JPS63183388A - Heat transfer body - Google Patents

Heat transfer body

Info

Publication number
JPS63183388A
JPS63183388A JP62012726A JP1272687A JPS63183388A JP S63183388 A JPS63183388 A JP S63183388A JP 62012726 A JP62012726 A JP 62012726A JP 1272687 A JP1272687 A JP 1272687A JP S63183388 A JPS63183388 A JP S63183388A
Authority
JP
Japan
Prior art keywords
liquid
porous
channels
heat transfer
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62012726A
Other languages
Japanese (ja)
Inventor
Yoshio Takizawa
与司夫 滝沢
Tsutomu Takahashi
務 高橋
Yasuo Masuda
保夫 増田
Yutaka Saito
豊 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP62012726A priority Critical patent/JPS63183388A/en
Publication of JPS63183388A publication Critical patent/JPS63183388A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain good discharging performance of liquid, to increase reflux speed, and to prevent condensation promoting effect from lowering, by providing channels continuously extending to the flowing direction of liquid that is a heating medium, on porous layers having a number of tubular recesses with bottom on them, provided on the surface of the base body of a metallic pipe. CONSTITUTION:Porous plated layers 11 formed on the whole inside surface of a pipe body 10 which is made of metal such as copper have a number of tubular recesses 12 with bottom, of which openings are narrowed relatively. A plurality of channels 13 having cross sectional shapes of U, extending spirally to the axial direction of a pipe body 10, are continuously provided on the plated layer 11 and also on the inside wall of a pipe body 10. The structures is such that liquid can flow into the channels 13 when it condenses on the surfaces of porous plated layers 11 in a radiating part, and it is transmitted to a heating part by the capillary effect of the channels 13.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、例えば空調用の熱交換器の蒸発管や凝縮管、
あるいは道路の融雪装置などにおいて伝熱体として使用
されるヒートバイブ等の伝熱体に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention is applicable to, for example, evaporation tubes and condensation tubes of heat exchangers for air conditioning;
Alternatively, the present invention relates to a heat transfer body such as a heat vibrator used as a heat transfer body in a road snow melting device or the like.

「従来の技術」 上記の蒸発管、凝縮管、あるいはヒートバイブは、いず
れら管の内外の温度差により管内に封入された熱媒体の
相変態(気体−一液体)を行わせ、さらにこの媒体を移
送して管の長手方向の伝熱を行うものである。
"Prior Art" The above-mentioned evaporation tube, condensation tube, or heat vibrator causes a phase transformation (gas-to-liquid) of a heat medium sealed inside the tube due to the temperature difference between the inside and outside of the tube. heat transfer in the longitudinal direction of the tube.

例えばヒートパイプは、減圧した金属管の内部に水また
はアルコールなどの液体を封入したしので、パイプの一
端を加熱すると液体か沸騰して蒸気圧差により蒸気が他
端側(放熱部)に流れ、そこで凝縮して液体となり、こ
の液体が再び加熱部に戻るように設計されており、その
ような機能を果たすために、管内面にウィックと呼ばれ
る構造体を形成している。従って、ヒートパイプにおい
て伝熱性能を向上させるためには、(イ)管内外の伝熱
性能、(ロ)管内面における沸騰、あるいは凝縮を促進
させる性能、(ハ)管の長手方向に媒体(特に液体)を
移送する性能、を向上させたウィックを形成することが
要求される。
For example, a heat pipe is a metal tube with a reduced pressure and a liquid such as water or alcohol sealed inside it. When one end of the pipe is heated, the liquid boils and the vapor flows to the other end (heat dissipation part) due to the vapor pressure difference. There, it condenses into a liquid, which is then returned to the heating section. To perform this function, a structure called a wick is formed on the inner surface of the tube. Therefore, in order to improve heat transfer performance in a heat pipe, (a) heat transfer performance inside and outside the tube, (b) ability to promote boiling or condensation on the inner surface of the tube, and (c) medium ( There is a need to form a wick with improved performance, especially for transporting liquids.

この種の伝熱体の改良として、本出願人は先に、特願昭
60−252358号において第5図に示すようなもの
を提案した。
As an improvement to this type of heat transfer body, the present applicant previously proposed the one shown in FIG. 5 in Japanese Patent Application No. 60-252358.

この伝熱体は、金属製管体(Jl(体)1の内面に、開
口部が相対的に狭められた多数の有底円筒状の凹所2・
・・を有する多孔質めっき層3を形成したことを特徴と
するもので、前記凹所2・・・により、管体lの内面の
伝熱面積を増大させて前記(イ)の性能を向上するとと
もに、気泡発生ための核生成を促して核沸騰を促進させ
て前記(ロ)の性能を向上させ、熱輸送能力の向上を図
ったものである。
This heat transfer body has a large number of bottomed cylindrical recesses 2 with relatively narrow openings on the inner surface of a metal tube body (Jl (body) 1).
It is characterized by forming a porous plating layer 3 having ..., and the recesses 2 increase the heat transfer area of the inner surface of the tube l to improve the performance of (a) above. At the same time, the above performance (b) is improved by promoting nucleation for generating bubbles and promoting nucleate boiling, thereby improving the heat transport ability.

「発明が解決しようとする問題点」 ところが、上記の伝熱体においては、隣接している凹所
2がそれぞれ独立している割合が高いため、この伝熱体
を凝縮管やヒートパイプの凝縮部として使用した場合に
は、凝縮した液体が凹所2・・・に溜まったまま排出さ
れにり<、液体の還流速度が小さいという問題があった
。また、凝縮した液体によって多孔質めっき層3が覆わ
れるため、この多孔質めっき層3による凝縮促進効果が
十分に発揮され難いという欠点があった。
``Problems to be Solved by the Invention'' However, in the above heat transfer body, since the adjacent recesses 2 are often independent, this heat transfer body is When used as a part, there was a problem that the condensed liquid remained in the recesses 2 and was not discharged, and the reflux rate of the liquid was low. Furthermore, since the porous plating layer 3 is covered with the condensed liquid, there is a drawback that the condensation promoting effect of the porous plating layer 3 is difficult to be sufficiently exhibited.

「問題点を解決するための手段」 本発明は上記の問題点を解決するためのらので、金属製
基体の表面に、開口部が相対的に狭められた多数の有底
円筒状の凹所を有する多孔質層を形成するとともに、こ
の多孔質層に、熱媒体となる液体が流れるべき方向に連
続する溝を形成したことを特徴とする。
"Means for Solving the Problems" The present invention aims to solve the above problems, and therefore, a large number of bottomed cylindrical recesses with relatively narrow openings are formed on the surface of a metal base. The present invention is characterized in that a porous layer is formed, and grooves are formed in this porous layer that are continuous in the direction in which a liquid serving as a heat medium should flow.

「作用 」 本発明の伝熱体では、多孔質層の表面で蒸気が凝縮して
液体となると、この液体が溝内に流れ込み、溝の毛細管
現象によって液体が流れるべき方向へ運ばれろ。したが
って、液体の排出性が良好で、還流速度の向上が図れる
とともに、多孔質層が液体中に没して凝縮促進効果が低
下ずろといったことを防ぐことができる。
"Function" In the heat transfer body of the present invention, when vapor condenses on the surface of the porous layer and becomes liquid, this liquid flows into the grooves and is carried in the direction in which the liquid should flow by the capillary action of the grooves. Therefore, the liquid discharge property is good, the reflux rate can be improved, and the porous layer can be prevented from being submerged in the liquid and the condensation promoting effect is prevented from decreasing.

「実施例」 以下、図面を参照して本発明の実施例を詳細に説明する
"Embodiments" Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図および第2図は、本発明をヒートバイブ(伝熱体
)として実施した例を示すもので、第1図はヒートバイ
ブの横断面性状、第2図は内面性状の拡大図である。
Figures 1 and 2 show an example in which the present invention is implemented as a heat vibrator (heat transfer body). Figure 1 is an enlarged view of the cross-sectional properties of the heat vibe, and Figure 2 is an enlarged view of the inner surface properties. .

これらの図において、符号lOは銅などの金属からなる
管体(基体)、11は管体lOの内面全面に形成された
多孔質めっき層(多孔質層)である。
In these figures, reference numeral 10 indicates a tube (substrate) made of metal such as copper, and 11 indicates a porous plating layer (porous layer) formed on the entire inner surface of the tube 10.

この多孔質めっき層11は、開口部が相対的に挟められ
た有底円筒状の凹所12を多数有し、これら凹所I2の
表面積比率は10〜50%とされている。この比率が1
0%よりも小さいと効果が少なく、また50%より大き
いと製造が困難となろうえ、コストの上昇に見合う程伝
熱能力か向上しない。
This porous plating layer 11 has a large number of bottomed cylindrical recesses 12 whose openings are relatively sandwiched, and the surface area ratio of these recesses I2 is 10 to 50%. This ratio is 1
If it is less than 0%, the effect will be small, and if it is more than 50%, it will be difficult to manufacture, and the heat transfer ability will not improve enough to justify the increase in cost.

また、前記めっき層11および管体10の内壁には、管
体lOの軸線方向に連続して螺旋状に延びる断面コ字状
の溝13・・・が複数本形成されている。これらM+3
の幅および深さは、溝13の毛□  細管現象を考慮し
て最も良好な液体輸送能力が得られるように決定される
ことが望ましい。
Further, a plurality of grooves 13 having a U-shaped cross section are formed in the plating layer 11 and the inner wall of the tubular body 10, and extend continuously and spirally in the axial direction of the tubular body 10. These M+3
It is desirable that the width and depth of the groove 13 be determined so as to obtain the best liquid transport ability, taking into account the capillary phenomenon of the groove 13.

そして、管体lO内には水あるいはアルコール等の液体
が適量入れられ、内部が減圧されて両端が閉じられてい
る。
Then, an appropriate amount of liquid such as water or alcohol is put into the tube IO, and the inside is reduced in pressure and both ends are closed.

次に、このようなヒートパイプの製造方法を説明する。Next, a method for manufacturing such a heat pipe will be explained.

まず、管体10の内面に、シリコンオイル等の疎水性物
質をエタノール等の揮発性溶剤で希釈した乙のを塗布し
、その後、溶剤を蒸発させて疎水性の薄膜を形成する。
First, a diluted hydrophobic substance such as silicone oil with a volatile solvent such as ethanol is applied to the inner surface of the tubular body 10, and then the solvent is evaporated to form a hydrophobic thin film.

この疎水性薄膜の7さは、0.1〜5μ肩であることが
好ましく、0.1μ、η以下では凹所12の生成が少な
くなり、他方、5μmを超えろと絶縁性が高くなりすぎ
て均一な多孔質めっき層11が得られなくなる。
The thickness of this hydrophobic thin film is preferably 0.1 to 5 μm. If it is less than 0.1 μm, the formation of the recess 12 will be reduced, while if it exceeds 5 μm, the insulation will become too high. A uniform porous plating layer 11 cannot be obtained.

次いで、第3図に示すようなめっき装置を用い、この管
体lOの内面に多孔質めっき層11を電青形成する。こ
の装置は、T i −P を製などの不溶性の陽極ワイ
ヤ14を、管体10の軸線に沿って張力をかけて張り渡
し、ワイヤ14の周囲に絶縁性のスペーサ15を適当な
間隔で設け、硫酸銅めっき液を貯留する貯hff 16
と、めっき液を管体lO内に流すケミカルポンプ17と
を設けたしので、この貯槽16でめっきによる銅イオン
の減少を塩基性炭酸銅を添加して補い、循環使用するよ
うに構成されている。
Next, using a plating apparatus as shown in FIG. 3, a porous plating layer 11 is electroplated on the inner surface of the tubular body 1O. In this device, an insoluble anode wire 14 made of Ti-P or the like is stretched under tension along the axis of a tube 10, and insulating spacers 15 are provided around the wire 14 at appropriate intervals. , storage hff for storing copper sulfate plating solution 16
and a chemical pump 17 for flowing the plating solution into the pipe body lO, the storage tank 16 is configured to supplement the loss of copper ions due to plating by adding basic copper carbonate and to circulate the solution. There is.

そして、前記陽極ワイヤ14と管体lOとの間に、断続
電流1通常のパルス電流またはP R電流などのパルス
電流を適宜使い分けて通電する。すると、めっき液中の
水が電気分解されて陽極ワイヤ14から酸素ガスが発生
し、この酸素ガスの一部が陰極である管体10の内面に
塗布された疎水性薄膜に付着し、この気泡を包み込むよ
うな形で近用金属が成長して、多孔性のめっき層itが
形成されろ。なお、陽極電流密度は、20A/dm”以
上てあることが必要で、それ以下では酸素ガスの発生が
不十分となる。
Then, a pulse current such as an intermittent current 1, a normal pulse current, or a PR current is applied between the anode wire 14 and the tubular body 10, as appropriate. Then, the water in the plating solution is electrolyzed and oxygen gas is generated from the anode wire 14. A part of this oxygen gas adheres to the hydrophobic thin film coated on the inner surface of the tube body 10, which is the cathode, and the air bubbles are generated. The nearby metal grows in such a way as to envelop it, forming a porous plating layer IT. Note that the anode current density needs to be 20 A/dm" or more; if it is less than that, oxygen gas will not be sufficiently generated.

やがて、多孔質めっき層11が所定の厚さに達したら管
体lOを取り外し、この管体lOを転造装置にかけて、
めっき層11および管体lO内壁に螺旋状の溝!3・・
・を形成する。
Eventually, when the porous plating layer 11 reaches a predetermined thickness, the tubular body 10 is removed, and this tubular body 10 is applied to a rolling device.
Spiral grooves on the plating layer 11 and the inner wall of the tube IO! 3...
・Form.

このような構成からなるヒートパイプでは、放熱部内の
多孔質めっき層11の表面で液体が凝縮すると、この液
体が溝13内に流れ込み、’tM I 3の毛細管現象
によって加熱部に運ばれる。これにより、液体の排出性
が良好となり、還流速度を向上することができる。また
、多孔質めっき層IIが液体中に没して凝縮促進効果が
低下することを防くことができるので、ヒートパイプの
熱輸送能力を増大さt!−ろことが可能である。
In the heat pipe having such a configuration, when liquid condenses on the surface of the porous plating layer 11 in the heat dissipation section, this liquid flows into the groove 13 and is carried to the heating section by the capillary phenomenon of 'tM I 3. This improves the liquid discharge performance and improves the reflux rate. In addition, it is possible to prevent the porous plating layer II from being submerged in the liquid and reducing the condensation promotion effect, thereby increasing the heat transport capacity of the heat pipe. -It is possible to do this.

なお、以上のヒートパイプては、管体10内面にめっき
層Itを形成したのちに溝13を転造していfこか、そ
の代わりに、予め管体10に溝13を形成しておき、こ
の!f+T l a内を絶縁塗料等でマスキングして、
めっき層11を電着形成する方法を採って乙よい。その
場合には、転造によってめっき層10の接着強度に影響
を与えろことがないというfl1点がある。
Note that in the above heat pipe, the grooves 13 are rolled after forming the plating layer It on the inner surface of the tube body 10, or instead, the grooves 13 are formed in the tube body 10 in advance, this! Mask the inside of f + T l a with insulating paint, etc.
It is preferable to adopt a method of forming the plating layer 11 by electrodeposition. In that case, there is a fl1 point that the adhesive strength of the plating layer 10 is not affected by rolling.

また、転造によって’tii I 3を形成する代わり
に、第4図ウニ点鎖線に示すように管体lO内面にトめ
帯状のマスキング20を形成しておき、この状態で多孔
質めっき層11を電着したのち、前記マスキング20を
除去してその跡を溝21とずろことら可能であり、0ゴ
記の方法よりも溝形成が容易となる。
Moreover, instead of forming 'tii I 3 by rolling, a masking 20 in the shape of a tome band is formed on the inner surface of the tube 10 as shown by the dashed line in FIG. 4, and in this state, the porous plating layer 11 After the masking 20 is electrodeposited, the masking 20 can be removed and its traces can be left in line with the grooves 21, making it easier to form the grooves than in the method described above.

ま几、iMの形状は螺旋状に限らず、管体10の軸線方
向に沿う直線状であってらよい。この場合、潜の数を1
木とし、ヒートパイプの使用時に二の溝がヒートパイプ
の下側内面に位置するようにして、重力によって下方に
流れてきた液体を輸送オろ構成としてらよい。
The shape of the tube and iM is not limited to a spiral shape, but may be a straight shape along the axial direction of the tube body 10. In this case, set the number of latents to 1
The heat pipe may be made of wood, and when the heat pipe is used, the second groove is located on the lower inner surface of the heat pipe, so that the liquid flowing downward by gravity can be transported.

まfこ、前記の実施例では、めっき層11の凹所12が
管体10の内面に垂直に形成されていたが、めっき層1
1を711着する際にめっき液の流速を速く設定して、
前記凹所12をヒートパイプ内の液体が流れる方向に傾
けて形成することにより、さらに伝熱特性を高めること
ができる。
In the above embodiment, the recess 12 of the plating layer 11 was formed perpendicularly to the inner surface of the tube body 10.
When applying 1 to 711, set the flow rate of the plating solution to high speed,
By forming the recess 12 so as to be inclined in the direction in which the liquid in the heat pipe flows, the heat transfer characteristics can be further improved.

さらに、本発明はヒートパイプのみに限らず、凝縮管や
蒸発管、板状伝熱体、管体の外面に多孔質層を形成した
伝熱体としてら実施可能である。
Furthermore, the present invention is not limited to heat pipes, and can be implemented as condensation tubes, evaporation tubes, plate-shaped heat transfer bodies, and heat transfer bodies in which a porous layer is formed on the outer surface of a tube body.

「発明の効果」 本発明の伝熱体においては、多孔質めっき層の表面で液
体が凝縮すると、この液体がdI¥内に流れ込み、溝の
毛細管現象によって液体の流れるべき方向に運ばれる。
"Effects of the Invention" In the heat transfer body of the present invention, when liquid condenses on the surface of the porous plating layer, this liquid flows into dI\ and is carried in the direction in which the liquid should flow by the capillary action of the grooves.

したがって、多孔質層上での液体の排出性が良好となり
、その還流速度を向上することができる。同時に、多孔
質層が液体中に没して凝縮促進効果が低下することが防
げるので、熱輸送能力を向上することが可能である。
Therefore, the liquid can be drained well on the porous layer, and its reflux rate can be improved. At the same time, it is possible to prevent the porous layer from being submerged in the liquid and reducing the condensation promoting effect, thereby improving the heat transport ability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のヒートパイプ(伝熱体)の
断面性状を示す拡大図、第2図は同ヒートパイプの内面
の性状を示す拡大図、第3図は同ヒートパイプを製造ず
ろためのめっき装置の(を成因、第・1図は本発明の池
の実施例の断面性状を示す拡大図である。 また、第5図は本出願人か先に出願しf二伝熱体の断面
性状を示セ拡大図である。 lO・・・管体(堰体)、It・多孔質めっき層、12
・・凹所、    13.21 ・・溝。
Fig. 1 is an enlarged view showing the cross-sectional properties of a heat pipe (heat transfer body) according to an embodiment of the present invention, Fig. 2 is an enlarged view showing the properties of the inner surface of the heat pipe, and Fig. 3 is an enlarged view showing the properties of the inner surface of the heat pipe. Figure 1 is an enlarged view showing the cross-sectional properties of an embodiment of the plating device of the present invention. It is an enlarged view showing the cross-sectional properties of the heating body. 1O... tube body (weir body), It/porous plating layer, 12
... recess, 13.21 ... groove.

Claims (1)

【特許請求の範囲】[Claims]  金属製基体の表面に、開口部が相対的に狭められた多
数の有底円筒状の凹所を有する多孔質層を形成するとと
もに、この多孔質層に、熱媒体となる液体が流れるべき
方向に連続する溝を形成したことを特徴とする伝熱体。
A porous layer having a large number of bottomed cylindrical recesses with relatively narrow openings is formed on the surface of the metal base, and a direction in which a liquid serving as a heat medium should flow in this porous layer is formed. A heat transfer body characterized by having continuous grooves formed therein.
JP62012726A 1987-01-22 1987-01-22 Heat transfer body Pending JPS63183388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62012726A JPS63183388A (en) 1987-01-22 1987-01-22 Heat transfer body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62012726A JPS63183388A (en) 1987-01-22 1987-01-22 Heat transfer body

Publications (1)

Publication Number Publication Date
JPS63183388A true JPS63183388A (en) 1988-07-28

Family

ID=11813436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62012726A Pending JPS63183388A (en) 1987-01-22 1987-01-22 Heat transfer body

Country Status (1)

Country Link
JP (1) JPS63183388A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189793A (en) * 1987-02-02 1988-08-05 Mitsubishi Electric Corp Heat transfer pipe for evaporation and condensation
JP2007147194A (en) * 2005-11-29 2007-06-14 Isuzu Motors Ltd Heat pipe and its manufacturing method
JP2008031965A (en) * 2006-07-31 2008-02-14 Hitachi Ltd Compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189793A (en) * 1987-02-02 1988-08-05 Mitsubishi Electric Corp Heat transfer pipe for evaporation and condensation
JP2007147194A (en) * 2005-11-29 2007-06-14 Isuzu Motors Ltd Heat pipe and its manufacturing method
JP2008031965A (en) * 2006-07-31 2008-02-14 Hitachi Ltd Compressor

Similar Documents

Publication Publication Date Title
US4359086A (en) Heat exchange surface with porous coating and subsurface cavities
US20050183832A1 (en) Method and apparatus for phase change enhancement
FI85060B (en) VAERMEOEVERFOERINGSMATERIAL OCH FOERFARANDE FOER FRAMSTAELLNING AV DETSAMMA.
EP2899753A1 (en) Cooling device, heat reception unit and boiling unit used therein, and method for manufacturing same
US4136428A (en) Method for producing improved heat transfer surface
US20080230212A1 (en) Fin for Heat Exchanger and Heat Exchanger Equipped with Such Fins
JPS63183388A (en) Heat transfer body
FI75664C (en) DUBBELSPIRALVAERMEOEVERFOERARE.
JPS63243297A (en) Production of heat transfer tube
JPS63183389A (en) Heat transfer body
US4136427A (en) Method for producing improved heat transfer surface
EP0226861A1 (en) Heat-transfer material and method of producing same
JPS63183393A (en) Heat transfer pipe
KR100624812B1 (en) Heat Pipe
JPS63273790A (en) Heat transfer body and manufacture thereof
JPH0213038B2 (en)
JPH03230094A (en) Heat transfer medium
JPH0240752B2 (en)
JPS63243296A (en) Production of heat transfer tube
JPS62206382A (en) Heat pipe
JPH0565789B2 (en)
JPS63183392A (en) Heat transfer pipe
JPH0531080B2 (en)
Le Goff et al. A new falling film evaporator with spiral fins
JP2001108384A (en) Heat pipe