JPH0641838B2 - Heat pipe - Google Patents

Heat pipe

Info

Publication number
JPH0641838B2
JPH0641838B2 JP61037736A JP3773686A JPH0641838B2 JP H0641838 B2 JPH0641838 B2 JP H0641838B2 JP 61037736 A JP61037736 A JP 61037736A JP 3773686 A JP3773686 A JP 3773686A JP H0641838 B2 JPH0641838 B2 JP H0641838B2
Authority
JP
Japan
Prior art keywords
heat pipe
heat
pipe
porous layer
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61037736A
Other languages
Japanese (ja)
Other versions
JPS62196594A (en
Inventor
保夫 増田
務 高橋
与司夫 滝沢
尚一 吉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Metal Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Metal Corp
Priority to JP61037736A priority Critical patent/JPH0641838B2/en
Priority to FI864554A priority patent/FI85060C/en
Priority to EP86115606A priority patent/EP0224761B1/en
Priority to DE8686115606T priority patent/DE3677338D1/en
Publication of JPS62196594A publication Critical patent/JPS62196594A/en
Priority to US07/221,999 priority patent/US4826578A/en
Priority to US07/221,990 priority patent/US4879185A/en
Publication of JPH0641838B2 publication Critical patent/JPH0641838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば空調用の熱交換器の蒸発管や凝縮管、
あるいは道路の融雪装置などにおける伝熱体として使用
されるヒートパイプに関し、特に、製造コストが安く、
伝熱特性が優れたヒートパイプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to, for example, an evaporation pipe or a condensation pipe of a heat exchanger for air conditioning,
Or, regarding the heat pipe used as a heat transfer material in the snow melting device of the road, in particular, the manufacturing cost is low,
A heat pipe having excellent heat transfer characteristics

[従来の技術] ヒートパイプは、減圧したパイプの内部に水またはアル
コールなどの液体を入れ、一方を加熱すると液体が沸騰
して上記になり他方へ流れ、そこで放熱して液体とな
り、毛細管現象により液体が加熱部に戻るように構成さ
れており、上記毛細管現象を起こすためにパイプの内面
にウイックと呼ばれる構造体が形成されている。このウ
イックとしては溝を形成したものが知られており、この
ような溝付ヒートパイプは、通常、転造法などにより製
造されている。
[Prior Art] A heat pipe puts a liquid such as water or alcohol inside a depressurized pipe, and when one of them is heated, the liquid boils and flows to the other, where it radiates heat and becomes a liquid, which causes capillary action. The liquid is configured to return to the heating portion, and a structure called a wick is formed on the inner surface of the pipe in order to cause the capillary phenomenon. As this wick, one having a groove is known, and such a grooved heat pipe is usually manufactured by a rolling method or the like.

[発明が解決しようとする問題点] ところで、一般に上記のような内部の媒体と外部の媒体
との熱交換を行わせるための伝熱管において、その伝熱
効率を上げるためには、 (1)伝熱面積を大きくする。
[Problems to be Solved by the Invention] Generally, in a heat transfer tube for causing heat exchange between an internal medium and an external medium as described above, in order to increase the heat transfer efficiency, (1) Increase the heat area.

(2)毛細管現象を起こしやすくする。(2) Make capillarity more likely to occur.

(3)核沸騰を起こしやすくする。(3) Make nucleate boiling easier.

ことが有効とされているが、上記のような溝付ヒートパ
イプにおいては、上記の伝熱効率を上げる方法のうち、
最も効果の高い核沸騰現象を利用しておらず、また、転
造工具の製作技術上及び転造の技術上から、管体の内
径、螺旋溝の条数やねじれの角度に制限があることなど
の理由により、通常の溝無しヒートパイプと比べても熱
特性値が1.2〜1.5倍程度にしかならなず、性能が不充分
であった。また、製造において、転造工具と管内面の摩
擦力が大きいため、大きな加圧力を必要とし、従って大
規模な装置を必要とするとともに、工具の寿命が短くな
って、製作コストが高くなるという問題点があった。
Although it is said that in the grooved heat pipe as described above, among the methods for increasing the heat transfer efficiency,
The most effective nucleate boiling phenomenon is not used, and there are restrictions on the inner diameter of the pipe, the number of spiral grooves, and the angle of twist due to the manufacturing technology of rolling tools and rolling technology. Due to the above reasons, the thermal characteristic value was only 1.2 to 1.5 times that of the normal grooveless heat pipe, and the performance was insufficient. Further, in manufacturing, since the rolling tool and the inner surface of the pipe have a large frictional force, a large pressing force is required, so that a large-scale device is required, the life of the tool is shortened, and the manufacturing cost is increased. There was a problem.

[問題点を解決するための手段] 本発明は、上記のような問題点を解決するために、金属
製管体の内表面に、開口部が相対的に狭められた複数の
有底円筒状の凹所を有する多孔質層ウィックを形成して
ヒートパイプを構成したものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a plurality of cylindrical cylinders with a bottom whose openings are relatively narrowed on the inner surface of a metal tubular body. The heat pipe is formed by forming the porous layer wick having the recesses.

[作用] このようなヒートパイプにおいては、多孔質層の凹所
が、 (i)伝熱面積を増加させ、 (ii)核沸騰のための気泡発生の核生成を促して沸騰を促
進させ、 (iii)毛細管現象を促進させる。
[Operation] In such a heat pipe, the recess of the porous layer (i) increases the heat transfer area, and (ii) promotes the nucleation of bubble generation for nucleate boiling to promote boiling, (iii) Promote capillary action.

それにより、ヒートパイプの熱輸送能力を向上させる。Thereby, the heat transport capacity of the heat pipe is improved.

なお、凹所の表面積比率が10%以下では効果が少な
く、また、50%以上の比率のものは、製造が困難であ
り、製造コストの上昇に見合う程伝熱能力が向上しない
のでそれ以上にする必要はない。
If the surface area ratio of the recess is 10% or less, the effect is small, and if the surface area ratio is 50% or more, it is difficult to manufacture, and the heat transfer ability does not improve to the extent that the manufacturing cost rises. do not have to.

[実施例] 以下、本発明のヒートパイプについての実施例を図面を
参照して説明する。
[Examples] Examples of the heat pipe of the present invention will be described below with reference to the drawings.

(実施例1) 第1図は、本発明の第1実施例の銅製のヒートパイプH
の断面の性状を示す断面図である。このヒートパイプH
は、管長300mm,外径9.52mm、肉厚0.30mmの銅管の内
面に、第2図のような鍍金装置Aを用いて、電気鍍金を
行って製造したものである。以下、この装置及び方法に
ついて第2図を参照して説明する。
(Embodiment 1) FIG. 1 shows a copper heat pipe H according to a first embodiment of the present invention.
It is sectional drawing which shows the property of the cross section. This heat pipe H
Is manufactured by electroplating the inner surface of a copper tube having a tube length of 300 mm, an outer diameter of 9.52 mm and a wall thickness of 0.30 mm, using a plating apparatus A as shown in FIG. The apparatus and method will be described below with reference to FIG.

まず、銅管1の内面にシリコンオイルをエタノールで3
倍に希釈したものを塗布し、その後エタノールを蒸発さ
せて疏水性の薄膜2を形成した。
First, apply silicon oil to the inner surface of copper tube 1 with ethanol
A double diluted product was applied, and then ethanol was evaporated to form a hydrophobic thin film 2.

鍍金装置Aは、不溶性の陽極ワイヤ(Ti−Pt製)3
を銅管1の軸上に張力をかけて張り渡し、ワイヤ3の周
囲に絶縁性のスペーサ4を適当な間隔で設け、硫酸銅鍍
金液(硫酸銅200g/、硫酸50g/)を貯留す
る貯槽5と、鍍金液を銅管1に流すケミカルポンプ6と
を設けたもので、この貯槽5で鍍金により減少した銅イ
オンに見合う量の塩基性炭酸銅を補充して、循環使用す
るようにしている。
The plating device A is an insoluble anode wire (made of Ti-Pt) 3
A storage tank for storing copper sulfate plating solution (copper sulfate 200 g /, sulfuric acid 50 g /) by providing an insulating spacer 4 around the wire 3 at appropriate intervals around the wire of the copper tube 1 under tension. 5 and a chemical pump 6 for supplying a plating solution to the copper pipe 1. In this storage tank 5, basic copper carbonate in an amount commensurate with the copper ions reduced by plating is replenished for cyclic use. There is.

鍍金の電流としては、継続電流、通常のパルス電流また
はPR電流などのパルス電流を適宜使い分け、鍍金液の
温度30℃、陰極電流密度40A/dm2、鍍金液の流速
2m/sの条件下で10分管鍍金を施し、厚さ70μの
鍍金金属からなる多孔質層Sを得た。この多孔質層Sに
は開口部が相対的に狭められた有底円筒状の凹所Cが、
面積比率25%で形成されている。このように製作した
銅管1の内部に、作動液として水を封入してヒートパイ
プHとした。
As the plating current, a continuous current, a normal pulse current or a pulse current such as a PR current is properly used, and the plating solution temperature is 30 ° C., the cathode current density is 40 A / dm 2 , and the plating solution flow rate is 2 m / s. Tube plating was performed for 10 minutes to obtain a porous layer S made of a plated metal having a thickness of 70 μm. In this porous layer S, a bottomed cylindrical recess C having an opening relatively narrowed,
The area ratio is 25%. A heat pipe H was obtained by enclosing water as a working fluid in the copper tube 1 thus manufactured.

(実施例2) 第1実施例と同径、同長の銅管の内面に転造により螺旋
溝を形成し、この銅管の内面に第1実施例と同様の前処
理をして同様の条件で鍍金を行い、同様の多孔質層(図
示略)を得た。この銅管からヒートパイプHを製造し
た。
(Example 2) A spiral groove was formed by rolling on the inner surface of a copper tube having the same diameter and the same length as in the first example, and the same pretreatment as in the first example was performed on the inner surface of the copper tube. Plating was performed under the conditions to obtain a similar porous layer (not shown). A heat pipe H was manufactured from this copper pipe.

(測定結果) これらのヒートパイプHについて、第4図に示すような
試験装置Bにより熱輸送量を測定した。
(Measurement Results) With respect to these heat pipes H, the heat transport amount was measured by the test apparatus B as shown in FIG.

この試験装置Bは、ヒートパイプHの一端に加熱用のヒ
ータ7を、他端に冷却用のウォータージャケット8を設
け、その間に温度測定用の熱電対9…をこのヒートパイ
プHの表面に適宜取り付けたもので、表面温度をほぼ1
00℃に保つようにヒータ7への電力量及びウォーター
ジャケット8へ流す水量を調整しながら試験を行い、ウ
ォータージャケット8の水の入口8aと出口8bにおけ
る温度差から、熱輸送量を計算した。
In this test apparatus B, a heater 7 for heating is provided at one end of the heat pipe H, and a water jacket 8 for cooling is provided at the other end thereof, and a thermocouple 9 for measuring temperature is appropriately provided on the surface of the heat pipe H between them. With the attached one, the surface temperature is almost 1
The test was conducted while adjusting the amount of electric power to the heater 7 and the amount of water flowing to the water jacket 8 so as to keep it at 00 ° C., and the heat transport amount was calculated from the temperature difference between the water inlet 8a and the water outlet 8b of the water jacket 8.

第1実施例及び第2実施例のヒートパイプ及び比較例と
して各実施例と同径同長の未加工銅管から製造したヒー
トパイプについて測定した結果を表1に示す。
Table 1 shows the measurement results of the heat pipes of the first and second examples and a heat pipe manufactured as a comparative example from a raw copper pipe having the same diameter and the same length as each example.

この結果によれば、本発明のヒートパイプの伝熱量は、
比較例に対し、第1実施例で2.4倍、第2実施例で3倍
程度に増加している。これは、ヒートパイプHの内面に
形成された多孔質層Sが伝熱面積を増加させるととも
に、その凹所Cの開口部が相対的に狭められているの
で、内部の作動液の核沸騰を起こしやすくし、ヒートパ
イプHの送熱側での液体一気体間の相転位を促進するた
めであると考えられる。
According to this result, the heat transfer amount of the heat pipe of the present invention is
Compared with the comparative example, the first embodiment increased the number 2.4 times, and the second example increased about three times. This is because the porous layer S formed on the inner surface of the heat pipe H increases the heat transfer area, and the opening of the recess C is relatively narrowed, so that the nucleate boiling of the working fluid inside is prevented. It is considered that this is because it is easy to cause this and promotes the phase transition between liquid and gas on the heat transfer side of the heat pipe H.

[発明の効果] 以上詳述したように、本発明は、金属製管体の内表面
に、開口部が相対的に狭められた複数の有底円筒状の凹
所を有する多孔質層を形成してヒートパイプを構成した
ものであるので、凹所が伝熱面積を増加させ、ヒートパ
イプの送熱側での核沸騰を促進させることにより、熱輸
送特性を飛躍的に向上させるものである。また、製造も
容易でコストが安く、小径のヒートパイプにも応用でき
るので、空調機器の伝熱体などに採用することにより、
機器の小型化、コストダウンなどを図れるという優れた
効果を奏するものである。
[Effects of the Invention] As described in detail above, the present invention forms a porous layer having a plurality of bottomed cylindrical recesses with relatively narrow openings on the inner surface of a metal tubular body. Since the heat pipe is configured as described above, the recess increases the heat transfer area and promotes nucleate boiling on the heat transfer side of the heat pipe, thereby dramatically improving the heat transport characteristics. . It is also easy to manufacture and low in cost, and because it can be applied to small diameter heat pipes, by adopting it as a heat transfer element for air conditioning equipment,
This is an excellent effect that the device can be downsized and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例のヒートパイプの横断面形
状を示す断面図、第2図は第1実施例の製造装置を示す
略図、第3図は伝熱特性を測定するための装置の略図で
ある。 1……銅管(管体)、C……凹所、S……多孔質層、 H……ヒートパイプ。
FIG. 1 is a cross-sectional view showing a cross-sectional shape of a heat pipe according to a first embodiment of the present invention, FIG. 2 is a schematic view showing a manufacturing apparatus of the first embodiment, and FIG. 3 is for measuring heat transfer characteristics. 1 is a schematic representation of the device. 1 ... Copper tube (tube), C ... Recess, S ... Porous layer, H ... Heat pipe.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属製管体の内表面に、開口部が相対的に
狭められた複数の有底円筒状の凹所を有する多孔質層が
形成されていることを特徴とするヒートパイプ。
1. A heat pipe characterized in that a porous layer having a plurality of bottomed cylindrical recesses each having a relatively narrow opening is formed on the inner surface of a metal pipe body.
【請求項2】上記多孔質層は電気鍍金による析出金属層
であることを特徴とする特許請求の範囲第1項記載のヒ
ートパイプ。
2. The heat pipe according to claim 1, wherein the porous layer is a metal layer deposited by electroplating.
【請求項3】上記凹所は、その表面積比率が10%〜5
0%であることを特徴とする特許請求の範囲第1項記載
のヒートパイプ。
3. The surface area ratio of the recess is 10% to 5
It is 0%, The heat pipe of Claim 1 characterized by the above-mentioned.
JP61037736A 1985-11-11 1986-02-22 Heat pipe Expired - Lifetime JPH0641838B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61037736A JPH0641838B2 (en) 1986-02-22 1986-02-22 Heat pipe
FI864554A FI85060C (en) 1985-11-11 1986-11-10 Heat transfer material and process for making the same
EP86115606A EP0224761B1 (en) 1985-11-11 1986-11-11 Heat-transfer material and method of producing same
DE8686115606T DE3677338D1 (en) 1985-11-11 1986-11-11 HEAT TRANSFER MATERIAL AND METHOD FOR THE PRODUCTION THEREOF.
US07/221,999 US4826578A (en) 1985-11-11 1988-07-20 Method of producing heat-transfer material
US07/221,990 US4879185A (en) 1985-11-11 1988-07-20 Heat transfer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61037736A JPH0641838B2 (en) 1986-02-22 1986-02-22 Heat pipe

Publications (2)

Publication Number Publication Date
JPS62196594A JPS62196594A (en) 1987-08-29
JPH0641838B2 true JPH0641838B2 (en) 1994-06-01

Family

ID=12505770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61037736A Expired - Lifetime JPH0641838B2 (en) 1985-11-11 1986-02-22 Heat pipe

Country Status (1)

Country Link
JP (1) JPH0641838B2 (en)

Also Published As

Publication number Publication date
JPS62196594A (en) 1987-08-29

Similar Documents

Publication Publication Date Title
US4222434A (en) Ceramic sponge heat-exchanger member
US4879185A (en) Heat transfer material
Li Design and preliminary experiments of a novel heat pipe using a spiral coil as capillary wick
JPH0641838B2 (en) Heat pipe
US4824530A (en) Method of producing heat-transfer material
JPS62206382A (en) Heat pipe
US4136427A (en) Method for producing improved heat transfer surface
Surtaev et al. Characteristics of boiling heat transfer on hydrophilic surface with SiO2 coating
JPS62112996A (en) Heat-transmitting body
JPS62206383A (en) Heat transfer body
JP2012167854A (en) Heat transfer tube for falling liquid film evaporator, and turbo refrigerator using the same
JPS63243297A (en) Production of heat transfer tube
JPS63183388A (en) Heat transfer body
US1792784A (en) Mercury-vapor boiler
JPH0531080B2 (en)
KR100535666B1 (en) Heat Exchanger and Manufacture Method for the Same
Shete et al. Pool Boiling Heat Transfer in Saturated R407C Using Reentrant Cavity Surfaces
JPH0351673Y2 (en)
CN215177066U (en) Die-casting aluminum bimetal radiator unit
SU1175239A2 (en) Heat-exchange pipe and method of manufacturing same
KR102012565B1 (en) Semi-flooded type plate evaporator for chillers
JPS63183393A (en) Heat transfer pipe
JPH074884A (en) Heat transfer pipe with inner surface groove and its manufacturing method
JPH01102295A (en) Heat transmission pipe externally exchanging heat
JPS61105097A (en) Heat pipe