substrate toward the ground line G. If the equivalent resistance from the storage element Q 2 to the ground line G at this time is R, the potential at the point S is I with respect to the ground line G.
Increase to α 2 R.

一方、ワードドライバーWDの動作時の電位をVとす
ると、P点の電位は、接地線に対ししてVまで上昇し、
S点とP点との間の電位差は、IαR−Vとなり、
(IαR−V)>(トランジスタQのエミッタ・ベ
ース間順方向電圧VF)となるまで書き込み電流Iが増
加すると、トランジスタQ′及びQは、電流を引き
はじめ、寄生サイリスタが動作して、書き込み電流Iが
分散する。従って、記憶素子へ十分な書き込み電流が流
れず、書き込み不良が発生する。
On the other hand, when the potential of the word driver WD 2 during operation is V, the potential at the point P rises to V with respect to the ground line,
The potential difference between the S point and the P point is Iα 2 R−V,
When the write current I increases until (Iα 2 R−V)> (forward voltage VF between the emitter and base of the transistor Q T ), the transistors Q ′ 1 and Q T start to draw current and the parasitic thyristor operates. Then, the write current I is dispersed. Therefore, a sufficient write current does not flow to the storage element and a write failure occurs.

例えば、書き込み電流I=100mA、トランジスタ
Q′の電流増幅率α=0.05、記憶素子から接地線ま
での等価抵抗R=500Ω、ワードドライバーWDの動
作時の電位を0.5Vそして、トランジスタQのV
0.8VとするとS点とP点との間の電位差は、Iα
−V=2VとなりトランジスタQのV0.8Vより大
きくなり、寄生サイリスタが容易に動作する。
For example, the write current I = 100 mA, the transistor Q '2 in the current gain alpha 2 = 0.05, the equivalent resistance R = 500 [Omega from the storage element to a ground line, and 0.5V potential during operation of the word driver WD, the transistor Q T the V F
Assuming 0.8 V, the potential difference between the S point and the P point becomes Iα 2 R
-V = 2V next transistor becomes greater than V F 0.8 V of Q T, a parasitic thyristor is easily operated.

従って、本発明の目的は、簡単な構成で、記憶素子間に
働く寄生サイリスタを無くすことにより、確実なプログ
ラムが可能となる、接合破壊型PROMを提供すること
にある。
Therefore, an object of the present invention is to provide a junction breakdown type PROM which has a simple structure and enables reliable programming by eliminating a parasitic thyristor working between storage elements.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の接合破壊型PROMは、一導電型半導体基板上
に島状に分離し且つ行列状に配置して設けた複数のコレ
クタ領域と、前記コレクタ領域の下部に接続して前記半
導体基板内に埋設した逆導電型高不純物濃度のコレクタ
埋込層と、前記各コレクタ領域間の前記半導体基板に埋
設して前記各コレクタ領域を分離する一導電型高不純物
濃度の素子絶縁領域と、前記各コレクタ領域内に少くと
も1個設けたコレクタ電極と、前記コレクタ領域内のコ
レクタ電極の両側に一列に配列して設けた複数の一導電
型のベース領域と、前記ベース領域内のそれぞれに設け
た逆導電型のエミッタ領域と、前記エミッタ領域に接続
して設けたエミッタ電極と、前記コレクタ電極及びエミ
ッタ電極の配列の延長上の互に隣合うコレクタ領域の間
に設けて前記素子絶縁領域と接続する基板電位取り出し
用の基板電極と、前記コレクタ電極と接続して前記コレ
クタ電極及びエミッタ電極の配列と平行に配置したワー
ド線と、前記エミッタ電極と接続して前記ワード線と直
交するビット線と、前記基板電極と接続して前記ビット
線と平行に配置する接地線とを備えている。
The junction breakdown type PROM of the present invention has a plurality of collector regions provided on a semiconductor substrate of one conductivity type and arranged in an island shape and arranged in a matrix, and is connected to a lower portion of the collector region and is provided in the semiconductor substrate. A buried buried layer of a high impurity concentration of the reverse conductivity type, an element insulating region of a high conductivity of a single conductivity type that is buried in the semiconductor substrate between the collector regions to separate the collector regions, and the collectors. At least one collector electrode in the region, a plurality of one-conductivity-type base regions arranged in a row on both sides of the collector electrode in the collector region, and reverse electrodes provided in each of the base regions. The device is provided between a conductive type emitter region, an emitter electrode connected to the emitter region, and collector regions adjacent to each other on the extension of the arrangement of the collector electrode and the emitter electrode. A substrate electrode for extracting a substrate potential connected to the edge region, a word line connected to the collector electrode and arranged in parallel with the array of the collector electrode and the emitter electrode, and a word line connected to the emitter electrode and orthogonal to the word line And a ground line connected to the substrate electrode and arranged in parallel with the bit line.

〔作用〕[Action]

このように、本発明は、コレクタ領域内のコレクタ電極
と、エミッタ領域内のエミッタ電極及び絶縁領域内の基
板電極とを一列に並べ、かつ基板電極に接続する接地線
がエミッタ電極に接続するビット線と平行になるように
構成され、記憶素子の近くに接地線と接続する基板電極
があることを特徴としているため、記憶素子間に働く寄
生サイリスタを無くす作用がある。
As described above, according to the present invention, the collector electrode in the collector region, the emitter electrode in the emitter region and the substrate electrode in the insulating region are arranged in a line, and the ground line connecting to the substrate electrode is connected to the emitter electrode. It is configured to be parallel to the lines, and is characterized in that there is a substrate electrode connected to the ground line in the vicinity of the memory element, and therefore has an effect of eliminating a parasitic thyristor that acts between the memory elements.

すなわち、本発明によれば、記憶素子から接地線までの
距離が短かいため、記憶素子から接地線までの絶縁領域
及び半導体基板の等価抵抗が小さく、絶縁領域及び半導
体基板に書き込み電流の一部が漏れて、接地線に吸収さ
れたとしても、接地線に対する電位の上昇が小さく寄生
サイリスタが動作しない。従って、書き込み電流のほと
んどを選択した記憶素子に流すことができ、安定にしか
も、確実にプログラム(書き込み)することができる。
That is, according to the present invention, since the distance from the storage element to the ground line is short, the equivalent resistance of the insulating region from the storage element to the ground line and the semiconductor substrate is small, and a part of the write current flows to the insulating region and the semiconductor substrate. Even if the leakage occurs and is absorbed by the ground line, the rise in the potential with respect to the ground line is small and the parasitic thyristor does not operate. Therefore, most of the write current can be supplied to the selected storage element, and stable (and reliable) programming (writing) can be performed.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を用いて説明す
る。第1図は、本発明の接合破壊型PROMの一実施例
の要部を示す平面図、第2図は、その部分断面図であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing an essential part of an embodiment of a junction destruction type PROM of the present invention, and FIG. 2 is a partial sectional view thereof.

本実施例は、P型の半導体基板1上に島状に分離し、且
つ行列状に配置して設けられた複数のN型のコレクタ領
域4と、半導体基板1とコレクタ領域4との間に埋設さ
れたN型の高不純物濃度のコレクタ埋込層2と、各コレ
クタ領域4間の半導体基板1に埋設された高不純物濃度
のP型の絶縁領域3と、コレクタ領域4内にそれぞれ一
列に設けられた4個のP型のベース領域6と、このベー
ス領域6内にそれぞれ設けられたN型のエミッタ領域7
とを備え、コレクタ領域4内のコレクタ電極8とエミッ
タ電極7′の配列の延長上に互に隣接するコレクタ領域
4の間に設けて素子絶縁領域3と接続する基板電極9が
一列に並んで設けられ、エミッタ電極7′がコレクタ電
極8とエミッタ電極7′の配列と直交するビット線B
〜Bに接続され、コレクタ電極8がビット線と直交す
るワード線W,Wに接続され、基板電極9がビット
線B〜Bに平行に配置した接地線G,Gに接続
される。
In the present embodiment, a plurality of N-type collector regions 4 are provided on the P-type semiconductor substrate 1 so as to be separated into islands and arranged in a matrix, and between the semiconductor substrate 1 and the collector regions 4. A buried N-type high-impurity-concentration collector buried layer 2, a high-impurity-concentration P-type insulating region 3 buried in the semiconductor substrate 1 between the collector regions 4, and a line in the collector region 4. Four P-type base regions 6 provided and N-type emitter regions 7 provided in the base regions 6, respectively.
Substrate electrodes 9 provided between the collector regions 4 adjacent to each other on the extension of the arrangement of the collector electrodes 8 and the emitter electrodes 7'in the collector region 4 and connected to the element insulating region 3 are arranged in a line. Bit line B 1 which is provided and whose emitter electrode 7'is orthogonal to the array of collector electrode 8 and emitter electrode 7 '
Connected to .about.B 6, the collector electrode 8 is connected to the word line W 1, W 2 perpendicular to the bit lines, ground lines G 1 arranged in parallel to the substrate electrode 9 bit lines B 1 ~B 6, G 2 Connected to.

このように、本実施例は、記憶素子Q11〜Q62の近
くに、接地線があるため、記憶素子から、接地線までの
距離が短かくそのため、記憶素子から接地線までの等価
低抗Rが小さく、絶縁領域3及び半導体基板1に、書き
込み電流の一部が漏れたとしても、接地線に対する電位
の上昇が小さく寄生サイリスタが動作しない。
Thus, this embodiment, in the vicinity of the memory element Q 11 to Q 62, because of the ground wire from the storage element, therefore the distance to the ground line is short, equivalent from the storage element to a ground line low anti Even if part of the write current leaks to the insulating region 3 and the semiconductor substrate 1 because R is small, the rise in the potential with respect to the ground line is small and the parasitic thyristor does not operate.

例えば、第8図(b)の等価回路から、書き込み電流I=
100mAトランジスタQ′の電流増幅率α=0.0
5、等価抵抗R′を50Ω、ワード ドライバーWDの
動作時の電位Vを0.5V、トランジスタQのVを0.8
Vとすると、S点とP点の電位差は、IαR′−V=
−0.25Vとなり、トランジスタQのVより低く、寄
生サイリスタは動作しない。このように、本実施例にお
いては、寄生サイリスタが動作しないため、書き込み電
流のほとんどを選択した記憶素子に流すことができ、安
定で確実なプログラム(書き込み)を可能にすることが
できる。
For example, from the equivalent circuit of FIG. 8 (b), write current I =
Current amplification factor of 100 mA transistor Q ′ 2 α 2 = 0.0
5, 50 [Omega the equivalent resistance R ', 0.5V potential V during operation of the word driver WD, the V F of the transistor Q T 0.8
Assuming V, the potential difference between the S point and the P point is Iα 2 R′-V =
It becomes −0.25V, which is lower than the V F of the transistor Q T , and the parasitic thyristor does not operate. As described above, in this embodiment, since the parasitic thyristor does not operate, most of the write current can be passed to the selected storage element, and stable and reliable programming (writing) can be made possible.

本実施例では、基板電極9と9′との間に記憶素子を4
個設けたが、本発明では、記憶素子から接地線までの等
価抵抗の大きさによって、寄生サイスタが動作しない距
離を選び、自由に、各基板電極9間の記憶素子の数を選
ぶことができる。第3図は、各基板電極9間に8個の記
憶素子を設けた実施例を示す。
In this embodiment, a storage element is placed between the substrate electrodes 9 and 9 '.
However, in the present invention, the distance at which the parasitic thyristor does not operate can be selected according to the size of the equivalent resistance from the storage element to the ground line, and the number of storage elements between the substrate electrodes 9 can be freely selected. . FIG. 3 shows an embodiment in which eight storage elements are provided between each substrate electrode 9.

従って、本発明では、基板電極と基板電極との間に少な
くとも、1個以上の記憶素子を設けることができる。
Therefore, in the present invention, at least one or more storage elements can be provided between the substrate electrodes.

又、上記実施例においては、説明の都合上、ビット線、
ワード線、記憶素子及び接地線の数を制限してあるが、
本発明はこれらに限定されないことは明らかである。
Further, in the above embodiment, for convenience of explanation, the bit line,
Although the number of word lines, storage elements and ground lines is limited,
Obviously, the invention is not limited to these.

さらに上記説明においては、P型の半導体基板を用いた
がN型の半導体基板を用いた場合も同様である。
Further, in the above description, the P-type semiconductor substrate is used, but the same applies when an N-type semiconductor substrate is used.

〔発明の効果〕〔The invention's effect〕

以上、詳細説明したとおり、本発明の接合破壊型PRO
Mは、コレクタ領域内のコレクタ電極とエミッタ領域内
のエミッタ電極及び絶縁領域内の基板電極とを一列に並
べ、かつ、基板電極に接続する接地線がエミッタ電極に
接続するビット線と平行になるように構成され、基板電
極間の記憶素子の数は記憶素子から接地線までの等価抵
抗から、寄生サイリスタが動作しない距離で選ぶことが
でき、少なくとも、1個以上の記憶素子を設けることが
できる。そのため、寄生サイリスタが動作せず、書き込
み電流のほとんどを選択した記憶素子に流すことがで
き、安定に、確実にプログラムすることができるという
効果が得られる。
As described above in detail, the junction breakage type PRO of the present invention
In M, the collector electrode in the collector region, the emitter electrode in the emitter region and the substrate electrode in the insulating region are arranged in a line, and the ground line connected to the substrate electrode is parallel to the bit line connected to the emitter electrode. The number of storage elements between the substrate electrodes can be selected from the equivalent resistance from the storage element to the ground line at a distance that the parasitic thyristor does not operate, and at least one storage element can be provided. . Therefore, the parasitic thyristor does not operate, and most of the write current can be made to flow to the selected memory element, and the effect that stable and reliable programming can be obtained is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の要部を示す平面図、第2図
はその部分断面図、第3図は本発明の他の実施例の要部
を示す平面図、第4図は従来の接合破壊型PROMの一
例を示す回路図、第5図はその要部を示す平面図、第6
図はその部分断面図、第7図はそのチップ平面の説明
図、第8図(a),(b)は接合破壊型PROMにおける寄生
サイリスタの説明図である。 1……半導体基板、2……コレクタ埋込み層、3……絶
縁領域、4……コレクタ領域、5……選択酸化領域、6
……ベース領域、7……エミッタ領域、7′……エミッ
タ電極、8……コレクタ電極、9……基板電極、10…
…ビット線、11……接地線、B,B,…,Bm…
…ビット線、G,G,……接地線、Q11〜Qmn
……記憶素子、WD,WD,…,WDn……ワード
ドライバー。
FIG. 1 is a plan view showing an essential part of an embodiment of the present invention, FIG. 2 is a partial sectional view thereof, FIG. 3 is a plan view showing an essential part of another embodiment of the present invention, and FIG. FIG. 5 is a circuit diagram showing an example of a conventional junction breakdown type PROM, FIG.
FIG. 7 is a partial sectional view thereof, FIG. 7 is an explanatory view of a chip plane thereof, and FIGS. 8A and 8B are explanatory views of a parasitic thyristor in a junction breakdown type PROM. 1 ... Semiconductor substrate, 2 ... Collector buried layer, 3 ... Insulation region, 4 ... Collector region, 5 ... Selective oxidation region, 6
... base region, 7 ... emitter region, 7 '... emitter electrode, 8 ... collector electrode, 9 ... substrate electrode, 10 ...
... bit line, 11 ...... ground lines, B 1, B 2, ... , Bm ...
... bit line, G 1, G 2, ...... ground line, Q 11 ~Qmn
...... memory element, WD 1, WD 2, ... , WDn ...... word driver.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一導電型半導体基板上に相互に分離して行
列状に配置された複数の逆導電型コレクタ領域と、前記
コレクタ領域間の前記半導体基板に埋設された一導電型
分離用絶縁領域と、前記コレクタ領域内に少くとも一個
設けられたコレクタ電極と、前記コレクタ領域内の前記
コレクタ電極の両側に一列に配列して設けられた複数の
一導電型ベース領域と、前記ベース領域上に設けられた
逆導電型エミッタ領域に接続されたエミッタ電極と、前
記コレクタ及びエミッタ電極の配列の延長上であって互
に隣接する前記コレクタ領域の間に設けられ前記絶縁領
域と接続された基板電極と、前記コレクタ電極と接続さ
れ前記コレクタ及びエミッタ電極の配列と平行でかつ互
いに隣接する前記コレクタ領域の間に配置されたワード
線と、前記エミッタ電極と接続され前記ワード線に垂直
なビット線と、前記基板電極と接続して前記ビット線と
平行に配置する接続線とを備えたことを特徴とする接合
破壊型PROM。
1. A plurality of opposite-conductivity-type collector regions, which are separated from each other and arranged in a matrix on a one-conductivity-type semiconductor substrate, and a one-conductivity-type isolation buried in the semiconductor substrate between the collector regions. A region, at least one collector electrode provided in the collector region, a plurality of one-conductivity-type base regions arranged in a row on both sides of the collector electrode in the collector region, and on the base region A substrate provided between the emitter electrode connected to the opposite conductivity type emitter region and the collector region adjacent to each other on the extension of the arrangement of the collector and the emitter electrode and connected to the insulating region. An electrode, a word line connected to the collector electrode and disposed between the collector regions parallel to the array of the collector and emitter electrodes and adjacent to each other, and the word line. Perpendicular bit lines in the word line is connected to the electrode, the junction breakdown type PROM which is characterized in that a connecting line parallel with the bit line connected to the substrate electrode.
JP27801584A 1984-12-25 1984-12-25 Junction break type PROM Expired - Lifetime JPH0644609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27801584A JPH0644609B2 (en) 1984-12-25 1984-12-25 Junction break type PROM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27801584A JPH0644609B2 (en) 1984-12-25 1984-12-25 Junction break type PROM

Publications (2)

Publication Number Publication Date
JPS61150367A JPS61150367A (en) 1986-07-09
JPH0644609B2 true JPH0644609B2 (en) 1994-06-08

Family

ID=17591447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27801584A Expired - Lifetime JPH0644609B2 (en) 1984-12-25 1984-12-25 Junction break type PROM

Country Status (1)

Country Link
JP (1) JPH0644609B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825260A (en) * 1981-08-08 1983-02-15 Fujitsu Ltd Junction short-circuit type programmable read only memory
GB2118775B (en) * 1982-04-12 1985-11-06 Philips Nv Programmable read-only memory and associated method of manufacture

Also Published As

Publication number Publication date
JPS61150367A (en) 1986-07-09

Similar Documents

Publication Publication Date Title
EP0008946B1 (en) A semiconductor memory device
US10115729B2 (en) Anti-fuse nonvolatile memory devices employing lateral bipolar junction transistors as selection transistors
KR890004798B1 (en) Semiconductor device having a transistor with an in creased current amplification factor
US4599688A (en) Semiconductor memory device having switching circuit for preventing channel leakage in constant current source
EP0028157A1 (en) Semiconductor integrated circuit memory device with integrated injection logic
JPS5842556B2 (en) semiconductor storage device
JPS5846867B2 (en) programmable semiconductor device
JPH0644609B2 (en) Junction break type PROM
US5650956A (en) Current amplification type mask-ROM
US4431305A (en) High density DC stable memory cell
JPS61154163A (en) Junction breakdown type prom
US3971058A (en) Dual emitter programmable memory element and matrix
US4845674A (en) Semiconductor memory cell including cross-coupled bipolar transistors and Schottky diodes
US5014243A (en) Programmable read only memory (PROM) having circular shaped emitter regions
JPH0644608B2 (en) Semiconductor integrated circuit device
JPS61231752A (en) Junction breakdown type prom
KR940009080B1 (en) Selectively accessible memory
JPS62234366A (en) Programmable read only memory device
KR830000158B1 (en) Semiconductor memory
EP0080351A2 (en) Multi-emitter transistors in semiconductor memory devices
JPS6024591B2 (en) Static induction transistor read-only memory device
JPS6254956A (en) Semiconductor memory
JPS6127840B2 (en)
JPH0687497B2 (en) Memory integrated circuit device
JPH0732240B2 (en) Junction breakdown type semiconductor memory device