JPS61150367A - Junction breakdown type prom - Google Patents

Junction breakdown type prom

Info

Publication number
JPS61150367A
JPS61150367A JP59278015A JP27801584A JPS61150367A JP S61150367 A JPS61150367 A JP S61150367A JP 59278015 A JP59278015 A JP 59278015A JP 27801584 A JP27801584 A JP 27801584A JP S61150367 A JPS61150367 A JP S61150367A
Authority
JP
Japan
Prior art keywords
electrode
collector
substrate
emitter
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59278015A
Other languages
Japanese (ja)
Other versions
JPH0644609B2 (en
Inventor
Toshiaki Takada
高田 稔秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27801584A priority Critical patent/JPH0644609B2/en
Publication of JPS61150367A publication Critical patent/JPS61150367A/en
Publication of JPH0644609B2 publication Critical patent/JPH0644609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Abstract

PURPOSE:To remove a parasitic SCR by aligning a collector electrode in a collector layer, an emitter electrode in an emitter layer and a substrate electrode in an insulating region and making a grounding line connected to the substrate electrode parallel with a bit line connected to the emitter electrode. CONSTITUTION:An N collector layer 4 and an N<+> layer 2 are insulated by a P<+> layer 3 on an N<+> buried layer 2 on a P-type Si substrate 1, a P base 6 is formed into the N layer 4 and an N emitter layer 7 into a base, and a collector electrode 8, an emitter electrode 7' and a substrate electrode 9 in the insulating layer 3 are aligned. The emitter electrode 7' is connected to bit lines B1-B6, the collector electrode 8 to word lines W1, W2 and the substrate electrode 9 to grounding lines G1, G2, and the grounding lines G1, G2 are fitted in parallel with the bit lines B1-B6. Since there are grounding lines in the vicinity of memory cells Q11-Q62, equivalent resistance among the cells is reduced, and potential slightly rises to the grounding lines and a parasitic SCR does not operate even when writing currents partially leak to the insulating layer 3 and the substrate 1. Accordingly, the greater part of writing currents flow through the selected memory cells, thus resulting in stable and positive programming.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置にかかり%罠プログラム可能な読
み出し専用の接合破壊型FROMK関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a read-only, junction-destructive FROMK which is applied to a semiconductor device and is trap programmable.

〔従来の技術〕[Conventional technology]

プログラム可能な読み出し専用のFROM(Pro−g
ramable Read  OmIy Memnry
)は、その用途からみて、%に確実なプログラム(書き
込み)が望まれている。このFROMの確実なプログラ
ムは、記憶するべき記憶素子を確実罠選択し、安定に電
流を流し込むこと罠ある。
Programmable read-only FROM (Pro-g
ramable Read OmIy Memnry
), from the point of view of its intended use, a very reliable program (writing) is desired. To reliably program this FROM, it is necessary to reliably select the memory element to be stored and to stably supply a current.

従来、この種のFROMをバイポーラ素子によって構成
する場合は、通常、単位記憶素子として、互いに逆方向
に接続された2つのPN接合を含む素子を使用シフ、こ
の2つのPN接合のうちの一方を破壊して、情報の書き
込みがなされる接合破壊型FROMと、単位記憶素子と
して、ヒーーズとこれに接続された一つのPN接合を含
む素子を使用し、このヒーーズを溶断して、情報の書き
込みがなさレルヒューズ型FROMとが実用化されてい
る。
Conventionally, when this type of FROM is constructed using bipolar elements, an element containing two PN junctions connected in opposite directions is usually used as a unit memory element, and one of these two PN junctions is A junction-destructive FROM is used to write information when it is destroyed, and an element that includes a heat and a PN junction connected to it is used as a unit memory element. A single-fuse type FROM has been put into practical use.

従来、この種の接合波l型FROMの回路構成には、第
4図に示すように、ワード線Wl 、W、・・・Wnと
ビット線B、、B、・・・Bmの交差点く記憶素子Ql
l〜Q−へが設けられ、ワード線の端に、ワードドライ
バーWD1.WD、・・・WDnが接続されている。
Conventionally, in the circuit configuration of this type of junction wave l-type FROM, as shown in FIG. Element Ql
1 to Q- are provided, and word drivers WD1 . WD, . . . WDn are connected.

今、記憶素子QltK情報を書き込む場合には、ビット
線Bl とワード線W!を選択し、かつ、ピッ)#Bt
から書き込み電流を流し込みワードドライ、<−WD 
1に吸収される。
Now, when writing memory element QltK information, bit line Bl and word line W! Select and beep) #Bt
Write current is applied from the word dry, <-WD
1 is absorbed.

第5図は、第4図の要部を示す平面図であるが、半導体
基板1上に帯状の複数個のコレクタ領域4を設けその帯
状のコレクタ領域40間に絶縁領域3を設けて、それぞ
れの帯状のコレクタ領域4を独立させている。帯状のコ
レクタ領域4内は、一列に複数のベース領域6.エミッ
タ領域7を設けて、記憶素子Q 11〜Q惧1を構成し
ている。帯状のコレクタ領域4内には、さらに、記憶素
子2〜8個毎にコレクタ電極8を設け、ワード線W1゜
W鵞・・・Wnに接続されている。また、記憶素子Qt
t−Q%気のエミッタ領域7は、エミッタ電極7′を介
して、ビット線B1.B2・・・B m K接続されて
いる。
FIG. 5 is a plan view showing the main part of FIG. 4, in which a plurality of strip-shaped collector regions 4 are provided on the semiconductor substrate 1, and an insulating region 3 is provided between the strip-shaped collector regions 40, and each The strip-shaped collector region 4 is made independent. Inside the strip-shaped collector region 4, a plurality of base regions 6. An emitter region 7 is provided to constitute memory elements Q11 to Q1. In the strip-shaped collector region 4, collector electrodes 8 are further provided for every 2 to 8 memory elements, and are connected to the word lines W1.about.Wn. In addition, the memory element Qt
The emitter region 7 at tQ% is connected to the bit line B1. through the emitter electrode 7'. B2...B m K connected.

第6図は、従来のFROMの一例の要部を示す断面図で
ある。1は半導体基板、2と4はワード線に接続されコ
レクタ埋込層とコレクタ領域、3゜3′は半導体基板電
位取り出し用の基板電極9から接地線11に接続される
絶縁領域、5は選択酸化領域、6けベース領域、7はビ
ット線10に接続されているエミッタ領域である。
FIG. 6 is a sectional view showing a main part of an example of a conventional FROM. 1 is a semiconductor substrate, 2 and 4 are a collector buried layer and a collector region connected to a word line, 3° 3' is an insulating region connected from a substrate electrode 9 for taking out the semiconductor substrate potential to a ground line 11, and 5 is a selection. The oxidized region 6 is a base region, and 7 is an emitter region connected to a bit line 10.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような従来のパターン構成では、第7図のされる構
成になるため、単位記憶素子から、接地s11ま〒の距
離が非常に長く、ビット線1oから、流した書き込み電
流の一部が、半導体基板1を通って、接地411に吸収
されるまでに、接地線11に対して電位が上昇し、寄生
サイリスタ(寄生pnpn効果)が動作し、書き込み電
流が分散する。そのため記憶素子へ十分な書き込み電流
が流れず、書き込み不良が発生する。
In such a conventional pattern configuration, as shown in FIG. 7, the distance from the unit storage element to the ground s11 is very long, and a part of the write current flowing from the bit line 1o is By the time it passes through the semiconductor substrate 1 and is absorbed by the ground 411, the potential increases with respect to the ground line 11, a parasitic thyristor (parasitic pnpn effect) operates, and the write current is dispersed. Therefore, a sufficient write current does not flow to the memory element, resulting in a write failure.

次に、この機構を第8図(a)、 fb)で簡単に説明
する。ビット線B1 とワード4W2を選択して、記憶
素子QzK情報を書き込もうとする。この時、例えば、
隣りのワード線WtKは、書き込み済み記憶素子Q1が
あるとすると、第5図fb)の等何回路に示すように1
 ビット線B、とワード線W2 との間には、記憶素子
Q2  (エミッタ・ベース接合カラなるダイオードD
と、ベース、コレクタ、基板(P型)からなるpnp)
ランリスタQ’2に分割される。)と、記憶素子Q1の
ベース、コレクタ、基板からなるpnpトランジスリス
′1が、記憶素子Q!のコレクタ、基板、記憶素子Q1
のコレクタからなるnpn)ランリスタQTを介して並
列に接続されて、いわゆるpnpn構造の寄生サイリス
タが接続されたのと同じ構造になる。
Next, this mechanism will be briefly explained with reference to FIGS. 8(a) and 8(fb). Bit line B1 and word 4W2 are selected to write memory element QzK information. At this time, for example,
Assuming that there is a written memory element Q1, the adjacent word line WtK is 1 as shown in the circuit shown in FIG. 5 fb).
Between the bit line B and the word line W2, there is a storage element Q2 (a diode D with an emitter-base junction).
and pnp (consisting of base, collector, and substrate (P type))
It is divided into run lister Q'2. ), and the pnp transistor Slith'1 consisting of the base, collector, and substrate of the storage element Q1 is connected to the storage element Q! collector, substrate, memory element Q1
are connected in parallel via a npn) run ristor QT consisting of a collector, resulting in the same structure as that of a parasitic thyristor of a so-called pnpn structure.

ビット#i!B+から記憶素子Q2へ書き込み電流工が
流し込まれ、ワードドライバーWD、へ吸収されている
とき、トランジスタQ′2のコレクタ電流工α、(α2
けトランジスタQ’2の電流増幅率である。)#′i、
絶縁領域又は、半導体基板を通って、接地線Gに向って
流れる。こめときの記憶素子Q2から、接地線Gまでの
等価抵抗をRとすると、8点の電位は、接地、4Gに対
して■α2Rまで上昇する。
Bit#i! When the write current flows from B+ to the memory element Q2 and is absorbed into the word driver WD, the collector current α, (α2
is the current amplification factor of the transistor Q'2. )#'i,
It flows towards the ground line G through the insulating region or the semiconductor substrate. If the equivalent resistance from the memory element Q2 to the ground line G at this time is R, the potential at 8 points rises to ■α2R with respect to the ground and 4G.

一方、ワードドライバーWD2の動作時の電位をVとす
ると、P点の電位は、接地at<対してVまで上昇し、
8点とP点との間の電位差は、工α2R−v トy !
7、(Iat几−V)>()ランリスクQT のエミッ
タ・ペース間順方向電圧VF)となるまで書き込み電流
Iが増加すると、トランジスタQ ’l及びQTは、電
流を引きはじめ、寄生サイリスタが動作して、書き込み
電流Iが分散する。従って、記憶素子へ十分な書き込み
電流が流れず、書き込み不良が発生する。
On the other hand, if the potential during operation of word driver WD2 is V, the potential at point P rises to V with respect to ground at<
The potential difference between point 8 and point P is α2R−v toy!
7. When the write current I increases until (Iat - V) > () run risk QT emitter-pace forward voltage VF), transistors Q'l and QT start to draw current, and the parasitic thyristor As a result, the write current I is dispersed. Therefore, a sufficient write current does not flow to the memory element, resulting in a write failure.

例えば、甫き込み電流I=100mA、)ランリスクQ
’zの電流増幅率α、=Q、Q5、記憶素子から接地線
までの等価抵抗R=500Ω、ワードドライバーWDの
動作時の電位を0.5Vそして、トランジスタQTのv
Fを0.8 Vとすると8点とP点との間の電位差は、
工α2几−V=2V  となりトランジスタQTのVy
O,8Vより大きくなり、寄生サイリスタが容易に動作
する。
For example, injected current I=100mA,) run risk Q
'z current amplification factor α, = Q, Q5, equivalent resistance R from the storage element to the ground line = 500 Ω, the operating potential of the word driver WD is 0.5 V, and the voltage of the transistor QT is
If F is 0.8 V, the potential difference between point 8 and point P is
α2 - V = 2V, so Vy of transistor QT
The parasitic thyristor operates easily.

従って、本発明の目的は、簡単な構成で、記憶素子間に
働く寄生サイリスタを無くすことKより、確実なプログ
ラムが可能となる、接合破壊型FROMを提供すること
にある。
Therefore, an object of the present invention is to provide a junction destruction type FROM which has a simple structure and enables reliable programming by eliminating the parasitic thyristor that acts between memory elements.

C問題点を解決するための手段〕 本発明の接合破壊型FROMは、複数のワード線とビッ
ト線との交差点く記憶素子を有する接合破壊型PROM
において、一導電型の半導体基板上に設けられた複数の
逆導電型のコレクタ領域と、前記半導体基板と前記コレ
クタ領域との間に埋設された逆導電型の高不純物@度の
コレクタ埋込層と、前記各コレクタ領域間の前記半導体
基板に埋設された高不純物濃度の一導電一の絶縁領域と
、前記コレクタ領域内にそれぞれ一列に設けられた複数
の一導電型のベース領域と、該ベース領域内にそれぞれ
設けられた逆導電型のエミッタ領域とを備え、前記コレ
クタ領域内のコレクタ電極と前記エミッタ領域内のエミ
ッタ電極及び前記絶縁領域内の基板電極が一列に並んで
設けられ、前記エミッタ電極がビット線に、前記コレク
タ電極がワード線に、基板電極が接地線にそれぞれ接続
されて構成されている。又、前記接地@は前記ビット線
に平行になるように設けられる。
Means for Solving Problem C] The junction breakdown type FROM of the present invention is a junction breakdown type PROM having a memory element at the intersection of a plurality of word lines and bit lines.
, a plurality of collector regions of opposite conductivity type provided on a semiconductor substrate of one conductivity type, and a highly impurity collector buried layer of opposite conductivity type buried between the semiconductor substrate and the collector region. a highly impurity-concentrated one-conductivity insulating region buried in the semiconductor substrate between the respective collector regions; a plurality of one-conductivity type base regions provided in a line within the collector regions; a collector electrode in the collector region, an emitter electrode in the emitter region, and a substrate electrode in the insulating region are provided in a line; The electrode is connected to a bit line, the collector electrode is connected to a word line, and the substrate electrode is connected to a ground line. Further, the ground @ is provided parallel to the bit line.

〔作用〕[Effect]

このように1本発明け、コレクタ領域内のコレクタ電極
と、エミッタ領域内のエミッタ電極及び絶縁領域内の基
板電極とを一列に並べ、かつ基板電極に接続する接地線
がエミッタ電極に接続するビット線と平行になるように
構成され、記憶素子の近くに接地線と接続する基板電極
があることを特徴としているため、記憶素子間に働く寄
生サイリスクを無くす作用がある。
In this way, one aspect of the present invention is that the collector electrode in the collector region, the emitter electrode in the emitter region, and the substrate electrode in the insulating region are arranged in a line, and the ground line connected to the substrate electrode is connected to the emitter electrode. The feature is that there is a substrate electrode that is configured to be parallel to the line and connected to the ground line near the memory element, which has the effect of eliminating parasitic silicon risk that acts between the memory elements.

すなわち、本発明によれば、記憶素子から接地線までの
距離が短かいため、記憶素子から接地線までの絶縁領域
及び半導体基板の等価抵抗が小さく、絶縁領域及び半導
体基板に書き込み電流の一部が漏れて、接地線に吸収さ
れたとしても、接地線に対する電位の上昇が小さく寄生
サイリスタが動作しない。従って、書き込み電流のほと
んどを選択した記憶謔子に流すことができ、安定にしか
も、確実にプログラム(書注込み)することができる。
That is, according to the present invention, since the distance from the memory element to the ground line is short, the equivalent resistance of the insulating area and the semiconductor substrate from the memory element to the ground line is small, and a portion of the write current is transferred to the insulating area and the semiconductor substrate. Even if leakage occurs and is absorbed by the ground line, the potential rise with respect to the ground line is small and the parasitic thyristor does not operate. Therefore, most of the write current can be passed to the selected memory capacitor, and programming (writing) can be performed stably and reliably.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を用いて説明する
。第1図は、本発明の接合破噛型PROMの一実施例の
要部を示す平面図、第2図は、その部分断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing a main part of an embodiment of a joint-break type PROM of the present invention, and FIG. 2 is a partial sectional view thereof.

本実施例は、P型の半導体基板1上に設けられた複数の
N型の;レクタ領域4と、半導体基板1とコレクタ領域
4との間圧埋設されたN型の茜不純物濃度のコレクタ埋
込層2と、各コレクタ領域4間の半導体基板1に埋設さ
れた高不純物濃度のP型の絶縁領域3と、コレクタ領域
4内にそれぞ    ゛れ一列に設けられた4個のP型
のベース領域6と、このベース領域6内にそれぞれ設け
られたN型のエミッタ領域7とを備え、コレクタ領域4
内のコレクタ電極8とエミッタ領域7内のエミッタ電極
7′及び給米領域3内の基板電極9が一列に並んで設け
られ、エミッタ電極7′がビyト@Bl〜B、 VC,
コレクタ電極8がワード@Wt 、 W*に、基板電極
9が接地@Gt 、Gg Kそれぞれ接続されて構成さ
れている。又、接地4Gt 、G2はビット線81〜B
6に平行になるよう罠設けられる。
This embodiment includes a plurality of N-type collector regions 4 provided on a P-type semiconductor substrate 1 and an N-type collector buried with a madder impurity concentration buried between the semiconductor substrate 1 and the collector region 4. a P-type insulating region 3 with a high impurity concentration buried in the semiconductor substrate 1 between the collector regions 4, and four P-type insulating regions 3 provided in a row in the collector region 4. It includes a base region 6 and an N-type emitter region 7 provided within the base region 6, and a collector region 4.
The collector electrode 8 in the inner region, the emitter electrode 7' in the emitter region 7, and the substrate electrode 9 in the rice feeding region 3 are arranged in a line, and the emitter electrode 7'
The collector electrode 8 is connected to the words @Wt and W*, and the substrate electrode 9 is connected to the ground @Gt and GgK, respectively. Also, ground 4Gt, G2 is bit line 81~B
The trap is set parallel to 6.

すなわち、本実施例は、ごレクタ領域4内のコレクタ電
極8とエミッタ領域7内のエミッタ電極7′及び絶縁領
域3内の基板室tf!、9とを一列罠並べ、かつ基板電
極9に接続する接地線GK、G2がエミッタ電極7’に
接続するビット線B1〜B6と平行になるように構成し
ている。
That is, in this embodiment, the collector electrode 8 in the collector region 4, the emitter electrode 7' in the emitter region 7, and the substrate chamber tf! in the insulating region 3. , 9 are lined up in a row, and the ground lines GK and G2 connected to the substrate electrode 9 are parallel to the bit lines B1 to B6 connected to the emitter electrode 7'.

このように、本実施例は、記憶素子Q t t〜Qsz
の近く罠、接地線があるため、記憶素子から、接地線ま
での距離が短かくそのため、記憶素子から接地線までの
等価抵抗Rが小さく、絶縁領域3及び半導体基板IK、
書き込み電流の一部が漏れたとしても、接地aK対する
電位の上昇が小さく寄生サイリスタが動作しない。
In this way, in this embodiment, the memory elements Q t t~Qsz
Since there is a trap and a ground line near the ground line, the distance from the memory element to the ground line is short, so the equivalent resistance R from the memory element to the ground line is small, and the insulation region 3 and semiconductor substrate IK,
Even if part of the write current leaks, the potential rise with respect to ground aK is small and the parasitic thyristor does not operate.

例えば、第8図(blの等価回路から、書き込み電15
fEI=100mA)ランリスタQ’zの電流増幅基α
、==Q、Q5、等価抵抗几′を50Ω、ワードドライ
バーWDの動作時の電位Vを0.5V、)ランリスタQ
rのvrを0.8vとすると、8点とP点の電位差は、
Ia、 R’−V=−0,25Vトfx F)、トラン
ジスタQTのV、より低く、寄生サイリスタは動作しな
い。このように、本実施例においては、寄生サイリスタ
が動作しないため、書き込み電流のほとんどを選択した
記憶素子に流すことができ、安定で確実なプログラム(
v#き込み)を可能にすることができ゛る。
For example, from the equivalent circuit of FIG. 8 (bl), write voltage 15
fEI=100mA) Current amplification group α of run lister Q'z
, ==Q, Q5, equivalent resistance 几′ is 50Ω, potential V during operation of word driver WD is 0.5V, ) run lister Q
If vr of r is 0.8v, the potential difference between point 8 and point P is
Ia, R'-V=-0,25V to fxF), lower than the V of transistor QT, the parasitic thyristor does not operate. In this way, in this example, since the parasitic thyristor does not operate, most of the write current can flow to the selected memory element, resulting in stable and reliable programming (
v# import).

本実施例では、基板電極9と9′との間に記憶素子を4
個設けたが、本発明では、記憶素子から接地線までの等
価抵抗の大きさによって、寄生サイリスタが動作しない
距離を選び、自由に、各基板電極9間の記憶素子の数を
選ぶことができる。
In this embodiment, four memory elements are arranged between substrate electrodes 9 and 9'.
However, in the present invention, the distance at which the parasitic thyristor does not operate can be selected depending on the size of the equivalent resistance from the memory element to the ground line, and the number of memory elements between each substrate electrode 9 can be freely selected. .

第3図は、各基板電極9間に8個の記憶系子を設けた実
施例を示す。
FIG. 3 shows an embodiment in which eight memory elements are provided between each substrate electrode 9. In FIG.

従って、本発明でf′i、基板電極と基板電極との間に
少なくとも、1個以上の記憶素子を設けることができる
Therefore, in the present invention, at least one memory element can be provided between f'i and the substrate electrodes.

又、上記実施例においては、説明の都合上、ビット線、
ワード線、記憶素子及び接地線の数を制限しであるが、
本発明はこれらに限定されないことは明らかである。
In addition, in the above embodiment, for convenience of explanation, the bit line,
Although limiting the number of word lines, storage elements and ground lines,
It is clear that the invention is not limited thereto.

さらに上記説明においては、P型の半導体基板を用いた
がN型の半導体基板を用いた場合も同様である。
Further, in the above description, a P-type semiconductor substrate is used, but the same applies when an N-type semiconductor substrate is used.

〔発明の効果〕〔Effect of the invention〕

以上、詳細説明したとおり、本発明の接合破壊型FRO
Mは、コレクタ領域内のコレクタ電極とエミッタ領域内
のエミッタ電極及び絶線領域内の基板電極とを一列に並
べ、かつ、基板電極に接続する接地線がエミッタIE1
tLK接続するビット線と平行になるように構成され、
基板電極間の記憶素子の数は記憶素子から接地線までの
等価抵抗から、寄生サイリスタが動作しない距離で選ぶ
ととができ、少なくとも、1個以上の記憶素子を設ける
ことができる。そのため、寄生サイリスタが動作せず、
書き込み電流のほとんどを選択した記憶素子に流すこと
ができ、安定に、確実にプログラムすることができると
いう効果が得られる。
As explained above in detail, the junction breaking type FRO of the present invention
In M, the collector electrode in the collector region, the emitter electrode in the emitter region, and the substrate electrode in the disconnected region are arranged in a line, and the ground line connected to the substrate electrode is the emitter IE1.
It is configured to be parallel to the bit line connected to tLK,
The number of memory elements between the substrate electrodes can be selected from the equivalent resistance from the memory element to the ground line at a distance at which the parasitic thyristor does not operate, and at least one or more memory elements can be provided. Therefore, the parasitic thyristor does not operate,
Most of the write current can be passed to the selected memory element, resulting in the effect that programming can be performed stably and reliably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部を示す平面図、第2図
はその部分断面図、第3図は本発明の他の実施例の要部
を示す平面図、第4図は従来の接合破慢型FROMの一
例を示す回路図、第5図はその要部を示す平面図、第6
図はその部分断面図、第7図、けそのチシプ平面の説明
図、第8図1ad、 lb)は接合液I萬型PROMに
おける寄生サイリスタの説明図である。 1・・・・・・半導体基板、2・・・・・・コレクタ埋
込み層、3・・・・・・絶碌領域、4・・・・・・コレ
クタ領域、5・・・・・・選択酸化領域、6・・・・・
・ベース領域、7・・・・・・エミッタ領域、7′・・
・・・・エミッタ電極、8・・・・・・コレクタ電極、
9・・・・・・基板電極、10・・・・・・ビット線、
11・・・・・・接地線、at 、 82 、・・・、
Bm・・・・・・ビット線、Gl、G2・・・・・・接
地線s Qs1〜Qmn・・・・・・ 記憶素子、WD
、、WD2.・・・、WDn・・・・・・ワードドライ
バーO
FIG. 1 is a plan view showing a main part of an embodiment of the present invention, FIG. 2 is a partial sectional view thereof, FIG. 3 is a plan view showing a main part of another embodiment of the invention, and FIG. A circuit diagram showing an example of a conventional junction-broken type FROM; FIG. 5 is a plan view showing the main parts;
The figure is a partial cross-sectional view of the same, FIG. 7 is an explanatory diagram of the chip plane, and FIG. 1...Semiconductor substrate, 2...Collector buried layer, 3...Excellent region, 4...Collector region, 5...Selection Oxidation region, 6...
・Base region, 7...Emitter region, 7'...
...Emitter electrode, 8...Collector electrode,
9...Substrate electrode, 10...Bit line,
11... Ground wire, at, 82,...
Bm... Bit line, Gl, G2... Ground line s Qs1~Qmn... Memory element, WD
,,WD2. ...,WDn...Word driver O

Claims (3)

【特許請求の範囲】[Claims] (1)複数のワード線とビット線との交差点に記憶素子
を有する接合破壊型PROMにおいて、一導電型の半導
体基板上に設けられた複数の逆導電型のコレクタ領域と
、前記半導体基板と前記コレクタ領域との間に埋設され
た逆導電型の高不純物濃度のコレクタ埋込層と、前記各
コレクタ領域間の前記半導体基板に埋設された一導電型
の高不純物濃度の絶縁領域と、前記コレクタ領域内にそ
れぞれ一列に設けられた複数の一導電型のベース領域と
、該ベース領域内にそれぞれ設けられた逆導電型のエミ
ッタ領域とを備え、前記コレクタ領域内のコレクタ電極
と前記エミッタ領域内のエミッタ電極及び前記絶縁領域
内の半導体基板電位取り出し用の基板電極が一列に並ん
で設けられ、前記エミッタ電極がビット線に、前記コレ
クタ電極がワード線に、前記基板電極が接地線にそれぞ
れ接続されてなることを特徴とする接合破壊型PROM
(1) In a junction breakdown type PROM having a memory element at the intersection of a plurality of word lines and a bit line, a plurality of collector regions of opposite conductivity type provided on a semiconductor substrate of one conductivity type, and a plurality of collector regions of the opposite conductivity type provided on a semiconductor substrate of one conductivity type, a collector buried layer with a high impurity concentration of the opposite conductivity type buried between the collector regions; an insulating region with a high impurity concentration of one conductivity type buried in the semiconductor substrate between the collector regions; A collector electrode in the collector region and a plurality of base regions of the opposite conductivity type provided in the base regions, each having a plurality of base regions of one conductivity type provided in a line in the region, and emitter regions of opposite conductivity type provided in the base regions, and a collector electrode in the collector region and a collector electrode in the emitter region. An emitter electrode and a substrate electrode for taking out a semiconductor substrate potential in the insulating region are arranged in a line, and the emitter electrode is connected to a bit line, the collector electrode is connected to a word line, and the substrate electrode is connected to a ground line. A junction-destructive PROM characterized by
.
(2)一列に設けられた基板電極の間には、少なくとも
1個以上の記憶素子が設けられていることからなる特許
請求の範囲第(1)項記載の接合破壊型PROM。
(2) The junction breakdown type PROM according to claim (1), wherein at least one memory element is provided between the substrate electrodes provided in one row.
(3)接地線がビット線と平行になるように設けられて
いることからなる特許請求の範囲第(1)項記載の接合
破壊型PROM。
(3) A junction breakdown type PROM according to claim (1), wherein the ground line is provided parallel to the bit line.
JP27801584A 1984-12-25 1984-12-25 Junction break type PROM Expired - Lifetime JPH0644609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27801584A JPH0644609B2 (en) 1984-12-25 1984-12-25 Junction break type PROM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27801584A JPH0644609B2 (en) 1984-12-25 1984-12-25 Junction break type PROM

Publications (2)

Publication Number Publication Date
JPS61150367A true JPS61150367A (en) 1986-07-09
JPH0644609B2 JPH0644609B2 (en) 1994-06-08

Family

ID=17591447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27801584A Expired - Lifetime JPH0644609B2 (en) 1984-12-25 1984-12-25 Junction break type PROM

Country Status (1)

Country Link
JP (1) JPH0644609B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825260A (en) * 1981-08-08 1983-02-15 Fujitsu Ltd Junction short-circuit type programmable read only memory
JPS58186963A (en) * 1982-04-12 1983-11-01 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Programmable read-only memory and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825260A (en) * 1981-08-08 1983-02-15 Fujitsu Ltd Junction short-circuit type programmable read only memory
JPS58186963A (en) * 1982-04-12 1983-11-01 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Programmable read-only memory and method of producing same

Also Published As

Publication number Publication date
JPH0644609B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
TWI736548B (en) Electro-static discharge protection devices having a low trigger voltage
JPH0462439B2 (en)
JPS607388B2 (en) semiconductor storage device
KR940003410B1 (en) Semiconductor memory device with a mesh-structure source-line
JPS5828679B2 (en) Write circuit for semiconductor memory device
US5495123A (en) Structure to protect against below ground current injection
US4604728A (en) Semiconductor memory device
US4599688A (en) Semiconductor memory device having switching circuit for preventing channel leakage in constant current source
KR890004798B1 (en) Semiconductor device having a transistor with an in creased current amplification factor
EP0028157B1 (en) Semiconductor integrated circuit memory device with integrated injection logic
JPS61150367A (en) Junction breakdown type prom
US4488261A (en) Field programmable device
JPS61154163A (en) Junction breakdown type prom
JPS61231752A (en) Junction breakdown type prom
US5014243A (en) Programmable read only memory (PROM) having circular shaped emitter regions
JPS61125073A (en) Semiconductor integrated circuit device
JPS58225664A (en) C-mos integrated circuit
JP7420786B2 (en) Semiconductor circuits and electronic equipment
KR890002888A (en) Semiconductor integrated circuit device
JPS61202398A (en) Read-only semiconductor memory device capable of electrical writing
US4085339A (en) Circuit arrangement in a complementary CHL technique
EP0246371B1 (en) Integrated injection logic output circuit
JP3107615B2 (en) Semiconductor storage device
JPS58173866A (en) Protective circuit
JPS6242398A (en) Programmable integrated circuit