JPS61154163A - Junction breakdown type prom - Google Patents

Junction breakdown type prom

Info

Publication number
JPS61154163A
JPS61154163A JP59277352A JP27735284A JPS61154163A JP S61154163 A JPS61154163 A JP S61154163A JP 59277352 A JP59277352 A JP 59277352A JP 27735284 A JP27735284 A JP 27735284A JP S61154163 A JPS61154163 A JP S61154163A
Authority
JP
Japan
Prior art keywords
collector
region
electrode
conductivity type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59277352A
Other languages
Japanese (ja)
Inventor
Toshiaki Takada
高田 稔秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59277352A priority Critical patent/JPS61154163A/en
Publication of JPS61154163A publication Critical patent/JPS61154163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Abstract

PURPOSE:To ensure stable writing in memory cells (to program), by providing a substrate electorode in a memory element matrix, thereby preventing the operation of a parasitic thyristor. CONSTITUTION:A collector electrode 8 in a collector region 4, an emitter electrode 7' in an emitter region 7 and a substrate electrode 9 in an insulating region 3 are provided in a matrix region A of memory elements, in a Figure of chip pattern arrangement. A grounding line G, which is connected to the substrate electrode, is made parallel with word lines W1 and W2, which are connected to the collector electrodes 8. since the grounding line is located in the vicinity of the memory elements, the distance from each memory element to the grounding line is short. Therefore, the equivalent resistance R from the memory element to the grounding line is small. Even if part of writing current leaks into the insulating region 3 and a semiconductor substrate 1, the increase in potential with respect to the grounding line is small, and a parasitic thyristor is not operated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置にかかり特にプログラム可能な読
み出し専用の接合破壊型PROMKIJiJする。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a programmable read-only junction destruction type PROM.

〔従来の技術〕[Conventional technology]

プログラム可能な読与出し専用のFROM(Pro−g
ramable Read 0m1y Memory)
は、その用途からみて、特に確実なプログラム(書き込
み)が記憶するべき記憶素子を確実に選択し、安定に電
流を流し込むことKある。
Programmable read-only FROM (Pro-g
ramable Read 0m1y Memory)
From the viewpoint of its use, it is important to reliably select a memory element to store a particularly reliable program (write) and to stably supply a current.

従来、この種のFROMをバイポーラ素子によって構成
する場合は、通常、単位記憶素子として、互いに逆方向
に接続された2つのPN接合を含む素子を使用し、この
2つのPN接合のうちの一方を破壊して、情報の書き込
みがなさnる接合破壊型PROMと、単位記憶素子とし
て、ヒエーズとこnに接続さnた一つのPN接合を含む
素子を使用し、このヒエーズを溶断して、情報の書き込
みがなされるヒユーズ型FROMとが実用化されている
Conventionally, when this type of FROM is configured with bipolar elements, an element including two PN junctions connected in opposite directions is usually used as a unit memory element, and one of the two PN junctions is A junction-destructive PROM that can be destroyed to write information, and an element containing one PN junction connected to a wire as a unit memory element are used, and this wire is fused to write information. A fuse-type FROM in which data can be written has been put into practical use.

従来、この種の接合破壊型FROMの回路構成には、第
4図に示すように、ワード線W、、W2・・・Wnとビ
ット線B1*B2・−Bmの交差点に記憶素子Qlt〜
Qmnが設けられ、ワード線の端に、ワードド24A−
WDI 、WD2 ・・・WDnが接続されている。
Conventionally, in the circuit configuration of this type of junction breakdown type FROM, as shown in FIG.
A word line 24A- is provided at the end of the word line.
WDI, WD2...WDn are connected.

今、記憶素子Qssに情報を書き込む場合には、ビット
線B1とレード線Wlを選択し、かつ、ビット線B1か
ら書き込み電流を流し込みワードドライバーWD、に吸
収される。
Now, when writing information to the storage element Qss, the bit line B1 and the rad line Wl are selected, and a write current is applied from the bit line B1 and absorbed by the word driver WD.

第5図は、第4図の要部を示す平面図であるが、半導体
基板1上に帯状の複数個のコレクタ領域4を設けその帯
状のコレクタ領域40間に絶縁領域3を設けて、それぞ
nの帯状のコレクタ領域4を独立させている。帯状のコ
レクタ領域4内は、−列に複数のペース領域6.エミッ
タ領域7を設けて、記憶素子Qu〜Qmnを構成してい
る。帯状のコレクタ領域4内には、さらに、記憶素子2
〜8個毎にコレクタ電極8を設け、ワード線W1.W2
・・・Wnに接続されている。また、記憶素子Q11〜
Qmn のエミッタ領域7は、エミッタ電極7′ を介
して、ビット線Bl、B2・・・Bmに接続されている
FIG. 5 is a plan view showing the main part of FIG. 4, in which a plurality of strip-shaped collector regions 4 are provided on the semiconductor substrate 1, and an insulating region 3 is provided between the strip-shaped collector regions 40. The strip-shaped collector regions 4 are made independent. Inside the strip-shaped collector area 4, there are a plurality of pace areas 6. in the - column. An emitter region 7 is provided to constitute memory elements Qu to Qmn. The strip-shaped collector region 4 further includes a memory element 2.
A collector electrode 8 is provided for every eight word lines W1. W2
...Connected to Wn. In addition, the memory elements Q11~
The emitter region 7 of Qmn is connected to bit lines Bl, B2 . . . Bm via emitter electrodes 7'.

第6図は、従来のFROMの一例の要部を示す断面図で
ある。1は半導体基板、2と4はワード線に接続されコ
レクタ埋込層とコレクタ領域、3゜3′は半導体基板電
位取り出し用の基板電極9から接地線Gに接続される絶
縁領域、5は選択酸化値域、6はペース領域、7はビッ
ト線10に接続されているエミッタ領域である。
FIG. 6 is a sectional view showing a main part of an example of a conventional FROM. 1 is a semiconductor substrate, 2 and 4 are a collector buried layer and a collector region connected to a word line, 3°3' is an insulating region connected from a substrate electrode 9 for taking out the semiconductor substrate potential to a ground line G, and 5 is a selection. In the oxidation range, 6 is a pace region, and 7 is an emitter region connected to a bit line 10.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような従来のパターン構成では、第7図のチップの
平面図に示すように、記憶素子0マトリツクス領域Aの
周辺に接地IIi!Gがとりまくように配置される構成
になるため、単位記憶素子から、接地線Gまでの距離が
非常に長く、ビット線lOから、流した書き込み電流の
一部が、半導体基板1を通って、接地線Gに吸収される
までに、接地線Gに対して電位が上昇し、寄生サイリス
タ(寄生pnpn効果)が動作し、書き込み電流が分散
する。そのため記憶素子へ十分な書き込み電流が流れず
、書き込み不良が発生する。
In such a conventional pattern configuration, as shown in the plan view of the chip in FIG. 7, a ground IIi! Since the configuration is such that G is arranged so as to surround G, the distance from the unit memory element to the ground line G is very long, and a part of the write current flowing from the bit line IO passes through the semiconductor substrate 1. Before being absorbed by the ground line G, the potential increases with respect to the ground line G, a parasitic thyristor (parasitic pnpn effect) operates, and the write current is dispersed. Therefore, a sufficient write current does not flow to the memory element, resulting in a write failure.

次に、この機構を第8図(a) 、 (b)で簡単に説
明する。ビット線B1とワード線W2を選択して、記憶
素子Q2に情報を書き込もうとする。この時、例えば、
隣りのワード線Wlには、書き込み済み記憶素子Q1が
あるとすると、第3、図中)の等価回路に示すように、
ビット線B1とワード線W2との間には、記憶素子Qg
  (エミッタ・ペース接合からなるダイオードDと、
ペース、コレクタ、基板(P型)からなるpnp トラ
ンジスタQ冨に分割される。)と、記憶素子Q1のペー
ス、コレクタ、基板からなるpnp )ランジスタQ1
が、記憶素子Q2のコレクタ、基板、記憶素子Q1−の
コレクタからなるPnP)ランジスタQTを介して並列
に接続されて、いわゆるpnpn構造の寄生サイリスタ
が接続さnたのと同じ構造になる。
Next, this mechanism will be briefly explained with reference to FIGS. 8(a) and 8(b). Bit line B1 and word line W2 are selected to write information to storage element Q2. At this time, for example,
Assuming that there is a written memory element Q1 on the adjacent word line Wl, as shown in the equivalent circuit in the third figure),
A storage element Qg is connected between the bit line B1 and the word line W2.
(Diode D consisting of an emitter-paste junction,
The pnp transistor is divided into a Q-type transistor consisting of a conductor, a collector, and a substrate (P type). ), a pnp transistor consisting of the memory element Q1's pace, collector, and substrate) transistor Q1
are connected in parallel via a PnP (PnP) transistor QT consisting of the collector of the storage element Q2, the substrate, and the collector of the storage element Q1-, resulting in the same structure as that of a so-called pnpn parasitic thyristor connected.

ビット線Blから記憶素子Q2へ書き込み電流工が流し
込まれ、ワードドライバーWD、へ吸収されているとき
、トランジスタQ’xのコレクタ電流工α2(α2はト
ランジスタQ’zの電流増幅率である。)は、絶縁領域
又は、半導体基板を通って、接地fsGに向って流れる
。このときの記憶素+Q2から、接地線Gまでの等価抵
抗をRとすると、8点の電位は、接地線Gに対して工α
2Rまで上昇する。
When a write current flows from the bit line Bl to the memory element Q2 and is absorbed into the word driver WD, the collector current α2 of the transistor Q'x (α2 is the current amplification factor of the transistor Q'z). flows through the insulating region or semiconductor substrate towards ground fsG. If the equivalent resistance from the memory element +Q2 to the ground line G at this time is R, the potentials at 8 points are
It rises to 2R.

一方、ワードドライバーWD2の動作時の電位をVとす
ると、P点の電位は、接地線に対して■まで上昇し、8
点とP点との間の電位差は、工α2R−Vとなa、(I
a2RV)> () ラyシx/ Q? Oエミッタ・
ベース間順方向電圧VF)となるまで書き込み電流工が
増加すると、トランジスタQ′1及びQ?は、電流を引
きはじめ、寄生サイリスタが動作して、書き込み電流工
が分散する。従りて、記憶素子へ十分な書き込み電流が
流nず、書き込み不良が発生する。
On the other hand, if the potential during operation of word driver WD2 is V, the potential at point P rises to ■ with respect to the ground line, and 8
The potential difference between the point and the point P is α2R−V, a, (I
a2RV)> () Raishi x/Q? O emitter
When the write current increases until the base-to-base forward voltage VF) is reached, transistors Q'1 and Q? begins to draw current, the parasitic thyristor operates, and the write current is distributed. Therefore, a sufficient write current does not flow to the memory element, resulting in a write failure.

例えば、書き込み電流1=100m人、トランジスタQ
’zの電流増幅率α2=o、os、記憶素子から接地線
までの等価抵抗R=5000、ワードドライバーWDの
動作時の電位をO,SVそして、トランジスタQTのv
lを0.8vとすると8点とP点との間の電位差は、I
α、R−V=2VとなりトランジスタQTのVFo、8
Vより大きくなり、寄生サイリスタが容易に動作する。
For example, write current 1 = 100m, transistor Q
Current amplification factor α2 of 'z = o, os, equivalent resistance R from the storage element to the ground line = 5000, potential during operation of the word driver WD is O, SV, and v of the transistor QT.
If l is 0.8v, the potential difference between point 8 and point P is I
α, R-V=2V, VFo of transistor QT, 8
V, and the parasitic thyristor easily operates.

従って、本発明の目的は、簡単な構成で、記憶素子間に
動く寄生サイリスタを無くすことにより、確実なプログ
ラムが可能となる接合破壊型PROMを提供することに
ある。
Therefore, an object of the present invention is to provide a junction destruction type PROM which has a simple structure and which enables reliable programming by eliminating the parasitic thyristor that moves between memory elements.

〔問題点を解決するための手段ゴ 本発明の接合破壊型FROMは、複数のワード線とビッ
ト線との交差点に記憶素子を有する接合破壊型FROM
において、−導電型の半導体基板上に設けられた複数の
帯状の逆導電型のコレクタ領域と、前記半導体基板とコ
レクタ領域との間に埋設さnた帯状の逆導電型の高不純
物濃度のコレクタ埋込層と、前記各コレクタ領域間の前
記半導体基板に埋設さnた帯状の一導電型の高不純物濃
度の絶縁領域と、前記コレクタ領域内にそれぞれ一列に
設けられた複数の一導電型のペース領域と、該ペース領
域内にそれぞれ設けられた逆導電型のエミッタ領域と、
前記絶縁領域内に設けられた半導体基板電位取り出し用
の基板電極とを備え、前記コレクタ領域内のコレクタ電
極がワード線に、前記エミッタ領域内のエミッタ電極が
ビット線に1前記基板電極が接地線に接続され該基板電
極が少なくとも一個以上設けられていることからなりて
いる。
[Means for solving the problem] The junction breakdown type FROM of the present invention has a memory element at the intersection of a plurality of word lines and bit lines.
- a plurality of strip-shaped collector regions of opposite conductivity type provided on a conductivity type semiconductor substrate; and a strip-shaped collector region of high impurity concentration of opposite conductivity type buried between the semiconductor substrate and the collector region; a buried layer, a band-shaped high impurity concentration insulating region of one conductivity type buried in the semiconductor substrate between each of the collector regions, and a plurality of insulating regions of one conductivity type provided in a line in each of the collector regions. a pace region; emitter regions of opposite conductivity type provided within the pace region;
a substrate electrode provided in the insulating region for extracting a semiconductor substrate potential; the collector electrode in the collector region serves as a word line, the emitter electrode in the emitter region serves as a bit line; and the substrate electrode serves as a ground line. At least one substrate electrode is connected to the substrate.

〔作用〕[Effect]

このように、本発明は、記憶素子の近くに、接°地線と
接続する基板電極があるため、記憶素子間に慟〈寄生サ
イリスタを無くす作用がある。
As described above, the present invention has the effect of eliminating parasitic thyristors between the memory elements because the substrate electrode connected to the ground line is provided near the memory elements.

すなわち、本発明によれば、記憶素子から接地線までの
距離が短かいため、記憶素子から接地線までの絶縁領域
及び半導体基板の等価抵抗が小さく、絶Il&領域及び
半導体基板に書き込み電流の一部が漏nて、接地線に吸
収されたとしても、接地線に対する電位の上昇が小さく
寄生サイリスタが動作しない。書き込み電流のほとんj
\択した記憶素子に流すことができ、安定にしかも確実
にプログラム(書き込み)することができる。
That is, according to the present invention, since the distance from the memory element to the ground line is short, the equivalent resistance of the insulating region and the semiconductor substrate from the memory element to the ground line is small, and the write current in the insulating region and the semiconductor substrate is small. Even if some leakage occurs and is absorbed by the ground line, the increase in potential with respect to the ground line is small and the parasitic thyristor does not operate. Most of the write current
It can be programmed (written) stably and reliably.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を用いて説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の接合破壊型PROMの一実施例の要
部を示す平面図、第2図は、その部分断面図である。
FIG. 1 is a plan view showing a main part of an embodiment of a junction breakdown type PROM of the present invention, and FIG. 2 is a partial sectional view thereof.

本実施例は、複数のワード線Wl、W、とビット線Bl
、B、との交差点に記憶素子Q11−Q182 を有す
る接合破壊型FROMにおいて、P型の半導体基板1上
に設けられた複数の帯状のN型のコレクタ領域4と、半
導体基板1とコレクタ領域4との間に埋設された帯状の
N+型のコレクタ埋込層2と、コレクタ領域4間の半導
体基板1に埋設された帯状のP 型の絶縁領域3と、コ
レクタ領域4内に七nぞれ一列に設けられた複数のPf
iのベース領域6と、ベース領域6内にそれぞれ設けら
れたN型のエミッタ領域7と、絶縁領域3内に設け  
・らnた半導体基板電位取り出し用の基板電極9とを備
え、コレクタ領域4内のコレクタ電極8がワード線W、
、W、に、エミッタ領域7内のエミッタ電極7′がビッ
ト線Bl〜B6に、基板電極9が接地線Gに接続され、
基板電極9が5個設けられ、かつ接地線Gがワード線W
、、W、と平行になるように設けられていることからな
っている。
In this embodiment, a plurality of word lines Wl, W and a bit line Bl
, B, in a junction breakdown type FROM having memory elements Q11-Q182 at the intersections with the semiconductor substrate 1 and the collector regions 4, a plurality of band-shaped N-type collector regions 4 provided on the P-type semiconductor substrate 1, and the semiconductor substrate 1 and the collector regions 4 a strip-shaped N+ type collector buried layer 2 buried between the collector region 4, a strip-shaped P-type insulating region 3 buried in the semiconductor substrate 1 between the collector region 4, and a strip-shaped N+ type collector buried layer 2 buried between the collector region 4 and the collector region 4; Multiple Pfs provided in a row
i base region 6, an N-type emitter region 7 provided within the base region 6, and an N-type emitter region 7 provided within the insulating region 3.
The collector electrode 8 in the collector region 4 is connected to the word line W,
, W, the emitter electrode 7' in the emitter region 7 is connected to the bit lines B1 to B6, the substrate electrode 9 is connected to the ground line G,
Five substrate electrodes 9 are provided, and the ground line G is connected to the word line W.
, , W, and are arranged parallel to each other.

すなわち、本実施例は、コレクタ領域4内のコレクタ電
極8と、エミッタ領域7内のエミッタ電極7′及び絶縁
領域3内の基板電極9が、第7図に示すチップのパター
ン配置図において、記憶素子のマトリックス領域A内に
設けられ、かつ、基板電極に接続するグランド線Gがコ
レクタ電極8に接続するワード線W1.W、と平行にな
るように構成さnている。
That is, in this embodiment, the collector electrode 8 in the collector region 4, the emitter electrode 7' in the emitter region 7, and the substrate electrode 9 in the insulating region 3 are arranged in the memory area in the chip pattern layout diagram shown in FIG. Word lines W1 . W, is configured to be parallel to n.

このように、本実施例は、記憶素子の近くに、接地線が
あるため、記憶素子から接地線までの距離が短かく、そ
のため記憶素子から接地線までの・等価抵抗Rが小さく
、絶縁領域3及び半導体基板1に、書き込み電流の一部
が漏れたとしても、接地線に対する電位の上昇が小さく
寄生サイリスタが動作しない。
As described above, in this embodiment, since the ground line is located near the memory element, the distance from the memory element to the ground line is short, and therefore the equivalent resistance R from the memory element to the ground line is small, and the insulation area is small. Even if a part of the write current leaks to the semiconductor substrate 1 and the semiconductor substrate 1, the increase in potential with respect to the ground line is small and the parasitic thyristor does not operate.

例えば第8図伽)の等価回路からから、書き込み電流I
=100mA、)ランジスタQtの電流増幅率α2=Q
、l、等価抵抗R’=500、ワードドライ、<−WD
の動作時の電位を0,5v1 トランジスタQTの■ア
を0.8vとすると、8点とP点の電位差ハ、Ia2B
’−V=OV とfk?)、トランジスタQTのvFよ
抄低く、寄生サイリスタは動作しない。
For example, from the equivalent circuit in Figure 8), the write current I
=100mA,) Current amplification factor α2 of transistor Qt = Q
, l, equivalent resistance R'=500, word dry, <-WD
If the operating potential of transistor QT is 0.5v1 and 0.8v, then the potential difference between point 8 and point P is Ia2B
'-V=OV and fk? ), the vF of the transistor QT is much lower, and the parasitic thyristor does not operate.

このように、本実施例では、寄生サイリスタが動作しな
いため、書き込み電流のほとんどを選択した記憶素子に
流すことができ、安定で確実なプログラム(fIIFき
込み)を可能にすることができる。
In this manner, in this embodiment, since the parasitic thyristor does not operate, most of the write current can be passed to the selected memory element, making it possible to perform stable and reliable programming (fIIF writing).

なお、本実施例においては、接地線を1個、基板電極を
5個とした場合について示したが、これは、記憶素子か
ら接地線までの等価抵抗の大きさによって、寄生サイリ
スタが動作しない距離を選び出し、記憶素子マトリック
ス内の基板電極の数を自由に選ぶことができる。第3図
は、基板電極を1個だけ設けた実施例を示す。
In this example, the case where there is one ground line and five substrate electrodes is shown, but this is due to the distance at which the parasitic thyristor does not operate depending on the equivalent resistance from the memory element to the ground line. , and the number of substrate electrodes in the memory element matrix can be freely selected. FIG. 3 shows an embodiment in which only one substrate electrode is provided.

従って、本発明は、基板電極の数が少なくとも一個以上
設けることができる。
Therefore, in the present invention, at least one substrate electrode can be provided.

又、上記実施例においては、説明の都合上、ビット線、
ワード線、記憶素子及び接地線の数を制限しであるが、
本発明はこれらに限定されないことは明らかであるっ さらに上記説明においては、P型の半導体基板を用いた
がN型の半導体基板を用いた場合も同様である。
In addition, in the above embodiment, for convenience of explanation, the bit line,
Although limiting the number of word lines, storage elements and ground lines,
It is clear that the present invention is not limited to these. Furthermore, in the above description, a P-type semiconductor substrate is used, but the same applies when an N-type semiconductor substrate is used.

〔発明の効果〕〔Effect of the invention〕

以上、詳細説明したとおり、本発明の接合破壊型FRO
Mは、記憶素子マトリックス内に少なくとも1個以上の
基板電極を設け、かつ、基板電極に接続する接地線がコ
レクタ電極に接続するワード線と平行になるように設け
ることによって、寄生サイリスタの動作を防止し、記憶
素子を安定に確実に書き込む(プログラムする)ことが
できるという効果を有する。
As explained above in detail, the junction breaking type FRO of the present invention
M controls the operation of the parasitic thyristor by providing at least one substrate electrode in the memory element matrix and by providing the ground line connected to the substrate electrode in parallel with the word line connected to the collector electrode. This has the effect that it is possible to write (program) the memory element stably and reliably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部を示す平面図、第2図
はその部分断面図、第3図は本発明の他の実施例の要部
を示す平面図、第4図は従来の接合破壊型FROMの一
例を示す回路図、第5図はその要部を示す平面図、第6
図はその部分断面図、第7図はそのチップ平面のa明図
、第8図(a)、伽)は接合破壊型PROMKおける寄
生サイリスタの説明図である。 1・・・・・・半導体基板、2・・・・・・コレクタ埋
込婆層、3・・・・・・絶縁領域、4・・・・・・戸し
クタ領域、5・・・・・・選択酸化領域、6・・・・・
・ベース領域、7・・・・・・エミッタ領域、7′  
・・・・・・エミッタ電極、8・軸・・・コレクタ電極
、9・・・・・・基板電極、IO・・・・・・ビット線
、11・・・・・・接地線、Bl sB+! 、”’、
I3m−−−−−−ビット線、G。 Gl、G、・・・・・・接地線、Qlr鴫mn・・・・
・・記憶素子、W* IW2.”・、Wm ・= ・−
’7−ド線、WD 、、WD2゜・−、WDn・・・・
−・ワードドライバー。 代理人 弁理士  内 原   晋、= ’ ”j’、
::”’;’t。 1.j −′−′°′ 篤 左 図
FIG. 1 is a plan view showing a main part of an embodiment of the present invention, FIG. 2 is a partial sectional view thereof, FIG. 3 is a plan view showing a main part of another embodiment of the invention, and FIG. A circuit diagram showing an example of a conventional junction destruction type FROM, FIG. 5 is a plan view showing the main parts, and FIG.
The figure is a partial cross-sectional view, FIG. 7 is a cross-sectional view of the chip plane, and FIG. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Collector buried layer, 3... Insulating region, 4... Door door area, 5... ...Selective oxidation region, 6...
・Base region, 7...Emitter region, 7'
...Emitter electrode, 8. Axis...Collector electrode, 9...Substrate electrode, IO...Bit line, 11...Ground line, Bl sB+ ! ,”',
I3m------Bit line, G. Gl, G, ... ground wire, Qlr 鴫mn...
...Memory element, W*IW2. ”・, Wm ・= ・−
'7-wire, WD , WD2゜・-, WDn・・・・
-・Word driver. Agent: Susumu Uchihara, = '``j'',
::”';'t. 1.j −′−′°′ Atsushi left figure

Claims (2)

【特許請求の範囲】[Claims] (1)複数のワード線とビット線との交差点に記憶素子
を有する接合破壊型PROMにおいて、一導電型の半導
体基板上に設けられた複数の帯状の逆導電型のコレクタ
領域と、前記半導体基板と前記コレクタ領域との間に埋
設された帯状の逆導電型の高不純物濃度のコレクタ埋込
層と、前記各コレクタ領域間の前記半導体基板に埋設さ
れた帯状の一導電型の高不純物濃度の絶縁領域と、前記
コレクタ領域内にそれぞれ一列に設けられた複数の一導
電型のベース領域と、該ベース領域内にそれぞれ設けら
れた逆導電型のエミッタ領域と、前記絶縁領域内に設け
られた半導体基板電位取り出し用基板電極とを備え、前
記コレクタ領域内のコレクタ電極がワード線に、前記エ
ミッタ領域内のエミッタ電極がビット線に、前記基板電
極が接地線に接続され該基板電極が少なくとも一個以上
設けられていることを特徴とする接合破壊型PROM。
(1) In a junction breakdown type PROM having a memory element at the intersection of a plurality of word lines and a bit line, a plurality of band-shaped collector regions of an opposite conductivity type provided on a semiconductor substrate of one conductivity type, and a plurality of strip-shaped collector regions of an opposite conductivity type provided on a semiconductor substrate of one conductivity type; and a strip-shaped collector buried layer of high impurity concentration of opposite conductivity type buried between the collector region and the collector region, and a strip-shaped collector buried layer of high impurity concentration of one conductivity type buried in the semiconductor substrate between each of the collector regions. an insulating region, a plurality of base regions of one conductivity type provided in a line within the collector region, emitter regions of opposite conductivity type provided within the base regions, and emitter regions provided within the insulating region. a substrate electrode for extracting a semiconductor substrate potential, the collector electrode in the collector region is connected to a word line, the emitter electrode in the emitter region is connected to a bit line, and the substrate electrode is connected to a ground line, and at least one substrate electrode is provided. A junction-destructive PROM characterized by having the above-mentioned features.
(2)接地線がワード線と平行になるように設けられて
いることからなる特許請求の範囲第(1)項記載の接合
破壊型PROM。
(2) A junction breakdown type PROM according to claim (1), wherein the ground line is provided parallel to the word line.
JP59277352A 1984-12-27 1984-12-27 Junction breakdown type prom Pending JPS61154163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277352A JPS61154163A (en) 1984-12-27 1984-12-27 Junction breakdown type prom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277352A JPS61154163A (en) 1984-12-27 1984-12-27 Junction breakdown type prom

Publications (1)

Publication Number Publication Date
JPS61154163A true JPS61154163A (en) 1986-07-12

Family

ID=17582326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277352A Pending JPS61154163A (en) 1984-12-27 1984-12-27 Junction breakdown type prom

Country Status (1)

Country Link
JP (1) JPS61154163A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042872A (en) * 1988-07-30 1991-08-27 Mazda Motor Corporation Pillar structure for front body portion of automobile
US6313484B1 (en) 1998-12-28 2001-11-06 Sharp Kabushiki Kaisha Circuit-integrated light-receiving device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825260A (en) * 1981-08-08 1983-02-15 Fujitsu Ltd Junction short-circuit type programmable read only memory
JPS58186963A (en) * 1982-04-12 1983-11-01 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Programmable read-only memory and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825260A (en) * 1981-08-08 1983-02-15 Fujitsu Ltd Junction short-circuit type programmable read only memory
JPS58186963A (en) * 1982-04-12 1983-11-01 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Programmable read-only memory and method of producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042872A (en) * 1988-07-30 1991-08-27 Mazda Motor Corporation Pillar structure for front body portion of automobile
US6313484B1 (en) 1998-12-28 2001-11-06 Sharp Kabushiki Kaisha Circuit-integrated light-receiving device

Similar Documents

Publication Publication Date Title
JP2863661B2 (en) Read-only memory
US7728391B2 (en) Small-pitch three-dimensional mask-programmable memory
US20030189851A1 (en) Non-volatile, multi-level memory device
DE3381484D1 (en) ELECTRICALLY PROGRAMMABLE AND DELETABLE MEMORY DEVICE OF THE MOS TYPE.
TW412861B (en) Non-volatile semiconductor memory
KR20170109704A (en) Antifuse nonvolatile memory device having a lateral bipolar junction transistor
JPS61154163A (en) Junction breakdown type prom
US4599688A (en) Semiconductor memory device having switching circuit for preventing channel leakage in constant current source
US7742332B2 (en) Phase-change random access memory device and semiconductor memory device
KR850005135A (en) Semiconductor devices frequently use transistors with increased current amplification
JPS5846867B2 (en) programmable semiconductor device
JPH0346981B2 (en)
JPH0644609B2 (en) Junction break type PROM
JPS61231752A (en) Junction breakdown type prom
JPH03225864A (en) Programmable read only memory
KR100539127B1 (en) Mram arrangement with selection transistors of large channel width
JPH0644608B2 (en) Semiconductor integrated circuit device
JPS61101074A (en) Junction breakdown type prom
US5014243A (en) Programmable read only memory (PROM) having circular shaped emitter regions
JPS58159294A (en) Semiconductor storage device
KR890002888A (en) Semiconductor integrated circuit device
JPS5966144A (en) Fuse circuit for identification
JPS62234366A (en) Programmable read only memory device
JPS6246491A (en) Bipolar memory cell
JPS6254956A (en) Semiconductor memory