JPH0644014B2 - Scanning oscilloscope trigger method - Google Patents

Scanning oscilloscope trigger method

Info

Publication number
JPH0644014B2
JPH0644014B2 JP58025272A JP2527283A JPH0644014B2 JP H0644014 B2 JPH0644014 B2 JP H0644014B2 JP 58025272 A JP58025272 A JP 58025272A JP 2527283 A JP2527283 A JP 2527283A JP H0644014 B2 JPH0644014 B2 JP H0644014B2
Authority
JP
Japan
Prior art keywords
sweep
waveform
circuit
scanning
trigger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58025272A
Other languages
Japanese (ja)
Other versions
JPS59150344A (en
Inventor
良明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58025272A priority Critical patent/JPH0644014B2/en
Publication of JPS59150344A publication Critical patent/JPS59150344A/en
Publication of JPH0644014B2 publication Critical patent/JPH0644014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Unknown Time Intervals (AREA)

Description

【発明の詳細な説明】 本発明は、走査型オシロスコープにおいて、走査期間中
の掃引の繰返し周期を、高安定かつ高精度にするための
トリガ起動方式に関するものである。
Description: TECHNICAL FIELD The present invention relates to a trigger activation method for making a sweep repetition period in a scanning period highly stable and highly accurate in a scanning oscilloscope.

「オシロスコープ」とは1本の掃引輝線を表示しかつ波
形を静止させるためにトリガ信号によって起動掃引させ
て波形を観測する周知のオシロスコープを意味し、これ
による、多現象表示や主波形と遅延波形の多波形表示等
も、基本的に1本の掃引輝線による観測並びに動作形態
であるから、以下において、これらを総称し単に「オシ
ロスコープ」という。「走査」とは階段波によって掃引
終了毎に垂直位置を変更しながら掃引を繰返す事によっ
て走査状態になる事を意味する。この様な走査によって
波形を観測する波形観測装置を走査型オシロスコープと
呼称する。尚、階段波によって垂直位置を変更するので
段階間隔を変更しても常に横軸に平行となるので、テレ
ビジョン受像機等で周知の「走査」の意味では無い。
「走査線」とは走査における掃引輝線の1本を「走査
線」といい、波形を表示させるので曲線を含む。また走
査線によって表示される面を「走査面」と呼称しこの走
査面による観測波形を「面的観測波形」と呼称する。走
査線数が少ない場合、例えば2本の時には“面”とはな
らないが、オシロスコープの観測波形と区別するために
使用する。尚図によって明示或いは説明されている場合
或いは区別の必要が無い場合には単に「観測波形」とも
いう。又本図における面的観測波形例の走査線は、上の
位置にある走査線が1本目であり、下方向に表示位置を
順次変更しながら走査しているとする。本発明におい
て、これらを周知の用語との混同を避け、本発明を明瞭
にするため上述の様な意味として使用する。
"Oscilloscope" means a well-known oscilloscope that displays one sweep bright line and starts sweeping with a trigger signal to observe the waveform in order to freeze the waveform. Since the multi-waveform display, etc., is basically an observation and operation mode by one sweep bright line, hereinafter, these are collectively referred to simply as “oscilloscope”. The "scan" means that the scanning state is achieved by repeating the sweep while changing the vertical position each time the sweep ends due to the step wave. A waveform observing device for observing a waveform by such scanning is called a scanning oscilloscope. Since the vertical position is changed by the staircase wave, it is always parallel to the horizontal axis even if the step interval is changed, and this does not mean "scanning" well known in television receivers and the like.
The "scanning line" is one of the sweeping bright lines in scanning and is called a "scanning line", and includes a curve because a waveform is displayed. The surface displayed by the scanning lines is referred to as a "scanning surface", and the waveform observed by this scanning surface is referred to as a "planar observation waveform". When the number of scanning lines is small, for example, when the number of scanning lines is two, it does not form a "plane", but it is used to distinguish it from the observed waveform of the oscilloscope. In addition, in the case where it is clearly shown or explained by the drawing or when it is not necessary to distinguish it, it is also simply referred to as "observation waveform". In addition, it is assumed that the scanning line in the example of the planar observation waveform in this figure is the first scanning line at the upper position, and the scanning is performed while sequentially changing the display position in the downward direction. In the present invention, these are used as meanings as described above to avoid confusion with well-known terms and to clarify the present invention.

第1図は本発明が実施される走査型オシロスコープの基
本構成例をブロック図で示したものである。この構成に
おいて、本発明は(117)の1点鎖線枠で示した位置
で実施される。まず本発明を説明する前に、本発明を明
瞭にするために、走査型オシロスコープの動作について
説明する。又本発明は第2図以降によって説明するので
(117)の1点鎖線枠の構成を外し((105)はト
リガ切換部、(131)が計数パルス発生部である)、
経路(113)を接続しているものとして説明する。
(101)は垂直増幅部で(111)の入力端子から被
観測波形(112)が入力されている。(104)はト
リガ成形部で垂直増幅部(101)から出力される波形
(122)からトリガ信号(123)を経路(113)
に出力する。(106)の掃引部トリガ信号(123)
で起動掃引し、この掃引波(124)は経路(121)
を通り(108)の水平部に出力される。水平部(10
8)はブラウン管(110)の水平偏向板に加えられる
掃引波を、通常表示面の左端から右端まで輝点を移動出
来る振幅に増幅する。輝点は時間に比例して移動し、移
動する速度は測定者によって広範囲に通常掃引部(10
6)で設定出来る様になっている。又、掃引部(10
6)で得られる帰線消去信号(125)を利用して階段
波(126)を階段部(107)で掃引終了毎に造形す
る。この階段波は経路(115)に出力され加算部(1
02)で垂直増幅部(101)から出力される波形(1
22)と合成し、経路(120)に波形(127)を出
力する。この波形を垂直出力部(103)で増幅し、ブ
ラウン管の垂直偏向板に加えられる。おおむね以上の様
な動作をして、観測波形(128)のように掃引毎に垂
直位置を変更しながら表示され、観測波形例(129)
を得る。これらは周知のオシロスコープ技術並びに周知
の走査型オシロスコープ技術である。この場合各走査線
はトリガ信号(123)で掃引毎に起動しているので、
波形(122)の様な繰返し波形では、観測波形例(1
29)の様に同一の波形が表示される事になり、たと
え、(130)の部分にパルス抜けや、時間的ズレ(位
相やパルス幅等)があっても、トリガ信号もそれに追随
するので、観測波形例(129)の様な表示方法では、
観測出来ない事になる。通常この様な異常波形の観測に
は、外部トリガの利用や、2現象等の方法で異常のない
波形と比較する事になるが、発生頻度が少ない場合や、
時間的ズレが少ない時等では、困難を伴う。第1図の構
成に、遅延掃引部を設けると部分拡大が出来る様にな
る。この遅延波形も各走査線のトリガ掃引開始点からの
遅延であるから、トリガ信号(123)に追随する。デ
ジタル的に遅延時間を安定化しても同じである。尚この
場合トリガ信号(123)によって計数を開始するの
で、計数するクロック信号とのタイミング差によって、
遅延掃引の開始はクロック幅に相当する幅で不規則に変
動する即ち計数ジッタを伴う。従って、この計数ジッタ
が現れる様な拡大観測をして、上下走査線の波形が左右
にズレている時、被観測波形によるものかを判別出来な
くなる。この様に各走査線毎にトリガ起動掃引させる
と、部分部分が各走査線に表示され、連続して波形を表
示する事が出来ない。走査型オシロスコープでは上述の
様な走査方法と、1本目の走査線はトリガ信号によって
起動掃引し以降の走査線の掃引は掃引回路を発振状態に
して、トリガ入力に関係無く連続して掃引し走査させる
方法が公知であり、この走査方法では波形は各走査線に
連続して表示されるので、上述の様な波形抜けや時間ズ
レ等はそのまま走査線に表示される様になる。しかしこ
の場合掃引終了後に次ぎの掃引を開始させるので、掃引
開始から次ぎの掃引開始迄の時間は、掃引回路やホール
ドオフ回路などの抵抗器やコンデンサ、半導体などの素
子に依存する事になり、高安定に出来ない。掃引を繰返
し、連続して波形を走査線上で表示させる場合には微か
な変動でも観測波形に影響する。例えば走査線数が多い
時には走査線の1本の僅かな変化が累積され最終の走査
線で大きくなり、拡大観測をすれば僅かな変動も拡大さ
れる。これらは観測波形にはジッタとして現れ、観測波
形との区別が出来なくなる。又逆に微かにこの繰返し時
間の調整をしたい時にも困難を伴う。
FIG. 1 is a block diagram showing a basic configuration example of a scanning oscilloscope in which the present invention is implemented. In this structure, the present invention is carried out at the position indicated by the one-dot chain line frame (117). Before describing the present invention, the operation of the scanning oscilloscope will be described in order to clarify the present invention. Since the present invention will be described with reference to FIG. 2 and subsequent figures, the configuration of the one-dot chain line frame of (117) is removed ((105) is a trigger switching unit, and (131) is a counting pulse generating unit).
The description will be made assuming that the route (113) is connected.
Reference numeral (101) is a vertical amplification unit, and the observed waveform (112) is input from the input terminal of (111). Reference numeral (104) is a trigger shaping unit, and a trigger signal (123) is routed from a waveform (122) output from the vertical amplification unit (101) to a route (113).
Output to. Sweep part trigger signal of (106) (123)
Start sweep with, and this sweep wave (124) is route (121)
Is output to the horizontal part of (108). Horizontal part (10
8) amplifies the sweep wave applied to the horizontal deflection plate of the cathode ray tube (110) to an amplitude that can move the bright spot from the left end to the right end of the normal display surface. The bright spot moves in proportion to the time, and the moving speed is in a wide range depending on the measurer.
It can be set in 6). In addition, the sweep unit (10
Using the blanking signal (125) obtained in 6), the staircase wave (126) is shaped in the staircase portion (107) every time the sweep is completed. This staircase wave is output to the path (115) and added to the addition unit (1
02) the waveform (1
22) and outputs the waveform (127) to the path (120). This waveform is amplified by the vertical output section (103) and applied to the vertical deflection plate of the cathode ray tube. Generally, the above operation is performed and displayed while changing the vertical position for each sweep like the observed waveform (128). An observed waveform example (129)
To get These are well-known oscilloscope techniques as well as well-known scanning oscilloscope techniques. In this case, since each scanning line is activated by the trigger signal (123) for each sweep,
For repetitive waveforms such as waveform (122), the observed waveform example (1
The same waveform is displayed as in (29), and even if there is a missing pulse or a time shift (phase, pulse width, etc.) in the portion (130), the trigger signal will follow it. , In the display method like the observation waveform example (129),
It will not be observable. Usually, in order to observe such an abnormal waveform, it is necessary to use an external trigger or to compare it with a waveform that does not have any abnormalities, but if the frequency of occurrence is low,
Difficulty occurs when there is little time lag. If the delay sweep section is provided in the configuration of FIG. 1, partial enlargement becomes possible. Since this delay waveform is also the delay from the trigger sweep start point of each scanning line, it follows the trigger signal (123). It is the same even if the delay time is digitally stabilized. In this case, since the counting is started by the trigger signal (123), the timing difference from the counting clock signal causes
The start of the delayed sweep is irregular in the width corresponding to the clock width, that is, with counting jitter. Therefore, it is impossible to discriminate whether the waveform is due to the observed waveform when the waveforms of the upper and lower scanning lines are deviated to the left and right by performing the enlarged observation such that the counting jitter appears. In this way, when the trigger activation sweep is performed for each scanning line, a partial portion is displayed on each scanning line, and the waveform cannot be displayed continuously. In the scanning oscilloscope, the above scanning method is used, and the first scanning line is swept by the trigger signal, and subsequent scanning lines are swept continuously by scanning the sweep circuit regardless of the trigger input. This method is known, and in this scanning method, since the waveform is continuously displayed on each scanning line, the above-mentioned waveform omission, time lag, etc. are directly displayed on the scanning line. However, in this case, since the next sweep is started after the sweep is completed, the time from the start of the sweep to the start of the next sweep depends on the resistor such as the sweep circuit and the hold-off circuit, the capacitor, and the element such as the semiconductor. High stability cannot be achieved. When the sweep is repeated and the waveform is continuously displayed on the scanning line, even a slight variation affects the observed waveform. For example, when the number of scanning lines is large, a slight change of one scanning line is accumulated and becomes large at the final scanning line, and a slight variation is magnified by magnifying observation. These appear as jitter in the observed waveform and cannot be distinguished from the observed waveform. On the contrary, it is difficult to adjust the repetition time slightly.

上述を第8図を用いて詳細に説明する。ジッタのある矩
形波をオシロスコープで観測すると(201)の様な観
測波形が得られる事は周知であり、この観測ではトリガ
開始点からのジッタが表示されるのでトリガ開始点にジ
ッタを含んでいる場合には時間を基準にしたジッタ量と
ならない。又掃引毎に垂直位置を変更して(202)の
様に交錯成分を観測出来る事も周知であり、(203)
の幅がトリガ開始点からのジッタ幅である。このジッタ
幅が少ない時にはトリガ開始点から一定時間遅らせて即
ち遅延掃引によって部分拡大ができ、この遅延量を基準
パルスを計数した計数パルスによって安定かつ性格に出
来る事も周知である。この計数パルスには前述の通り計
数ジッタを掃引毎にランダムに含んでいるので、これが
(202)の観測波形の様になり、被観測波形のジッタ
と区別が出来なくなる。当然パルス回路等の波形観測で
は基準パルスとしてクロック信号を使用すれば計数ジッ
タは無くなるが、同時に波形自身のジッタも観測出来な
く無くなる(波形はクロック信号に追随しているの
で)。
The above will be described in detail with reference to FIG. It is well known that an observation waveform such as (201) can be obtained by observing a rectangular wave with jitter with an oscilloscope. In this observation, since the jitter from the trigger start point is displayed, the trigger start point includes the jitter. In this case, the jitter amount is not based on time. It is also well known that the vertical position can be changed for each sweep and the crossing component can be observed as in (202).
Is the jitter width from the trigger start point. It is also well known that when the jitter width is small, it can be delayed for a certain time from the trigger start point, that is, partially expanded by delay sweep, and the delay amount can be made stable and character by the counting pulse counting the reference pulse. As described above, this count pulse randomly includes count jitter for each sweep, and thus this becomes like the observed waveform of (202), which cannot be distinguished from the jitter of the observed waveform. Obviously, when a clock signal is used as a reference pulse in the waveform observation of a pulse circuit or the like, the counting jitter disappears, but at the same time, the jitter of the waveform itself cannot be observed (since the waveform follows the clock signal).

走査型オシロスコープでは各走査線を起動し走査させる
トリガ起動走査方式には、上述の様に走査線毎に被観測
波形で起動掃引させる方式と、1本目の走査線のみが被
観測波形で起動掃引し以降の走査線は被観測波形に関係
なく連続して走査する方式がある事は周知であり実施例
として特開昭56−188690号でも例示されてい
る。本発明は後者に関するものであるが、上述の2種類
の方式が関係しているので、本発明を明瞭にするために
基本的な上述の2種類のトリガ起動走査方式について説
明する。そこでこれらの動作を波形(206)でパルス
幅変調されたパルス波形(204)の波形を観測する場
合について説明する。但しそれぞれの波形は同期してい
るとする。前者では各走査線毎に起動掃引させるのでト
リガ信号は波形(204)から取出され(207)の掃
引波が得られ(210)の階段波によって走査し観測波
形(226)が得られる。このときトリガ点が(21
6)の3角印で示した様に各走査線毎にあるので(22
6)の観測波形を静止させる為には被観測波形のトリガ
繰返し数と走査線数とが合致或いは倍数関係になければ
(217)の様に上下に流れる様になる。更にトリガ点
が走査線毎にある為どのトリガ線で走査を開始するか不
定となるため、常に(226)の観測波形の様な観測状
態で静止するとは限らない。但しこれを確実に静止させ
る手段については特開昭56−188690号で開示さ
れているので常に(226)の観測波形を得る事が出来
る。尚上述の様にこの方式はトリガ起動について見ると
周知のオシロスコープの観測手段に相当する。 後者で
のトリガ信号は面的観測波形を静止させる為に変調波
(206)から取出しトリガレベルを(205)に設定
すると(211)の時間で掃引波(212)が起動す
る。このとき掃引時間を(214)に設定すると階段波
は(213)の様になり(219)の観測波形が得られ
る。そしてトリガ開始点は(215)の3角印の位置で
あり走査開始点は(218)の3角印の位置となる。こ
の様にトリガ起動走査の開始点が(218)で固定され
るので掃引時間を変更して2本目以降の走査線上の波形
を左右に移動出来、走査線数も自由に設定出来る。トリ
ガ点が1本目で固定されているので上下に流れる事も無
く、前述のジッタ観測では1か所のトリガ開始点を基準
にして各変化量を面的に観測できる様になる。トリガレ
ベルを変更すると面的観測波形は全体で左右に移動する
がトリガ点で静止する。さて前者では各走査線を被観測
波形によってトリガ起動させるので各走査線上の波形は
被観測波形に依存するが、後者では掃引時間(214)
に依存する。しかし掃引時間(214)(223)は前
述の通りコンデンサ、抵抗器、半導体等の回路素子の変
動や雑音その他周辺回路からの混入や温度等の使用環境
等によって変動するので各走査線は、正確かつ安定に等
差時間的な起動が出来ず、拡大観測をして(222)の
様に観測された時、被観測波形に因るものか測定器自身
のものか判別出来なくなる。例えばこの掃引の繰返し周
期即ち走査周期が不安定になると(221)の様に観測
される筈の観測波形が(219)の様にジッタを含んで
観測される。(228)は立下がりの変化状態に注目し
て図化したものであるからジッタがあることの図化した
波形が正確に観測できなくなる。そこで周知である前述
の計数回路によって安定かつ高精度化しようとする時、
前者では走査線毎にトリガ起動させる方式であるから
(208)の遅延量を安定かつ高精度化した掃引波(2
09)を得る事しか出来ないので本発明の目的とする走
査周期を安定化する事が出来ない。又拡大観測をすると
(220)の計数ジッタが現れる。当然遅延量によって
はトリガ信号を飛越し同一の周期を表示出来なくなるの
で、面的観測波形は上下に流れ、かつ変形する。また後
者においては走査期間中のトリガ信号は受付けないので
トリガ開始点を遅らせることしか出来ない。即ち(22
4)の時間にある現象が生じそれから(225)の時間
経過後掃引を開始させる事であり、この時間を安定かつ
高精度化しても面的観測波形は全体に左右に移動するだ
けである。 本発明は前者のトリガ起動走査方式を利用
し後者の走査周期を安定化しようとするものであるか
ら、トリガ点を走査線の一本目に固定させる為に、走査
線の一本目を被観測波形によって起動掃引させ、以降の
走査線は高安定なパルスを計数した計数パルスによって
の起動掃引させる事によってトリガ点以降の掃引の繰返
し周期を高精度かつ高安定にしようとするものである。
上述の様にこの動作は前者の方式によってトリガ起動走
査させるのであるが、走査面上では後者の走査状態とな
る。従ってトリガ開始点以降即ち走査期間中での各走査
線の掃引の起動は計数ジッタのない連続した計数パルス
によって開始するので(221)の観測波形の様に被観
測波形の変調成分のみを静止させて観測出来るようにな
る。計数ジッタも解消されているので拡大観測をしても
変調成分のみを正確に観測出来る様になる。又前述の通
り(215)の3角印の位置でトリガ点が固定されるの
で掃引時間即ち計数パルスの計数値を変更して2本目以
降の走査線上の波形を静止させた状態で左右に移動出来
る様になる。例えば、パルスの立上がり部分を少しずつ
ズラせて表示したり、異なる時間の波形を上下の走査線
に表示して比較したりする時等で安定かつ正確な観測並
びに走査が出来る様になる。又ジッタ観測では(21
1)のトリガ開始点を基準にして観測出来る様になる。
即ち基準時間(227)に対して変化量を高安定かつ高
精度に表示出来るようになる。尚前述の通り周知のオシ
ロスコープはトリガ点からの変化量の表示であるから、
この様に基準時間に対して変化量を表示する異は、交錯
した観測波形であっても不可能である。 上述の様に従
来では走査線数が多い時には安定な面観測が困難であ
り、拡大観測では上下走査線の時間差のバラツキも拡大
する為正確な面観測が困難であったが、本発明によって
高安定かつ高精度な波形観測を可能にするものである。
従って本発明の一つの目的は後者のトリガ起動走査方式
に相当する観測手段を、高精度かつ高安定をもって提供
する事にある。
In the scanning oscilloscope, the trigger-activated scanning method that activates and scans each scanning line includes the method of activating and sweeping the observed waveform for each scanning line as described above, and the method of activating and sweeping only the first scanning line with the observed waveform. It is well known that there is a method of scanning subsequent scanning lines irrespective of the waveform to be observed, which is also illustrated in Japanese Patent Laid-Open No. 56-188690 as an example. The present invention relates to the latter, but since the two types of schemes described above are related, the two basic trigger-triggered scanning schemes described above will be described for clarity of the invention. Therefore, these operations will be described for the case of observing the waveform of the pulse waveform (204) pulse-width modulated with the waveform (206). However, it is assumed that the respective waveforms are synchronized. In the former case, the trigger signal is taken out from the waveform (204) because the starting sweep is performed for each scanning line, and the sweep wave of (207) is obtained, and the observed waveform (226) is obtained by scanning with the step wave of (210). At this time, the trigger point is (21
As shown by the triangle mark in 6), it is provided for each scanning line (22
In order to make the observed waveform of 6) stationary, if the number of trigger repetitions of the observed waveform and the number of scanning lines do not match or are in a multiple relationship, they flow vertically as in (217). Further, since there is a trigger point for each scanning line, which trigger line is used to start scanning is indefinite, and therefore the observation state like the observation waveform of (226) does not always stand still. However, since the means for surely stopping the movement is disclosed in JP-A-56-188690, it is possible to always obtain the observed waveform of (226). Note that, as described above, this method corresponds to the well-known oscilloscope observation means in terms of trigger activation. In the latter, the sweep signal (212) is activated at the time of (211) when the trigger signal is taken out from the modulated wave (206) and the trigger level is set to (205) in order to make the planar observed waveform stationary. At this time, if the sweep time is set to (214), the staircase wave becomes like (213), and the observed waveform of (219) is obtained. The trigger start point is the position of the triangle mark of (215), and the scanning start point is the position of the triangle mark of (218). In this way, since the starting point of the trigger activation scanning is fixed at (218), the sweep time can be changed to move the waveforms on the second and subsequent scanning lines to the left and right, and the number of scanning lines can be set freely. Since the trigger point is fixed at the first point, it does not flow up and down, and in the above-mentioned jitter observation, each change amount can be observed in a plane based on one trigger start point. When the trigger level is changed, the planar observation waveform moves to the left and right as a whole, but stops at the trigger point. In the former, each scan line is triggered by the observed waveform, so the waveform on each scan line depends on the observed waveform, but in the latter, the sweep time (214)
Depends on. However, since the sweep times (214) (223) vary depending on fluctuations of circuit elements such as capacitors, resistors and semiconductors, noise and other contamination from peripheral circuits, operating environment such as temperature, etc., each scanning line is accurate. In addition, it is not possible to stably start with the isochronous time, and when the observation is performed as shown in (222) after the enlarged observation, it cannot be discriminated whether it is due to the observed waveform or the measuring instrument itself. For example, if the sweep repetition period, that is, the scanning period becomes unstable, the observed waveform that should be observed as in (221) is observed with jitter as in (219). Since (228) is drawn by paying attention to the changing state of the falling edge, it becomes impossible to accurately observe the illustrated waveform indicating that there is jitter. Therefore, when trying to achieve stable and high accuracy by the well-known counting circuit,
In the former method, the trigger is activated for each scanning line, so the sweep wave (2) with a stable and highly accurate delay amount in (208) is used.
09), it is impossible to stabilize the scanning cycle which is the object of the present invention. Further, when the observation is expanded, the counting jitter of (220) appears. Of course, depending on the amount of delay, the trigger signal may be skipped and the same period cannot be displayed, so that the planar observation waveform flows vertically and is deformed. Further, in the latter, since the trigger signal during the scanning period is not accepted, only the trigger start point can be delayed. That is (22
A phenomenon occurs at the time of 4), and the sweep is started after the time of (225) has elapsed. Even if the time is made stable and the accuracy is high, the planar observed waveform only moves to the left and right as a whole. Since the present invention is intended to stabilize the scanning period of the latter by using the former trigger-activated scanning method, in order to fix the trigger point to the first scanning line, the first scanning line is the waveform to be observed. The start-up sweep is performed by the following scanning line, and the subsequent scanning line is intended to make the repetition period of the sweep after the trigger point highly accurate and highly stable by performing the start-up sweep by the counting pulse that counts the highly stable pulse.
As described above, this operation triggers scanning by the former method, but the latter scanning state occurs on the scanning surface. Therefore, starting the sweep of each scanning line after the trigger start point, that is, during the scanning period is started by the continuous counting pulse without counting jitter, so that only the modulation component of the observed waveform is stopped like the observed waveform of (221). It will be possible to observe. Since the counting jitter is also eliminated, only the modulated component can be accurately observed even when magnified observation is performed. Further, as described above, the trigger point is fixed at the position of the triangle mark of (215), so the sweep time, that is, the count value of the count pulse is changed to move left and right while the waveforms on the second and subsequent scanning lines are stationary. You will be able to do it. For example, stable and accurate observation and scanning can be performed when the rising portion of the pulse is displayed while being slightly shifted, or when waveforms at different times are displayed on the upper and lower scanning lines for comparison. In the jitter observation (21
It becomes possible to observe based on the trigger start point of 1).
That is, the amount of change can be displayed with high stability and high accuracy with respect to the reference time (227). As mentioned above, the well-known oscilloscope displays the amount of change from the trigger point.
In this way, it is impossible to display the variation with respect to the reference time even if the observation waveforms are crossed. As described above, in the past, stable surface observation was difficult when the number of scanning lines was large, and accurate surface observation was difficult in magnifying observation because the variation in the time difference between the upper and lower scanning lines was also enlarged. It enables stable and highly accurate waveform observation.
Therefore, one object of the present invention is to provide an observing means corresponding to the latter trigger activated scanning method with high accuracy and high stability.

本発明の他の目的は、上述の手段によって高安定かつ高
精度な走査面上で、面的観測波形を静止させて波形観測
が出来る所に特徴をもつ走査型オシロスコープを提供す
る事にある。
Another object of the present invention is to provide a scanning oscilloscope characterized by being capable of observing a waveform by making a planar observation waveform stationary on a highly stable and highly accurate scanning surface by the above-mentioned means.

本発明の他の目的は、全走査線に渡って高精度で時間を
読取る事にある。
Another object of the present invention is to read time with high accuracy over all scanning lines.

本発明の他の目的は、微小な周波数変化や時間差を実時
間で表示して、高精度に読取ることにある。
Another object of the present invention is to display a minute frequency change or time difference in real time and read it with high accuracy.

本発明の更に他の目的は、各走査線の掃引開始時間を高
精度に制御する事にある。
Still another object of the present invention is to control the sweep start time of each scanning line with high accuracy.

本発明の他の目的及び利点は本発明の好適な実施例に関
する以下の詳細な説明により当業者には明らかであろ
う。更に以下の実施例は本発明の全てを開示及び限定す
るものではなく、単に当業者が本発明の原理並びに用途
を十分理解する為のものであり、当業者には適宜種々の
変更及び変形を成し得る事が理解されよう。
Other objects and advantages of the invention will be apparent to those skilled in the art from the following detailed description of the preferred embodiments of the invention. Furthermore, the following examples do not disclose and limit the present invention in its entirety, but are merely for those skilled in the art to fully understand the principles and applications of the present invention, and those skilled in the art can make various changes and modifications as appropriate. It will be understood what can be done.

第2図に本発明の実施例を示す。これは前述の通り第1
図において(117)の1点鎖線枠で示した位置で実施
される。従って以降の説明は第1図の経路(113)を
取外し、(105)のトリガ切換部と(131)の計数
パルス発生部の構成が付加されているものとし、波形経
過図等は第3図並びに第4図を使用して説明する。
(1)はトリガ成形部で第1図の(104)と同一、
(6)は掃引部で第1図の(106)と同一、(5)は
階段部で第1図の(107)と同一である。前述により
端子(9)には被観測波形(20)が入力され、トリガ
成形部(1)を通り経路(12)にトリガ信号(21)
が現れる。このトリガ成形部(1)は周知のオシロスコ
ープ技術である。(2)と(4)はスイッチでインバー
タ(3)によって交互にON/OFFする。このスイッ
チは切換経路が高速でも切換速度は低速でよいので、論
理IC或いはMOS−IC等周知であるが個別素子によ
る実施例として第6図に示す。これは入力が(69)で
出力が(70)(どちらでもよい)、切換信号は(7
1)から入力する。(71)が正電位の時ONになる。
これは周知の回路技術である。(6)の掃引部はトリガ
信号によって起動掃引し掃引波(22)を端子(11)
に出力し、前述の通り水平偏向する。この掃引部(6)
は周知のオシロスコープ技術である。帰線消去信号(2
5)は段階部(5)に加えられ段階波を掃引終了毎に1
段ずつ造形し設定した段階数を造形すると復帰し繰返
す。段階波(23)は端子(10)に出力し前述の様に
掃引毎に垂直位置を変更する。この段階部は周知並びに
公知の回路技術であるが実施例として第5図に示す。帰
線消去信号は端子(60)に入力され(61)のパルス
によって階段波を造形し一定電位迄造形するとリセット
され、端子(66)に階段波を出力する。可変抵抗器
(62)は(61)の振幅を変化して階段数を調整す
る。フリップフロップは第1回目の掃引波の帰線パルス
(63)(帰線消去信号)で反転し、階段波の造形を終
了して元の電位に復帰するリセットパルス(64)で復
元し波形(65)を得、端子(67)に出力し、経路
(13)の波形(26)となる。これは周知の回路技術
である。(7)はNANDゲートで波形(25)と波形
(26)を合成し波形(27)を得る。この時波形(2
5)の立上りと波形(26)の立下がりは同時タイミン
グであるからパルス抜けが生じる時には波形(25)の
立上りを遅らせる。以降この合成波形(27)を単に
「制御信号」という。(8)は計数部で任意に設定した
数値の計数パルスが経路(16)に出力されている。こ
の計数器は水晶発振器等の安定なクロック信号(28)
を計数する。((49)はこのクロック信号がパルスで
ある事を示す)。又制御信号が零電位の時クリア状態
で、制御信号が正電位の時、計数パルス(29)を連続
して出力している。これは周知の計数回路技術であるが
実施例として第7図に示す。(82)はカウンタ、(8
3)は一致回路、(84)は設定スイッチで4桁以下の
計数パルスを連続して(81)に出力する。計数のON
/OFFは(80)からの制御信号で行う。これは計数
値が一致するとクリアし繰返す周知の計数回路である。
階段波(23)が未だ造形されずかつ掃引していない
時、制御信号は零電位であるからスイッチ(2)は正電
位でONとなり、(21)のトリガ信号が掃引部(6)
に入力される。このとき計数部(8)はクリア状態であ
る。 (24)の時間になると(21)のトリガ信号で
掃引回路が起動する。同時に制御信号が正電位となり、
計数部(8)は計数を開始し、スイッチ(2)はOF
F、スイッチ(4)がONとなり掃引部へのトリガ信号
が経路(16)からの計数パルス(29)に切替わる。
(37)の1回目の掃引での表示期間は(30)で、こ
の時には階段波は造形していないので(39)の観測波
形となる。掃引が終了すると階段波を1段造形し、掃引
回路は待期状態になる。待期するトリガ信号は計数パル
ス(29)である。設定した数値の計数を終えると計数
パルス(43)を出力し、ONとなったスイッチ(4)
を通過し、2回目の掃引が開始する。(38)の2回目
の掃引での表示期間は(31)で、この時に階段波が1
段造形しているので(40)の観測波形となる。同様に
3回目、4回目の掃引を計数パルス(44)(45)で
開始し観測波形は(41)(42)となる。階段波を造
形し終えると制御信号は零電位となり、スイッチ(2)
はON、スイッチ(4)がOFFとなり掃引部へのトリ
ガ信号は経路(12)からのトリガ信号(21)に切替
わる。また計数部(8)はクリア状態となり元の待期状
態に戻る。(21)のトリガ信号が到来する(46)の
時間になると上述の動作を繰返す。この様にして観測波
形(47)が得られる。この波形の2回目の掃引開始が
トリガ信号(21)に対して(34)の時間ズレている
と、3回目では(35)、4回目では(36)と累積さ
れる事になる。(32)は計数パルスの設定値をそのま
まにして、掃引時間を速くした時の掃引波であり、各表
示波形が(33)で、観測波形が(48)である。この
様に掃引速度を速くするとズレも拡大される様になる。
(43)(44)(45)は計数パルスであるから前述
した様な計数ジッタが無いので、拡大観測をしても被観
測波形の変化状態のみを観測出来る様になる。但し、最
初の掃引開始時の(24)(46)ではトリガ信号(2
1)によって起動して計数を開始するので、このときの
み計数ジッタが生じる。
FIG. 2 shows an embodiment of the present invention. This is the first
In the figure, it is carried out at the position indicated by the one-dot chain line frame (117). Therefore, in the following description, it is assumed that the path (113) in FIG. 1 is removed and the configuration of the trigger switching section (105) and the counting pulse generating section (131) is added, and the waveform progress chart is shown in FIG. Also, description will be made with reference to FIG.
(1) is a trigger forming part, which is the same as (104) in FIG.
(6) is the sweep section, which is the same as (106) in FIG. 1, and (5) is the staircase section, which is the same as (107) in FIG. As described above, the waveform (20) to be observed is input to the terminal (9), and the trigger signal (21) is passed through the trigger shaping section (1) and route (12).
Appears. The trigger shaping section (1) is a well-known oscilloscope technology. Switches (2) and (4) are alternately turned on / off by an inverter (3). Since this switch may have a high switching path and a low switching speed, it is well known such as a logic IC or a MOS-IC, but it is shown in FIG. The input is (69), the output is (70) (either one is acceptable), and the switching signal is (7
Input from 1). It turns on when (71) is a positive potential.
This is a well-known circuit technology. The sweep section of (6) starts the sweep by the trigger signal, and the sweep wave (22) is fed to the terminal (11).
To the horizontal axis as described above. This sweep section (6)
Is a well-known oscilloscope technology. Blanking signal (2
5) is added to the step section (5) and the step wave is set to 1 at the end of each sweep.
When the steps are modeled and the set number of steps is modeled, the process returns and repeats. The step wave (23) is output to the terminal (10) to change the vertical position for each sweep as described above. This step portion is a well-known and well-known circuit technique, but is shown in FIG. 5 as an embodiment. The blanking signal is input to the terminal (60), the staircase wave is shaped by the pulse of (61), and is reset when the stylus wave is shaped to a certain potential, and the staircase wave is output to the terminal (66). The variable resistor (62) changes the amplitude of (61) to adjust the number of steps. The flip-flop is inverted by the retrace pulse (63) (retrace erase signal) of the first sweep wave, and is restored by the reset pulse (64) that finishes the formation of the staircase wave and returns to the original potential (waveform ( 65) is obtained and output to the terminal (67), and becomes the waveform (26) of the path (13). This is a well-known circuit technology. (7) is a NAND gate which synthesizes the waveform (25) and the waveform (26) to obtain the waveform (27). Waveform (2
Since the rising edge of 5) and the falling edge of the waveform (26) are at the same timing, the rising edge of the waveform (25) is delayed when a pulse drop occurs. Hereinafter, this composite waveform (27) is simply referred to as "control signal". In (8), a counting pulse having a numerical value arbitrarily set by the counting unit is output to the path (16). This counter uses a stable clock signal (28) such as a crystal oscillator.
Is counted. ((49) indicates that this clock signal is a pulse). When the control signal has a zero potential, it is in the clear state, and when the control signal has a positive potential, the counting pulse (29) is continuously output. This is a well-known counting circuit technique, but it is shown in FIG. 7 as an embodiment. (82) is a counter, (8
3) is a matching circuit, and (84) is a setting switch, which continuously outputs counting pulses of 4 digits or less to (81). Count ON
/ OFF is performed by the control signal from (80). This is a well-known counting circuit that clears and repeats when the count values match.
When the staircase wave (23) has not been formed yet and has not been swept, the control signal is at zero potential, so the switch (2) is turned on at a positive potential, and the trigger signal of (21) is the sweep section (6).
Entered in. At this time, the counting unit (8) is in the clear state. At time (24), the sweep circuit is activated by the trigger signal (21). At the same time, the control signal becomes positive potential,
The counting unit (8) starts counting and the switch (2) turns off.
F, the switch (4) is turned on, and the trigger signal to the sweep section is switched to the counting pulse (29) from the path (16).
The display period in the first sweep of (37) is (30), and since the staircase wave is not formed at this time, the observed waveform of (39) is obtained. When the sweep is completed, one step wave is formed and the sweep circuit enters the waiting state. The waiting trigger signal is the counting pulse (29). When the counting of the set numerical value is completed, the counting pulse (43) is output and the switch (4) turned on
And the second sweep starts. The display period in the second sweep of (38) is (31), and the staircase wave is 1 at this time.
Since it is a step model, the observed waveform is (40). Similarly, the third and fourth sweeps are started with counting pulses (44) and (45), and the observed waveforms are (41) and (42). When the staircase wave is completed, the control signal becomes zero potential and the switch (2)
Is ON and the switch (4) is OFF, and the trigger signal to the sweep section is switched to the trigger signal (21) from the path (12). Further, the counting unit (8) is cleared and returns to the original waiting state. At the time of (46) when the trigger signal of (21) arrives, the above operation is repeated. In this way, the observed waveform (47) is obtained. If the second sweep start of this waveform is shifted by (34) with respect to the trigger signal (21), it will be accumulated as (35) at the third time and (36) at the fourth time. (32) is a sweep wave when the sweep pulse is set at the set value and the sweep time is shortened. Each display waveform is (33) and the observed waveform is (48). If the sweep speed is increased in this way, the deviation will be enlarged.
Since (43), (44), and (45) are counting pulses, there is no counting jitter as described above, so that it is possible to observe only the change state of the observed waveform even when magnified observation is performed. However, at (24) and (46) at the start of the first sweep, the trigger signal (2
Since it is activated by 1) to start counting, counting jitter occurs only at this time.

第4図は、周波数測定或いは周波数校正(調整)等につ
いての動作説明をする為の、波形経過図と観測波形例で
ある。(54)は途中は省略した事を示す。被観測波形
は(50)で未知周波数である。前述と同じ動作によっ
て、被観測波形(50)のトリガ信号で1本目の走査線
の掃引が開始し、以降の走査線に対する掃引は計数パル
ス(51)によって起動掃引し掃引波(52)を得、階
段波(53)を造形する。階段数を23段とすれば、走
査線数は23本となる(ここでは、この本数に意味はな
い)。観測波形(55)は立下り部がY軸に平行である
から(57)の時間ズレは零である。又走査線の1本の
1周期が観測されているから、この時の計数パルスの周
期と被観測波形(50)の周期と合致している事になる
ので、計数設定値を読取り逆数を求めれば、被観測波形
(50)の周波数を知る事ができる。前述の通り、(5
7)の時間ズレは走査線数が増加する程、或いは掃引時
間を速くする程増大するので、走査線数を増加、或いは
掃引時間を速くして、立下り部がY軸に平行になるよう
に数値設定値を変更すれば、更に精度の高い周波数を知
る事が出来様になる。又或発振回路の発振周波数を希望
する周波数に調整する場合には、希望する周波数の逆数
によって周期を求め数値設定をし、更に発振波形を観測
して観測波形(55)が得られる様に調整すれば、希望
する周波数になっている事になる。調整精度を高めるに
は、上述と同様に走査線数を増加、或いは部分拡大をす
るとよい。この周波数調整において、周波数カウンタに
よる方法と最も異なる点は実時間で調整出来る事であ
る。尚、時間ズレが(57)の様にズレている時には
(56)の様な観測波形となる。
FIG. 4 is a waveform progress chart and an example of observed waveforms for explaining the operation of frequency measurement or frequency calibration (adjustment). (54) indicates that it was omitted in the middle. The observed waveform is (50), which is an unknown frequency. By the same operation as described above, the sweep of the first scanning line is started by the trigger signal of the observed waveform (50), and the sweep for the subsequent scanning lines is swept by the counting pulse (51) to obtain the sweep wave (52). , Create stairs (53). If the number of steps is 23, the number of scanning lines is 23 (here, this number has no meaning). Since the falling portion of the observed waveform (55) is parallel to the Y axis, the time shift of (57) is zero. Also, since one cycle of one scanning line is observed, it means that the cycle of the counting pulse at this time matches the cycle of the waveform to be observed (50). Therefore, the count set value is read and the reciprocal is obtained. For example, the frequency of the observed waveform (50) can be known. As mentioned above, (5
The time shift of 7) increases as the number of scanning lines increases or as the sweep time becomes faster, so the number of scanning lines increases or the sweep time becomes faster so that the trailing edge becomes parallel to the Y-axis. By changing the numerical setting value to, it becomes possible to know the frequency with higher accuracy. In addition, when adjusting the oscillation frequency of the oscillator circuit to a desired frequency, the period is obtained by the reciprocal of the desired frequency, the numerical value is set, and then the oscillation waveform is observed and the observation waveform (55) is obtained. If you do, it will be the frequency you want. In order to improve the adjustment accuracy, it is advisable to increase the number of scanning lines or partially enlarge the same as described above. In this frequency adjustment, the most different point from the method using the frequency counter is that it can be adjusted in real time. Incidentally, when the time difference is as shown in (57), the observed waveform is as shown in (56).

上述の通り、本発明によって掃引の繰返す周期を高精度
かつ高安定に出来るので、微小なジッタでも忠実に観測
出来る様になる。又、拡大観測や走査線数が多い時で
も、安定な波形観測ができる。更に各走査線は時間が継
続しているので、複数の走査線に渡って正確に時間を読
取る事ができる等の効果を生じる。
As described above, according to the present invention, the repeating cycle of the sweep can be made highly accurate and highly stable, so that minute jitter can be faithfully observed. In addition, stable waveform observation can be performed even when magnified observation or the number of scanning lines is large. Further, since each scanning line continues its time, there is an effect that the time can be accurately read over a plurality of scanning lines.

上述の通り、本発明は、1本目の走査線は被観測波形か
らのトリガ信号で掃引を開始し、2本目以降の走査線は
計数パルスによって掃引を開始させ、最終の走査線の掃
引を終えると、被観測波形からのトリガ信号で掃引を開
始する元の状態に戻り繰返すものであるから、実施にあ
っては本発明の要旨を逸脱することなく種々の変更並び
に変形を成しえる。例えば、階段部等から直接、波形
(27)を取出す事が出来る様な回路であれば、当然N
AND(7)は不要である。又計数部もプリセットカウ
ンタ等、使用するカウンタ等によっても種々変形され
る。更に又、上述のように掃引回路へのトリガ信号を、
切替える動作と同様の動作が出来れば第2図の位置や回
路を限定するものでもない、等である。
As described above, according to the present invention, the first scanning line starts sweeping with the trigger signal from the observed waveform, the second and subsequent scanning lines start sweeping with the counting pulse, and the final scanning line sweeping ends. Then, the sweep signal is returned to the original state in which the sweep is started by the trigger signal from the waveform to be observed and repeated, and therefore various modifications and variations can be made in the implementation without departing from the gist of the present invention. For example, if the circuit is such that the waveform (27) can be extracted directly from the stairs, etc.
AND (7) is unnecessary. Further, the counting section is also variously modified depending on the counter used, such as a preset counter. Furthermore, as described above, the trigger signal to the sweep circuit is
The position and circuit in FIG. 2 are not limited as long as the same operation as the switching operation can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明が実施される走査型オシロスコープの基
本ブロック図。第2図は本発明のトリガ制御部の略線的
回路図例。第3図と第4図は本発明の動作原理を説明す
る為の波形経過図と観測波形例。第5図は周知の簡略的
階段波発生回路例で本発明との接続関係を示すもの。第
6図は周知のスイッチ回路例で、スイッチ(2)と
(4)の実施例。第7図は簡略的計数回路例である。第
8図は本発明と周知の動作並びに特徴を比較説明する為
の観測波形例と波形経過図例。 図において、(1)はトリガ成形部、(2)と(4)は
スイッチ、(3)はインバータ、(5)は階段部、
(6)は掃引部、(7)はNANDゲート、(8)は計
数部、(9)はトリガ用の被観測波形の入力端子、(1
0)は階段波の出力端子、(11)は掃引波の出力端
子、(12)は被観測波形のトリガ信号の経路、(1
3)は階段波の造形期間中のパルス即ち波形(26)の
信号経路、(14)は掃引波の帰線消去信号の経路、
(15)は制御信号の経路、(16)はトリガ信号とな
る計数パルスの経路、(20)は被観測波形、(21)
は被観測波形によって生成されたトリガ信号、(22)
は掃引波、(23)は階段波、(24)と(46)は走
査開始時間、(25)は帰線消去信号、(26)は階段
波の造形期間中のパルス、(27)は制御信号、(2
8)はクロック信号、(29)は計数パルスの波形で
(43)は1回目(44)は2回目(45)は3回目の
連続した計数パルス、(47)(48)は本発明による
面的観測波形例、(50)は被観測波形、(51)は計
数パルス、(52)は掃引波、(53)は階段波、(5
5)(56)は本発明による面的観測波形例、(10
1)は垂直増腹部、(102)は加算部、(103)は
垂直出力部、(104)はトリガ成形部、(105)は
トリガ切換部、(107)は階段部、(108)は水平
部、(110)はブラウン管、(111)は垂直軸の入
力端子、(113)は走査型オシロスコープの動作原理
を説明する為の仮の信号通過経路、(114)は階段波
の造形期間中のパルスの経路で経路(13)に対応す
る、(116)は帰線消去信号の経路で経路(14)に
対応する、(117)は第1図のブロック図例で構成さ
れた基体的な走査型オシロスコープにおいて本発明が実
施される代表的な実施部位を示す、(118)は帰線消
去信号の経路、(119)は走査開始時間、(131)
は計数パルス発生部を示す。
FIG. 1 is a basic block diagram of a scanning oscilloscope in which the present invention is implemented. FIG. 2 is an example of a schematic circuit diagram of the trigger controller of the present invention. 3 and 4 are waveform charts and examples of observed waveforms for explaining the operation principle of the present invention. FIG. 5 shows an example of a well-known simplified staircase wave generation circuit, showing the connection relationship with the present invention. FIG. 6 shows an example of a known switch circuit, which is an embodiment of switches (2) and (4). FIG. 7 shows an example of a simple counting circuit. FIG. 8 is an example of an observed waveform and an example of a waveform progress chart for comparing and explaining the known operation and characteristics of the present invention. In the figure, (1) is a trigger forming part, (2) and (4) are switches, (3) is an inverter, (5) is a stair part,
(6) is a sweep unit, (7) is a NAND gate, (8) is a counting unit, (9) is an input terminal of the observed waveform for triggering, (1
0) is a staircase wave output terminal, (11) is a swept wave output terminal, (12) is a trigger signal path of an observed waveform, (1)
3) is the signal path of the pulse or waveform (26) during the staircase shaping period, (14) is the path of the blanking signal of the sweep wave,
(15) is a control signal path, (16) is a counting pulse path which is a trigger signal, (20) is an observed waveform, (21)
Is the trigger signal generated by the observed waveform, (22)
Is a sweep wave, (23) is a staircase wave, (24) and (46) are scan start times, (25) is a blanking signal, (26) is a pulse during the staircase shaping period, and (27) is control. Signal, (2
8) is a clock signal, (29) is a waveform of counting pulses, (43) is the first counting (44), the second (45) is the third counting pulse, and (47) and (48) are surfaces according to the present invention. Example of dynamic observation waveform, (50) waveform to be observed, (51) counting pulse, (52) sweeping wave, (53) staircase wave, (5
5) (56) is an example of a planar observation waveform according to the present invention, (10)
1) is a vertical abdomen section, (102) is an addition section, (103) is a vertical output section, (104) is a trigger shaping section, (105) is a trigger switching section, (107) is a staircase section, and (108) is horizontal. Section, (110) is a cathode ray tube, (111) is a vertical axis input terminal, (113) is a temporary signal passage path for explaining the operating principle of the scanning oscilloscope, and (114) is a staircase wave during the modeling period. The pulse path corresponds to the path (13), (116) corresponds to the blanking signal path and corresponds to the path (14), and (117) is the basic scanning configured in the block diagram example of FIG. Shows a typical implementation site in which the present invention is implemented in a scanning oscilloscope. (118) is the path of the blanking signal, (119) is the scan start time, (131)
Indicates a counting pulse generator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被観測波形によってトリガ信号を形成する
トリガ回路と、トリガ信号によって起動する掃引回路
と、掃引終了毎に階段波を発生する階段波発生回路と、
基準パルスを計数し任意に設定出来る計数値で上記掃引
回路へのトリガ信号となる計数パルスを走査期間中にお
いて連続して発生できる計数回路と、上記掃引回路への
トリガ信号を切換える事の出来る切換回路とからなる構
成を含み、1本目の走査線に対する掃引は上記トリガ回
路から得られるトリガ信号によって起動し同時に上記計
数回路の計数を開始し更に上記掃引回路へのトリガ信号
を上記計数パルスに切換え、1本目の走査線に対する掃
引が終了すると階段波を1段造形して垂直位置を変更し
て2回目の掃引を待期し、2回目以降の掃引は切換られ
た上記計数パルスで起動掃引して繰返し、最終走査線に
対する掃引を終えると、1本目の走査線の掃引位置に戻
り、上記掃引回路へのトリガ信号も上記トリガ回路から
のトリガ信号に切換え、以降は同様に被観測波形による
トリガ信号で起動し上述の動作を繰返し、この様に被観
測波形によるトリガ信号で1回目の掃引と計数を開始
し、2回目以降は上記計数パルスで各走査線の掃引を開
始させる事によって面的観測波形を静止させかつ高精度
かつ高安定に走査させる手段を含み、上記構成による上
記手段によって高精度かつ高安定な走査面上で面的観測
波形を静止させて波形観測が出来る所に特徴を持つ走査
型オシロスコープ。
1. A trigger circuit that forms a trigger signal according to an observed waveform, a sweep circuit that is activated by the trigger signal, and a staircase wave generation circuit that generates a staircase wave at each sweep end.
A switching circuit that can switch the trigger circuit to the sweep circuit and the counting circuit that counts the reference pulse and can continuously generate the count pulse that becomes the trigger signal to the sweep circuit at the count value that can be set arbitrarily during the scanning period. And a sweeping for the first scanning line is started by a trigger signal obtained from the trigger circuit, at the same time counting of the counting circuit is started, and the trigger signal to the sweeping circuit is switched to the counting pulse. When the sweep for the first scanning line is completed, the staircase wave is formed by one step, the vertical position is changed, the second sweep is waited, and the second and subsequent sweeps are swept by the above-mentioned counting pulse that has been switched. When the sweep of the last scanning line is repeated, the sweep position of the first scanning line is returned to, and the trigger signal to the sweep circuit is also switched to the trigger signal from the trigger circuit. Then, after that, similarly, the trigger signal based on the observed waveform is activated and the above-described operation is repeated. In this way, the trigger signal based on the observed waveform is used to start the first sweep and counting, and the second and subsequent times with the counting pulse. The method includes a means for stationary and highly accurate and highly stable scanning of the surface observation waveform by starting the sweep of the scanning line, and the means having the above-mentioned configuration enables the surface observation waveform to be obtained on the highly accurate and highly stable scanning surface. A scanning oscilloscope characterized by being able to stand still and observe waveforms.
JP58025272A 1983-02-16 1983-02-16 Scanning oscilloscope trigger method Expired - Lifetime JPH0644014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025272A JPH0644014B2 (en) 1983-02-16 1983-02-16 Scanning oscilloscope trigger method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025272A JPH0644014B2 (en) 1983-02-16 1983-02-16 Scanning oscilloscope trigger method

Publications (2)

Publication Number Publication Date
JPS59150344A JPS59150344A (en) 1984-08-28
JPH0644014B2 true JPH0644014B2 (en) 1994-06-08

Family

ID=12161389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025272A Expired - Lifetime JPH0644014B2 (en) 1983-02-16 1983-02-16 Scanning oscilloscope trigger method

Country Status (1)

Country Link
JP (1) JPH0644014B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810238B2 (en) * 1987-11-27 1996-01-31 松下電器産業株式会社 Sweep circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843873A (en) * 1972-09-19 1974-10-22 Tektronix Inc Counter having selective direction and variable rate control

Also Published As

Publication number Publication date
JPS59150344A (en) 1984-08-28

Similar Documents

Publication Publication Date Title
JPH0463345B2 (en)
JPH0361908B2 (en)
JPS63218869A (en) Spectrum analyzer
JP3614818B2 (en) Optical time domain reflectometer
JPH0644014B2 (en) Scanning oscilloscope trigger method
EP0250682A2 (en) Pulse measurement circuit
US4105932A (en) "Slewed pulse" scope sweep calibrator
JPS5922183B2 (en) Chiensou Wingata Oscilloscope
US4097798A (en) Oscilloscope sweep rate indicator system
JP4074538B2 (en) Optical sampling device and optical waveform observation system
JPH0424667B2 (en)
JPH0772738B2 (en) Scanning oscilloscope
SU1285380A1 (en) Oscilloscopic meter of amplitude parameters of electric signals
US5159454A (en) Horizontal-synchronizing-pulse measuring circuit
JPS59107282A (en) Measuring method of delay time
JPS63159774A (en) Circuit for determining frequency response
JPH06103293B2 (en) Ultrasonic measurement device A / D conversion processing method
JP3239338B2 (en) Ripple noise voltage measuring device
JPH0581861B2 (en)
RU1770915C (en) Device for measuring parameters of the envelope of radio pulses
RU2106646C1 (en) Oscillograph
JPH07294616A (en) Method for displaying waveform for adjustment of sampling clock
JPH05119168A (en) Apparatus for measuring synchronous jitter amount
JPH01297560A (en) Delay scanning type oscilloscope
JP3032337B2 (en) Test equipment for semiconductor integrated circuit devices