JPH03230094A - Heat transfer medium - Google Patents

Heat transfer medium

Info

Publication number
JPH03230094A
JPH03230094A JP2237740A JP23774090A JPH03230094A JP H03230094 A JPH03230094 A JP H03230094A JP 2237740 A JP2237740 A JP 2237740A JP 23774090 A JP23774090 A JP 23774090A JP H03230094 A JPH03230094 A JP H03230094A
Authority
JP
Japan
Prior art keywords
recesses
heat transfer
nucleate boiling
boiling
nucleate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2237740A
Other languages
Japanese (ja)
Other versions
JPH0648153B2 (en
Inventor
Yasuo Masuda
保夫 増田
Tsutomu Takahashi
務 高橋
Yoshio Takizawa
与司夫 滝沢
Shoichi Yoshiki
吉木 尚一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2237740A priority Critical patent/JPH0648153B2/en
Publication of JPH03230094A publication Critical patent/JPH03230094A/en
Publication of JPH0648153B2 publication Critical patent/JPH0648153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a heat transfer medium having high heat transfer characteristic by incorporating a plurality of cylindrical first recesses relatively narrowed at openings and second recesses of smaller diameter and respectively formed in the bottoms of the first recesses in a porous electrodeposited metal layer. CONSTITUTION:In a heat transfer medium, a porous electrodeposited metal layer is formed on a metal base, and the layer has a plurality of cylindrical first recesses narrowed at openings and second recesses of smaller diameter and respectively formed in the bottoms of the first recesses. Since a nucleate boiling occurs not only in the first recesses but also in the second recesses, the boiling feasibly occurs as in the case of the sole first recesses, thereby enhancing thermal conduction efficiency. That is, bubbles to become seeds of nucleate boiling are generated from the second recesses, and the first recesses are then filled with the bubbles. In other words, the recesses of the small diameter performs a function as an initial boiling nucleate, then continuous nucleate boiling occurs, and the degree of superheat for the nucleate boiling is lowered. Since the recesses of different diameters are present, the recesses of suitable size for various viscous fluids are present to generate nucleate boiling.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、例えば空調用の熱交換器の蒸発管や凝縮管、
あるいはウィックを有するヒートパイプなどに使用され
る伝熱体に関し、特に、製造コストが安く、伝熱特性か
優れた伝熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Fields] The present invention is applicable to, for example, evaporation tubes and condensation tubes of heat exchangers for air conditioning;
The present invention also relates to a heat transfer body used in a heat pipe having a wick, and in particular, to a heat transfer body that is inexpensive to manufacture and has excellent heat transfer properties.

[従来の技術] 内部の媒体と外部の媒体との熱交換を行わせるための伝
熱管において、その伝熱効率を上げるためには、 (1)伝熱面積を大きくする。
[Prior Art] In order to increase the heat transfer efficiency of a heat transfer tube for exchanging heat between an internal medium and an external medium, (1) the heat transfer area must be increased;

(2)毛細管現象を起こしやすくする。(2) Facilitates capillary action.

(3)乱流を起こしやすくする。(3) Make it easier to cause turbulence.

(4)核沸騰を起こしやすくする。(4) Make it easier to cause nucleate boiling.

ことが有効とされている。It is said that this is effective.

これらの条件のいくつかを満たすような伝熱管として、
管体の内面に螺旋状の溝を転造法などにより形成したも
の、管体の内面に粒状あるいは線状の金属などを鑞付な
どにより付着せしめたものなどが用いられている。
As a heat exchanger tube that satisfies some of these conditions,
Some examples include those in which spiral grooves are formed on the inner surface of the tube by a rolling method, and those in which granular or linear metal is attached to the inner surface of the tube by brazing or the like.

[発明が解決しようとする問題点コ しかしながら、上記のような従来の技術においては、そ
れぞれ次のような問題点があった。
[Problems to be Solved by the Invention However, the above-mentioned conventional techniques have the following problems.

すなわち、螺旋溝を形成する場合には、上記の伝熱効率
を上げる方法のうち、最も効果の高い核沸騰現象を利用
しておらず、また、転造工具の製作技術上及び転造の技
術上から、管体の内径、螺旋溝の条数やねじれの角度に
制限があることなどの理由により、通常の溝無し管と比
へても熱特性値か1.2〜1.5倍程度にしかならなず
、性能が不充分であった。また、製造において、転造工
具と管内面の摩擦力か大きいため、大きな加圧力を必要
とし、従って大規模な装置を必要とするとともに、工具
の寿命か′短くなって、製作コストが高くなるという問
題点かあった。
In other words, when forming spiral grooves, the nucleate boiling phenomenon, which is the most effective of the above methods for increasing heat transfer efficiency, is not used, and there are also However, due to limitations on the inner diameter of the tube, the number of spiral grooves, and the angle of twist, the thermal properties are about 1.2 to 1.5 times higher than ordinary grooveless tubes. However, the performance was unsatisfactory. In addition, during manufacturing, the frictional force between the rolling tool and the inner surface of the tube is large, so a large pressing force is required, which in turn requires large-scale equipment, shortens the life of the tool, and increases production costs. There was a problem.

一方、管体の内面に粒状あるいは線状の金属を付着さけ
る場合には、高温の作業を行う必要があり、また、細径
の管体に応用するのは困難であるなとの問題点があった
On the other hand, in order to avoid adhesion of granular or linear metal to the inner surface of the tube, it is necessary to perform high-temperature work, and there is also the problem that it is difficult to apply it to small-diameter tubes. there were.

さらに、このような問題点を解決するために、金属表面
にめっきを行うことにより多孔質層を形成する技術が提
案されている。すなわち、特開昭53−!19553号
公報に記載のものは、金属製の基体の表面に細溝を形成
した後、この表面にめっき層を付着させることにより、
細溝の開口部を相対的に狭めるようにしたものである。
Furthermore, in order to solve these problems, a technique has been proposed in which a porous layer is formed by plating a metal surface. In other words, JP-A-53-! The method described in Japanese Patent No. 19553 forms fine grooves on the surface of a metal base, and then attaches a plating layer to this surface.
The opening of the narrow groove is relatively narrowed.

また、特開昭53−138969号公報に記載のものは
、管体の内面にめっき層を形成した後、このめっき層を
逆に電解的に溶解して多孔質にするようにしたしのであ
る。
Furthermore, the method described in JP-A No. 53-138969 forms a plating layer on the inner surface of the tubular body and then electrolytically dissolves this plating layer to make it porous. .

しかしながら、前者の技術におし)では、多孔質層の全
体がめつきで形成されているのではなく、−旦機械加工
等により細溝を形成した後に溝の頂部にめっき層を乗せ
るものであり、細かい溝を形成するという加工に手間が
かかってコストが増すたけてなく、微細な多孔質層を形
成することが困難で伝熱機能が不充分である。
However, in the former technique, the entire porous layer is not formed by plating, but rather the plating layer is placed on the top of the groove after forming narrow grooves by machining etc. However, the process of forming fine grooves is time-consuming and increases costs, and it is difficult to form a fine porous layer, resulting in insufficient heat transfer function.

一方、後者の技術においては、基体金属の組織の微視的
な偏りによる選択的腐食を利用するものであるので、基
体金属の選択が限定されるという欠点があるとともに、
その凹部の形状を、開口部が相対的に内部よりも狭い形
状とすることが困難であるので核沸騰現象を有効に起こ
させることができなかった。
On the other hand, the latter technique utilizes selective corrosion due to microscopic deviations in the structure of the base metal, so it has the disadvantage that the selection of base metals is limited.
Since it is difficult to shape the recess so that the opening is relatively narrower than the inside, it has not been possible to effectively cause the nucleate boiling phenomenon.

[問題点を解決するための手段] 本発明は、上記のような問題点を解決すへくなされたも
ので、金属製基体の表面に多孔質電析金属層が形成され
、この多孔質電析金属層は、開口部が相対的に狭められ
た複数の円筒状の第1の凹部と、この第1の凹部の底部
に形成されたより小径の第2の凹部とを有する伝熱体と
したものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and a porous electrodeposited metal layer is formed on the surface of a metal substrate. The metal layer was a heat transfer body having a plurality of cylindrical first recesses each having a relatively narrow opening, and a second recess having a smaller diameter formed at the bottom of the first recess. It is something.

5作用J この発明の伝熱体においては、第1の凹部のみでなく第
2の凹部ても核沸騰が起きるので、単一の凹部の場合よ
りも核沸騰が起きやすくなり、熱伝導効率が高くなる。
5 Effect J In the heat transfer body of the present invention, nucleate boiling occurs not only in the first recess but also in the second recess, so nucleate boiling occurs more easily than in the case of a single recess, and the heat transfer efficiency improves. It gets expensive.

すなわち、第2の凹部より核沸騰の種となる気泡が発生
し、続いて第1の凹部内か気泡で満fこされる。つまり
、小径凹所か初期の沸騰核として機能し、その後連続的
な核沸騰となり、核沸騰のための過熱度が低減される。
That is, bubbles that become seeds of nucleate boiling are generated from the second recess, and then the first recess is filled with air bubbles. In other words, the small-diameter concavity functions as an initial boiling nucleus, and then continuous nucleate boiling occurs, reducing the degree of superheating for nucleate boiling.

また、異なる径の凹所が存在するので、種々の粘性の流
体に対しても好適な大きさの凹所が存在して核沸騰が惹
起される。
Furthermore, since there are recesses of different diameters, there are recesses of suitable sizes for fluids of various viscosities, thereby causing nucleate boiling.

「実施例] 以下、本発明の伝熱管についての実施例を図面を参照し
て説明する。
"Example" Hereinafter, an example of a heat exchanger tube of the present invention will be described with reference to the drawings.

(実施例1) 第1図及び第2図は、本発明の第1実施例の銅管の断面
及び表面の性状を示すもので、管長1000mm、外径
9.35mm、肉厚0.35mmの鋼管の内面に、孔径
250μの均質な狭口空孔が空孔率で18%形成されて
いる。この例の伝熱管は、鋼管の表面に疎水性の薄膜を
形成した後、この鋼管を陰極とし、不溶性の陽極を使用
して電気鍍金を行って製造したもので、以下、この装置
及び方法について第3図により述べる。
(Example 1) Figures 1 and 2 show the cross section and surface properties of a copper pipe according to the first example of the present invention, which has a pipe length of 1000 mm, an outer diameter of 9.35 mm, and a wall thickness of 0.35 mm. Homogeneous narrow pores with a pore diameter of 250 μm are formed on the inner surface of the steel pipe with a porosity of 18%. The heat exchanger tube in this example was manufactured by forming a hydrophobic thin film on the surface of a steel tube, and then electroplating using the steel tube as a cathode and an insoluble anode. This will be explained with reference to Figure 3.

銅管lの表面の疎水性の薄膜2は、ノリコンオイルをエ
タノールで3倍に希釈し、銅管■の内面に塗布し、その
後エタノールを蒸発させて形成したものである。陽極用
のワイヤ(Ti−Pt製)3は銅管lの軸上に張力をか
けて張り渡し、また、ワイヤ3の周囲に絶縁性のスペー
サ4を適当な間隔で設けて銅管Iとワイヤ3の接触によ
る短絡を防いでいる。そして、硫酸銅鍍金液(硫酸銅2
00g/Q、硫酸50gA2)を貯留する貯槽5と、こ
の鍍金液を銅管lに流すケミカルポンプ6とを設け、こ
の貯槽5で鍍金により減少した銅イオンに見合う量の塩
基性炭酸銅を補充して、循環使用するようにしている。
The hydrophobic thin film 2 on the surface of the copper tube I was formed by diluting Noricon oil three times with ethanol, applying it to the inner surface of the copper tube II, and then evaporating the ethanol. The anode wire (made of Ti-Pt) 3 is stretched with tension on the axis of the copper tube I, and insulating spacers 4 are provided around the wire 3 at appropriate intervals to connect the copper tube I and the wire. 3. This prevents short circuits due to contact. Then, copper sulfate plating solution (copper sulfate 2
A storage tank 5 for storing 00g/Q, sulfuric acid 50gA2) and a chemical pump 6 for flowing this plating solution into the copper pipe 1 are provided, and this storage tank 5 is replenished with basic copper carbonate in an amount corresponding to the copper ions reduced by plating. I try to use it repeatedly.

鍍金の電流としては、断続電流、通常のパルス電流また
はPR電流などのパルス電流を適宜使い分ける。このよ
うなパルス電流は、直流に比へて空孔内への金属イオン
の搬送を容易にするので、電析速度を増大させることが
できるとと6に、直流の場合に生しる局部的な詫状の析
出を抑え、電析金属による短絡を防止することかできる
。また、PR電流では、正電と逆電を交互に周期的に通
すので、電析膜の成長を一様にすることかできる。
As the plating current, a pulse current such as an intermittent current, a normal pulse current, or a PR current is appropriately used. Such a pulsed current makes it easier to transport metal ions into the pores compared to direct current, so it can increase the deposition rate.6. It is possible to suppress vertical deposition and prevent short circuits caused by deposited metal. Further, in the PR current, since positive and reverse currents are passed alternately and periodically, the growth of the deposited film can be made uniform.

上記のような装置により、鍍金液の温度30℃、陰極電
流密度33A/dm’、鍍金液の流速2m/sの条件下
で10分間鍍金を施して第1図及び第2図のような狭口
空孔か形成された電着金属層を得た。
Using the apparatus described above, plating was performed for 10 minutes under the conditions of a plating solution temperature of 30°C, a cathode current density of 33 A/dm', and a plating solution flow rate of 2 m/s. An electrodeposited metal layer with holes formed therein was obtained.

上記のような製法において基体表面に狭口空孔か形成さ
れる機構は、次のように考えられる。
The mechanism by which narrow pores are formed on the substrate surface in the above manufacturing method is considered to be as follows.

まず、不溶性陽極を用いて鍍金を行っているので、鍍金
液中の水が電気分解され、陽極lこおいて酸素カスが生
成される。そして、この酸素ガスの一部が鍍金液の移動
とともに陰極の基体の表面に運ばれるが、表面に形成さ
れた疎水性の薄膜により基体の鍍金液に対する濡れ性が
悪くなっており、運ばれたガスは基体の表面に気泡とし
て付着する。
First, since plating is performed using an insoluble anode, water in the plating solution is electrolyzed and oxygen scum is generated at the anode. A part of this oxygen gas is carried to the surface of the cathode substrate as the plating solution moves, but the hydrophobic thin film formed on the surface impairs the wettability of the substrate to the plating solution. The gas adheres to the surface of the substrate as bubbles.

従って、電析金属はこの気泡を包みこむ形で成長し、均
一かつ微細な挟口空孔が形成される。
Therefore, the deposited metal grows to envelop these air bubbles, forming uniform and fine interspaced pores.

このため、基体に付着する気泡の径や数は、陽極電流密
度、あるいは鍍金液の基体に対する相対的移動速度を変
えることにより制御することができる。
Therefore, the diameter and number of bubbles adhering to the substrate can be controlled by changing the anode current density or the relative moving speed of the plating solution with respect to the substrate.

この銅管Iの内面を水洗し、乾燥した後、銅管1を万力
で押し潰すテストを行い、また、銅管lを530℃で2
0分焼鈍し、マンドレルによる拡管を試みたが、いずれ
においても電着金属層の剥離、脱落は全く見られず、優
れた密着性と強度を示した。
After washing the inner surface of this copper tube I with water and drying it, a test was conducted by crushing the copper tube 1 with a vise.
After annealing for 0 minutes, tube expansion using a mandrel was attempted, but no peeling or falling off of the electrodeposited metal layer was observed in either case, demonstrating excellent adhesion and strength.

上記のように製作した鋼管について、第4図に示すよう
な熱特性試験装置により、次頁に示すような条件下で熱
特性を測定した。
Thermal properties of the steel pipes manufactured as described above were measured using a thermal property testing apparatus as shown in FIG. 4 under the conditions shown on the next page.

この装置中、Tは温度センサ、Pは圧力計、PDは差圧
計、IOはポンプ、11はバルブ、12は流量計、13
は膨張弁、14はコンプレッサ、15はサブコンデンサ
、16はサブエバポレータ、17は恒温水槽であり、1
8か供試管としての#J管である。この熱特性試験装置
においては、供試管I8の内部にコンプレッサ14から
供給される冷媒か流され、外部には恒温水槽17からの
温水が冷媒に対向して流されるようになっている。恒温
水の温度は各冷媒流量に対応して、冷媒系か安定するよ
うに制御した。
In this device, T is a temperature sensor, P is a pressure gauge, PD is a differential pressure gauge, IO is a pump, 11 is a valve, 12 is a flow meter, 13
1 is an expansion valve, 14 is a compressor, 15 is a sub-condenser, 16 is a sub-evaporator, 17 is a constant temperature water tank, and 1
8 is a #J tube as a test tube. In this thermal property testing apparatus, a refrigerant supplied from a compressor 14 is flowed inside the test tube I8, and hot water from a constant temperature water tank 17 is flowed outside against the refrigerant. The temperature of the constant-temperature water was controlled according to each refrigerant flow rate so that the refrigerant system was stable.

なお、この図中、矢印A、A”は、それぞれ蒸発試験の
場合の冷媒及び水の流れる方向を示し、矢印B、B’は
それぞれ凝縮試験の場合の冷媒及び水の流れる方向を示
している。
In this figure, arrows A and A'' indicate the flow directions of refrigerant and water, respectively, in the case of the evaporation test, and arrows B and B' indicate the flow directions of the refrigerant and water, respectively, in the case of the condensation test. .

この試験の結果、本発明の実施例1の銅管Iは、その内
側の境膜伝熱係数が第5図にCとして示すような値を示
し、同図にDとして示した通常の鋼管に比べて7〜8倍
の優れた熱特性を存することが判った。
As a result of this test, the copper tube I of Example 1 of the present invention showed a film heat transfer coefficient on the inside as shown as C in FIG. It was found that the thermal properties were 7 to 8 times more excellent than that of the previous one.

(実施例2) 実施例1の素材と同一形状の鋼管の内面に転造により螺
旋溝を形成し、その後、実施例1の方法により、螺旋溝
の傾斜壁に挟口空孔を有する鍍金層を形成した。そして
、同様の方法で伝熱特性の測定を行った結果、通常の鋼
管に比べてほぼ10倍の熱伝達特性を示した。
(Example 2) A spiral groove was formed on the inner surface of a steel pipe having the same shape as the material of Example 1 by rolling, and then, by the method of Example 1, a plating layer having narrow holes in the inclined wall of the spiral groove was formed. was formed. The heat transfer properties were measured using the same method, and the results showed that the heat transfer properties were approximately 10 times higher than those of ordinary steel pipes.

(実施例3) 狭口空孔の底部に、より小径の凹部を形成した伝熱管を
製造した(第6図参照)。このようなより小径の凹部を
持つ伝熱管は、疎水性の薄膜として加工用の潤滑油を用
いた場合などに形成されるもので、膜厚が薄いので最初
に微細な気泡が形成され、それを囲んでめっきが進行し
て小径の凹部がてきた後、気泡が集合して大径となり、
さらにこれを囲んでめっきかなされ、より大径の四部か
形成されろ乙のである。この伝熱管は、底部に凹部のな
い乙のより伝熱特性か約20%向上し3(実施例4) 管長500mm、外径9.35mm、肉厚1]、35m
mの1に陰極電流密度2OA/di2、鍍金液の流速を
高く設定して(4m/s)電気鍍金を施し、軸か伝熱面
の法線に対して約20度傾いて形成された挟口空孔をH
する鍍金金属層を得た(第7図参照)。
(Example 3) A heat exchanger tube was manufactured in which a concave portion with a smaller diameter was formed at the bottom of a narrow hole (see FIG. 6). Heat exchanger tubes with smaller-diameter recesses like this are formed when lubricating oil for processing is used as a hydrophobic thin film, and because the film is thin, fine bubbles are formed first, and then After the plating progresses and a small-diameter concavity appears, the bubbles gather and become large-diameter.
Furthermore, surrounding this is plated to form four parts with a larger diameter. This heat transfer tube has approximately 20% better heat transfer characteristics than B, which does not have a recess at the bottom.3 (Example 4) Pipe length: 500 mm, outer diameter: 9.35 mm, wall thickness: 1], 35 m
Electroplating was performed at a cathode current density of 2 OA/di2 and a high flow rate of the plating solution (4 m/s) at 1 of m, and a sandwich plate was formed at an angle of about 20 degrees with respect to the axis or the normal to the heat transfer surface. H the mouth cavity
A plated metal layer was obtained (see FIG. 7).

このような伝熱管は、内部流体の流れの向きか狭口空孔
の傾きと同じになるように設定したときには、傾きのな
いものより伝熱特性か約30%向上した。
When such a heat transfer tube was set so that the flow direction of the internal fluid or the inclination of the narrow opening was the same, the heat transfer characteristics were improved by about 30% compared to a tube without an inclination.

上記のような製造方法においては、陰極電流密度、鍍金
液の流速により、挟口空孔の径や数をコントロールする
ことができ、また、上述のように鍍金液の流速を変える
ことにより、挟口空孔の傾斜角度をコントロールするこ
とかできる。
In the above manufacturing method, the diameter and number of the sandwiched holes can be controlled by changing the cathode current density and the flow rate of the plating solution. It is possible to control the inclination angle of the mouth cavity.

なお、本発明の実施は勿論伝熱管に限られるものてはな
い。
Note that the present invention is of course not limited to heat exchanger tubes.

を発明の効果] 以上詳述したように、この発明は、金属製基体の表面に
多孔質電肝金属層か形成され、この多孔質電折合嘱層は
、開口部か相対的に決められた複数の円筒状の第1の四
部と、この第1の凹部の底部に形成されたより小径の第
2の四部とを有する構成であるので、凹所の底部の小径
凹所が初期の沸騰核として機能し、単一の径の凹部を持
つ伝熱体よりも核沸騰か起きやすく、高い伝熱性能を育
する。さらに、種々の粘性の流体に対応する径の凹所に
よりそれぞれ核沸騰か惹起されるとともに、伝熱面積を
増加させ、伝熱特性の良い伝熱体を提供することができ
、製造において大規模な装置や高温作業を要さないので
製造コス′トが安く、まf二、細径の伝熱管の製造も容
易であるなどの優れた効果を奏する。
[Effects of the Invention] As detailed above, in the present invention, a porous electrically conductive metal layer is formed on the surface of a metal substrate, and this porous electrically conductive layer has relatively defined openings. Since the configuration has a plurality of cylindrical first four parts and a second four part with a smaller diameter formed at the bottom of the first recess, the small diameter recess at the bottom of the recess serves as an initial boiling nucleus. This allows nucleate boiling to occur more easily than a heat transfer body with a single-diameter concavity, resulting in high heat transfer performance. Furthermore, the concavities with diameters corresponding to fluids of various viscosity can induce nucleate boiling, increase the heat transfer area, and provide a heat transfer body with good heat transfer characteristics, and can be manufactured on a large scale. Since it does not require expensive equipment or high-temperature work, the production cost is low, and secondly, it has excellent effects such as easy production of small-diameter heat exchanger tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の断面形状を示す図面、第
2図は同じく表面形状を示す図面、第3図は第1実施例
の製造方法を示す略図、第4図は伝熱特性を測定するた
めの装置の略図、第5図は第1実施例の伝熱特性を示す
グラフ、第6図は本発明の第3実施例の断面形状を示す
図面、第7図は本発明の第4実施例の断面形状を示す図
面である。
Fig. 1 is a drawing showing the cross-sectional shape of the first embodiment of the present invention, Fig. 2 is a drawing showing the surface shape, Fig. 3 is a schematic diagram showing the manufacturing method of the first embodiment, and Fig. 4 is a heat transfer diagram. A schematic diagram of an apparatus for measuring characteristics, FIG. 5 is a graph showing the heat transfer characteristics of the first embodiment, FIG. 6 is a drawing showing the cross-sectional shape of the third embodiment of the present invention, and FIG. 7 is a graph showing the heat transfer characteristics of the first embodiment. It is a drawing which shows the cross-sectional shape of 4th Example.

Claims (2)

【特許請求の範囲】[Claims] (1)金属製基体の表面に多孔質電析金属層が形成され
、この多孔質電析金属層は、開口部が相対的に挟められ
た複数の円筒状の第1の凹部と、この第1の凹部の底部
に形成されたより小径の第2の凹部とを有することを特
徴とする伝熱体。
(1) A porous electrodeposited metal layer is formed on the surface of a metal substrate, and this porous electrodeposited metal layer has a plurality of cylindrical first recesses in which openings are relatively sandwiched, and 1. A heat transfer body comprising: a second recess having a smaller diameter formed at the bottom of the first recess.
(2)上記基体は管体であることを特徴とする特許請求
の範囲第1項記載の伝熱体。
(2) The heat transfer body according to claim 1, wherein the base body is a tube body.
JP2237740A 1990-09-07 1990-09-07 Heat transfer body Expired - Lifetime JPH0648153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2237740A JPH0648153B2 (en) 1990-09-07 1990-09-07 Heat transfer body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2237740A JPH0648153B2 (en) 1990-09-07 1990-09-07 Heat transfer body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25235885A Division JPS62112996A (en) 1985-11-11 1985-11-11 Heat-transmitting body

Publications (2)

Publication Number Publication Date
JPH03230094A true JPH03230094A (en) 1991-10-14
JPH0648153B2 JPH0648153B2 (en) 1994-06-22

Family

ID=17019774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2237740A Expired - Lifetime JPH0648153B2 (en) 1990-09-07 1990-09-07 Heat transfer body

Country Status (1)

Country Link
JP (1) JPH0648153B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003089865A1 (en) * 2002-04-19 2003-10-30 Wolverine Tube, Inc. Heat transfer tubes, including methods of fabrication and use thereof
US7254964B2 (en) 2004-10-12 2007-08-14 Wolverine Tube, Inc. Heat transfer tubes, including methods of fabrication and use thereof
JP2018197631A (en) * 2017-05-24 2018-12-13 大日本印刷株式会社 Vapor chamber, metal sheet for vapor chamber, and vapor chamber manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101583554B1 (en) * 2014-05-26 2016-01-08 국방과학연구소 Monolithic-type double pipe and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003089865A1 (en) * 2002-04-19 2003-10-30 Wolverine Tube, Inc. Heat transfer tubes, including methods of fabrication and use thereof
US7178361B2 (en) 2002-04-19 2007-02-20 Wolverine Tube, Inc. Heat transfer tubes, including methods of fabrication and use thereof
AU2003231750B2 (en) * 2002-04-19 2008-05-01 Wieland-Werke Ag Heat transfer tubes, including methods of fabrication and use thereof
AU2003231750C1 (en) * 2002-04-19 2009-04-30 Wieland-Werke Ag Heat transfer tubes, including methods of fabrication and use thereof
KR101004833B1 (en) * 2002-04-19 2011-01-04 울버린 튜브, 인크. Heat transfer tubes, including methods of fabrication and use thereof
US7254964B2 (en) 2004-10-12 2007-08-14 Wolverine Tube, Inc. Heat transfer tubes, including methods of fabrication and use thereof
JP2018197631A (en) * 2017-05-24 2018-12-13 大日本印刷株式会社 Vapor chamber, metal sheet for vapor chamber, and vapor chamber manufacturing method

Also Published As

Publication number Publication date
JPH0648153B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
AU2007221497B2 (en) Porous layer
US4395303A (en) Method of manufacturing thin-walled corrosion resistant metallic objects
JPS6376895A (en) Formation of porous layer on metal surface
US4879185A (en) Heat transfer material
US4018264A (en) Boiling heat transfer surface and method
BR112020001450A2 (en) heat exchange element, method for transferring heat to or from a fluid, and process for producing a heat exchange element
JPH03230094A (en) Heat transfer medium
US4780373A (en) Heat-transfer material
JPH0565789B2 (en)
JPH0240752B2 (en)
JPH0213038B2 (en)
JPS62206383A (en) Heat transfer body
JPS63273790A (en) Heat transfer body and manufacture thereof
US4136427A (en) Method for producing improved heat transfer surface
JPH0531080B2 (en)
JPH0238676B2 (en)
JPS63243297A (en) Production of heat transfer tube
JPS62116797A (en) Formation of porous layer
JPS62196594A (en) Heat pipe
Orman et al. Boiling heat transfer phenomenon on different structural coatings
GB2564902A (en) Heat exchange element and process for production
KR100535666B1 (en) Heat Exchanger and Manufacture Method for the Same
CN221171294U (en) Metallurgical composite high flux pipe
JPS63190195A (en) Centering device for tubular body
JPS63183389A (en) Heat transfer body