JPS62112996A - Heat-transmitting body - Google Patents

Heat-transmitting body

Info

Publication number
JPS62112996A
JPS62112996A JP25235885A JP25235885A JPS62112996A JP S62112996 A JPS62112996 A JP S62112996A JP 25235885 A JP25235885 A JP 25235885A JP 25235885 A JP25235885 A JP 25235885A JP S62112996 A JPS62112996 A JP S62112996A
Authority
JP
Japan
Prior art keywords
heat transfer
copper pipe
copper
tube
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25235885A
Other languages
Japanese (ja)
Other versions
JPH0565789B2 (en
Inventor
Yasuo Masuda
保夫 増田
Tsutomu Takahashi
務 高橋
Yoshio Takizawa
与司夫 滝沢
Shoichi Yoshiki
吉木 尚一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP25235885A priority Critical patent/JPS62112996A/en
Priority to FI864554A priority patent/FI85060C/en
Priority to DE8686115606T priority patent/DE3677338D1/en
Priority to EP86115606A priority patent/EP0224761B1/en
Publication of JPS62112996A publication Critical patent/JPS62112996A/en
Priority to US07/221,990 priority patent/US4879185A/en
Priority to US07/221,999 priority patent/US4826578A/en
Publication of JPH0565789B2 publication Critical patent/JPH0565789B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enhance heat-transmitting capability through accelerating the nucleation for generation of bubbles for nucleate boiling, by providing the surface of a metallic substrate with a plurality of cavities each of which is in the form of a cylinder closed at one end and having an opening part relatively reduced in cross-sectional area. CONSTITUTION:A hydrophobic thin film 2 provided on the surface of a copper pipe 1 is provided by diluting a silicone oil with ethanol to increase the volume to 3 times the original volume, applying the diluted liquid to the inner surface of the copper pipe 1 and evaporating off ethanol. An anode wire 3 is fitted under tension on the axis of the copper pipe 1, with insulating spacers 4 disposed in the periphery of the wire 3 at appropriate intervals to prevent short-circuiting due to contact between the copper pipe 1 and the wire 3. A tank 5 for storing a plating liquid containing copper sulfate and a chemical pump 6 for feeding the plating liquid into the copper pipe 1 are provided, and the plating liquid is circulatedly used by refilling a set quantity of basic copper carbonate corresponding to the consumption of copper ions in plating at the tank 5. When the plating is carried out by regulating the temperature and flow rate of the plating liquid and the cathode current density, an electrodeposited metallic layer provided with pores with narrow openings is obtained. When the substrate provided with the cavities (the pores with narrow openings) is used as a heat-transmitting body, a nucleate boiling phenomenon is liable to occur in a fluid flowing along the surface of the substrate, and the heating surface area can be increased.

Description

【発明の詳細な説明】 [産業−1−の利用分野] 本発明は、例えば空調用の熱交換器の蒸発管や凝縮管、
あるいはウィックを有するヒートパイプなどに使用され
る伝熱体に関し、特に、製造コストが安く、伝熱特性が
優れた伝熱体に関する。
Detailed Description of the Invention [Field of Application in Industry-1-] The present invention is applicable to, for example, evaporation tubes and condensation tubes of heat exchangers for air conditioning;
The present invention also relates to a heat transfer body used in a heat pipe having a wick, and particularly to a heat transfer body that is inexpensive to manufacture and has excellent heat transfer characteristics.

[従来の技術] 内部の媒体と外部の媒体との熱交換を行わせるための伝
熱管において、その伝熱効率を上げるためには、 (1)伝熱面積を大きくする。
[Prior Art] In order to increase the heat transfer efficiency of a heat transfer tube for exchanging heat between an internal medium and an external medium, (1) the heat transfer area must be increased;

(2)毛細管現象を起こしやすくする。(2) Facilitates capillary action.

(3)乱流を起こしやすくする。(3) Make it easier to cause turbulence.

(4)核沸騰を起こしやすくする。(4) Make it easier to cause nucleate boiling.

ことが有効とされている。It is said that this is effective.

これらの条件のいくつかを満たすような伝熱管として、
管体の内面に螺旋状の溝を転造法などにより形成したも
の、管体の内面に粒状あるいは線状の金属などを鑞付な
どにより付着せしめたものなどが用いられている。
As a heat exchanger tube that satisfies some of these conditions,
Some examples include those in which spiral grooves are formed on the inner surface of the tube by a rolling method, and those in which granular or linear metal is attached to the inner surface of the tube by brazing or the like.

[発明が解決しようとする問題点] しかしながら、」−記のような従来の技術においては、
それぞれ次のような問題点があった。
[Problems to be solved by the invention] However, in the conventional technology as described in
Each had the following problems.

すなわち、螺旋溝を形成する場合には、上記の伝熱効率
を−Lげる方法のうち、最も効果の高い核沸騰現象を利
用しておらず、また、転造工具の製作技術上及び転造の
技術上から、管体の内径、螺旋溝の条数やねじれの角度
に制限があることなどの理由により、通常の溝無し管と
比べても熱特性値が1.2〜1.5倍程度にしかならな
ず、性能が不充分であった。また、製造において、転造
工具と管内面の摩擦力が大きいため、大きな加圧力を必
要とし、従って大規模な装置を必要とするとともに、工
具の寿命が短くなって、製作コストが高くなるという問
題点があった。
In other words, when forming a spiral groove, the nucleate boiling phenomenon, which is the most effective of the methods for increasing heat transfer efficiency -L, is not used, and the manufacturing technology of rolling tools and rolling Due to technological limitations, such as limitations on the inner diameter of the tube, the number of spiral grooves, and the angle of twist, the thermal characteristics are 1.2 to 1.5 times higher than ordinary grooveless tubes. The performance was insufficient. In addition, during manufacturing, the frictional force between the rolling tool and the inner surface of the tube is large, so a large pressing force is required, which in turn requires large-scale equipment, shortens the life of the tool, and increases production costs. There was a problem.

一方、管体の内面に粒状あるいは線状の金属を付着させ
る場合には、高温の作業を行う必要があり、また、細径
の管体に応用するのは困難であるなどの問題点かあっl
二1、 [問題点を解決するための手段] 本発明は、上記のような問題点を解決するために、金属
製基体の表面に、開口部が相対的に狭められた複数の有
底円筒状の凹所(以下、狭口空孔という)を形成し、あ
るいは、この凹所の底部に、より小径の四部を形成した
ものである。
On the other hand, when attaching granular or linear metal to the inner surface of a tube, it is necessary to perform high-temperature work, and there are other problems such as difficulty in applying it to small-diameter tubes. l
21. [Means for Solving the Problems] In order to solve the above problems, the present invention provides a plurality of bottomed cylinders with relatively narrow openings on the surface of a metal base. A shaped recess (hereinafter referred to as a narrow hole) is formed, or four smaller diameter parts are formed at the bottom of this recess.

1作用コ このような伝熱体においては、狭口空孔が伝熱面積を増
加させ、乱流を発生させるとともに、核沸騰のための気
泡発生の核生成を促し、伝熱能力を向トさせる。
1 Function: In such a heat transfer body, the narrow pores increase the heat transfer area, generate turbulence, and promote nucleation of bubbles for nucleate boiling, which improves heat transfer ability. let

1実施例」 以下、本発明の伝熱管についての実施例を図面を参照し
て説明する3、 (実施例1) 第1図及び第2図は、本発明の第1実施例の鋼管の断面
及び表面の性状を示すもので、管長1000mm、外径
9.35mm、肉厚0.35mmの鋼管の内面に、孔径
250μの均質な狭口空孔が空孔率で18%形成されて
いる。この例の伝熱管は、鋼管の表面に疎水性の薄膜を
形成した後、この鋼管を陰極とし、不溶性の陽極を使用
して電気鍍金を行って製造したもので、以下、この装置
及び方法について第3図により述べる。
1 Example" Hereinafter, an example of a heat exchanger tube of the present invention will be described with reference to the drawings. 3. (Example 1) FIG. 1 and FIG. and surface properties, homogeneous narrow pores with a pore diameter of 250 μm and a porosity of 18% are formed on the inner surface of a steel pipe with a length of 1000 mm, an outer diameter of 9.35 mm, and a wall thickness of 0.35 mm. The heat exchanger tube in this example was manufactured by forming a hydrophobic thin film on the surface of a steel tube, and then electroplating using the steel tube as a cathode and an insoluble anode. This will be explained with reference to Figure 3.

銅管1の表面の疎水性の薄膜2は、シリコンオイルをエ
タノールで3倍に希釈し、銅管lの内面に塗布し、その
後エタノールを蒸発させて形成したものである。陽極用
のワイヤ(Ti−Pt製)3は銅管1の軸上に張力をか
けて張り渡し、また、ワイヤ3の周囲に絶縁性のスペー
サ4を適当な間隔で設けて銅管lとワイヤ3の接触によ
る短絡を防いでいる。そして、硫酸銅鍍金液(硫酸銅2
00g/f2、硫酸50g/(りを貯留する貯槽5と、
この鍍金液を銅管1に流すケミカルポンプ6とを設け、
この貯槽5で鍍金により減少した銅イオンに見合う量の
塩基性炭酸銅を補充して、循環使用するようにしている
The hydrophobic thin film 2 on the surface of the copper tube 1 is formed by diluting silicone oil three times with ethanol, applying it to the inner surface of the copper tube 1, and then evaporating the ethanol. The anode wire (made of Ti-Pt) 3 is stretched on the axis of the copper tube 1 under tension, and insulating spacers 4 are provided around the wire 3 at appropriate intervals to connect the copper tube 1 and the wire. 3. This prevents short circuits due to contact. Then, copper sulfate plating solution (copper sulfate 2
00g/f2, sulfuric acid 50g/(ri) storage tank 5,
A chemical pump 6 is provided to flow this plating solution into the copper pipe 1,
This storage tank 5 is replenished with basic copper carbonate in an amount corresponding to the copper ions reduced by plating, and is used for circulation.

鍍金の電流としては、断続電流、通常のパルス電流また
はPR電流などのパルス電流を適宜使い分けろ。このよ
うなパルス電流は、直流に比べて空孔内への金属イオン
の搬送を容易にするので、11i析速度を増大させるこ
とができるとともに、直流の場合に生じる局部的な髭状
の析出を抑え、電析金属による短絡を防止することがで
きる。また、1) Tl電流では、正電と逆電を交互に
周期的に通すので、電析膜の成長を一様にす、ることが
できる。
As the plating current, use pulse current such as intermittent current, normal pulse current, or PR current as appropriate. Such a pulsed current facilitates the transport of metal ions into the pores compared to direct current, so it can increase the 11i deposition rate and eliminate the localized whisker-like precipitation that occurs in the case of direct current. This can prevent short circuits caused by deposited metal. In addition, 1) In the Tl current, since positive and reverse currents are passed alternately and periodically, the growth of the deposited film can be made uniform.

」−記のような装置により、鍍金液の温度30℃、陰極
電流密度33A/am’、鍍金液の流速2m1gの条件
下で10分間鍍金を施して第1図及び第2図のような狭
口空孔が形成された電着金属層を得た。
Using the apparatus described above, plating was performed for 10 minutes under the conditions of a plating solution temperature of 30°C, a cathode current density of 33 A/am', and a plating solution flow rate of 2 ml/g. An electrodeposited metal layer in which holes were formed was obtained.

この銅管1の内面を水洗し、乾燥した後、銅管lを万力
で押し潰すテストを行い、また、銅管lを530℃で2
0分焼鈍し、マンドレルによる拡管を試みたが、いずれ
においても電着金属層の剥離、脱落は全く見られず、優
れた密着性と強度を示した。
After washing the inner surface of the copper tube 1 with water and drying it, a test was carried out by crushing the copper tube 1 with a vise.
After annealing for 0 minutes, tube expansion using a mandrel was attempted, but no peeling or falling off of the electrodeposited metal layer was observed in either case, demonstrating excellent adhesion and strength.

上記のように製作した鋼管について、第4図にノド4−
.1つな熱特性試験装置により、下記のような条件干て
熱特性を測定した。
Figure 4 shows the steel pipe produced as described above.
.. The drying thermal properties were measured using a single thermal property testing device under the following conditions.

この装置中、Tは温度センサ、Pは圧力計、PDは差圧
計、10は′ポンプ、11はバルブ、12は流量計、1
3は膨張弁、14はコンプレッサ、15はザブコンデン
ザ、16はザブエバポレータ、17は恒温水槽であり、
18が供試管としての鋼管である。この熱特性試験装置
においては、供試管18の内部にコンプレッサ14から
供給される冷媒が流され、外部には恒温水槽17からの
温水が冷媒?こ対向して流されるようになっている。恒
温水の温度は各冷媒流量に対応して、冷媒系が安定する
ように制御した。
In this device, T is a temperature sensor, P is a pressure gauge, PD is a differential pressure gauge, 10 is a pump, 11 is a valve, 12 is a flow meter, 1
3 is an expansion valve, 14 is a compressor, 15 is a subcondenser, 16 is a subevaporator, 17 is a constant temperature water tank,
18 is a steel pipe as a test pipe. In this thermal property testing apparatus, refrigerant supplied from the compressor 14 is flowed inside the test tube 18, and hot water from the constant temperature water tank 17 is used as the refrigerant outside. It is designed to flow in the opposite direction. The temperature of the constant temperature water was controlled in accordance with each refrigerant flow rate so that the refrigerant system was stabilized.

なお、この図中、矢印A、A’は、それぞれ蒸発試験の
場合の冷媒及び水の流れる方向を示し、矢印13.B“
はそれぞれ凝縮試験の場合の冷媒及び水の流れる方向を
示している。
In this figure, arrows A and A' indicate the flow directions of refrigerant and water, respectively, in the case of the evaporation test, and arrow 13. B“
indicate the flow direction of refrigerant and water, respectively, in the case of condensation test.

この試験の結果、本発明の実施例1の銅管lは、その内
側の境膜伝熱係数が第5図にCとして示すような値を示
し、同図にDとして示した通常の鋼管に比べて7〜8倍
の優れた熱特性を有することが判 −〕 ノご 。
As a result of this test, the copper tube l of Example 1 of the present invention showed a film heat transfer coefficient on the inside as shown as C in FIG. It has been found to have thermal properties that are 7 to 8 times better than those of other types.

(実施例2) 実施例1の素材と同一形状の銅管の内面に転造により螺
旋溝を形成し、その後、実施例1の方法により、螺旋溝
の傾斜壁に狭口空孔を有する鍍金層を形成した。そして
、同様の方法で伝熱特性の測定を行った結果、通常の鋼
管に比べてほぼ10倍の熱伝達特性を示した。
(Example 2) A spiral groove was formed on the inner surface of a copper tube having the same shape as the material of Example 1 by rolling, and then, by the method of Example 1, the inclined wall of the spiral groove was plated with narrow holes. formed a layer. The heat transfer properties were measured using the same method, and the results showed that the heat transfer properties were approximately 10 times higher than those of ordinary steel pipes.

(実施例3) 狭に1空孔の底部lこ、より小径の凹部を形成した伝熱
管を製造した(第6図参照)。この伝熱管は、底部に凹
部のないものより伝熱特性が約20%向上した。
(Example 3) A heat exchanger tube was manufactured in which a concave portion with a smaller diameter was formed in the bottom portion of the tube having one narrow hole (see FIG. 6). The heat transfer characteristics of this heat transfer tube were improved by about 20% compared to those without a concave portion at the bottom.

(実施例4) 管長500mm、外径9.35mm、肉厚0.35mm
の銅管に陰極電流密度20A/dm’、鍍金液の流速を
高く設定して(4m/s)電気鍍金を施し、軸が伝熱面
の法線に対して約20度傾いて形成された狭口空孔を有
する鍍金金属層を得た(第7図参照)。
(Example 4) Pipe length 500mm, outer diameter 9.35mm, wall thickness 0.35mm
Electroplating was applied to a copper tube with a cathode current density of 20 A/dm' and a high plating solution flow rate (4 m/s), so that the axis was tilted approximately 20 degrees with respect to the normal to the heat transfer surface. A plated metal layer having narrow pores was obtained (see FIG. 7).

このような伝熱管は、内部流体の流れの向きが狭口空孔
の傾きと同じになるように設定したときには、傾きのな
いものより伝熱特性が約30%向−1ユした。
In such a heat transfer tube, when the flow direction of the internal fluid is set to be the same as the inclination of the narrow holes, the heat transfer characteristics are approximately 30% better than those without inclination.

上記のような製造方法においては、陰極電流密度、鍍金
液の流速に、];す、狭狭口孔の径や数をコントロール
することができ、また、」二連のように鍍金液の流速を
変えることにより、狭口空孔の傾斜角度をコントロール
することができる。
In the manufacturing method described above, it is possible to control the cathode current density, the flow rate of the plating solution, the diameter and number of narrow holes, and also control the flow rate of the plating solution as in the case of two series. By changing , the inclination angle of the narrow hole can be controlled.

なお、本発明の実施は勿論伝熱管に限られるものではな
い。
Note that the present invention is of course not limited to heat exchanger tubes.

[発明の効果] 以上詳述したように、本発明は、金属製基体の表面に、
開口部が相対的に狭められた複数の有底円筒状の凹所(
狭口空孔)を形成し、あるいは、この凹所の底部に、よ
り小径の凹部を形成したものであるので、基体を伝熱体
として使えば、基体の表面に沿って流れる流体に核沸騰
現象、乱流を起こしやすくし、さらに伝熱面積を増加さ
せ、伝熱特性の良い伝熱体を提供することができるとと
もに、製造において大規模な装置や高温作業を要さない
ので製造コストが安く、また、細径の伝熱管の製造も容
易であるなどの優れた効果を奏する。
[Effects of the Invention] As detailed above, the present invention provides the following effects:
Multiple bottomed cylindrical recesses with relatively narrow openings (
If the substrate is used as a heat transfer body, nucleate boiling will occur in the fluid flowing along the surface of the substrate. It is possible to provide a heat transfer body with good heat transfer properties by increasing the heat transfer area and reducing the production cost because it does not require large-scale equipment or high-temperature work. It has excellent effects such as being inexpensive and easy to manufacture small-diameter heat exchanger tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の断面形状を示す顕微鏡写
真、第2図は同じく表面形状を示す顕微鏡写真、第3図
は第1実施例の製造方法を示す略図、第4図は伝熱特性
を測定するための装置の略図、第5図は第1実施例の伝
熱特性を示すグラフ、第6図は本発明の第3実施例の顕
微鏡写真、第7図は本発明の第4実施例の顕微鏡写真で
ある。 図面の浄書(内容に変更なし) 第1図 第2図 竺Ar= 第8図 フィルタ y(ttJt  (Kg/hr) ン1+1−コ【 k ■ 図面の浄書(内容に変更なし) 手続補正書(方式) %式% 1、事件の表示 昭和60年特許願第252358号 2、発明の名称 伝熱体 3、補正をする者 時針出願人 (6コ6)三菱金に14株式会社 4、代理人 昭和61年7月−を日   (@送日)(1)明細書の
第10頁第14行目、同第14行目から第15行目の「
顕微鏡写真」を1図面」と補正する。 (2)明細書の第1O頁第18行目及び同第19行目の
「顕微鏡写真」を1断面形状を示す図面」と補正する。 (3)第1図、第2図、第6図及び第7図を別紙のよう
に補正する。 以  上
Fig. 1 is a photomicrograph showing the cross-sectional shape of the first embodiment of the present invention, Fig. 2 is a photomicrograph showing the surface profile, Fig. 3 is a schematic diagram showing the manufacturing method of the first embodiment, and Fig. 4 is a photomicrograph showing the cross-sectional shape of the first embodiment of the present invention. A schematic diagram of an apparatus for measuring heat transfer characteristics, FIG. 5 is a graph showing the heat transfer characteristics of the first embodiment, FIG. 6 is a micrograph of the third embodiment of the present invention, and FIG. 7 is a graph showing the heat transfer characteristics of the first embodiment. It is a micrograph of the fourth example. Engraving of the drawings (no changes to the contents) Figure 1 Figure 2 Ar = Figure 8 Filter y (ttJt (Kg/hr) N1+1-ko [k ■ Engraving of the drawings (no changes to the contents) Procedural amendment ( Method) % formula % 1. Indication of the case 1985 Patent Application No. 252358 2. Name of the invention Heat conductor 3. Person making the amendment Hour hand Applicant (6 6) Mitsubishi Kin 14 Co., Ltd. 4, Agent July 1985 - Date (@Sendichi) (1) "Page 10, line 14 of the specification, and lines 14 to 15 of the same"
Correct "microphotograph" to "one drawing." (2) "Microphotograph" on page 10, line 18 and line 19 of the specification is amended to read "a drawing showing a cross-sectional shape." (3) Correct the figures in Figures 1, 2, 6, and 7 as shown in the attached sheet. that's all

Claims (6)

【特許請求の範囲】[Claims] (1)、金属製基体の表面に、開口部が相対的に狭めら
れた複数の有底円筒状の凹所が形成されていることを特
徴とする伝熱体。
(1) A heat transfer body characterized in that a plurality of bottomed cylindrical recesses with relatively narrow openings are formed on the surface of a metal base.
(2)、上記基体は管体であることを特徴とする特許請
求の範囲第1項記載の伝熱体。
(2) The heat transfer body according to claim 1, wherein the base body is a tube body.
(3)、上記凹所は、上記管体の面の法線に対して、該
管体の軸を含む面内において傾斜して形成されているこ
とを特徴とする特許請求の範囲第2項記載の伝熱体。
(3) The recess is formed to be inclined in a plane including the axis of the tube with respect to the normal to the surface of the tube. The heat transfer body described.
(4)、金属製基体の表面に、開口部が相対的に狭めら
れた複数の有底円筒状の凹所が形成され、この凹所の底
部には、より小径の凹部が形成されていることを特徴と
する伝熱体。
(4) A plurality of bottomed cylindrical recesses with relatively narrow openings are formed on the surface of the metal base, and a recess with a smaller diameter is formed at the bottom of each recess. A heat transfer body characterized by:
(5)、上記基体は管体であることを特徴とする特許請
求の範囲第4項記載の伝熱体。
(5) The heat transfer body according to claim 4, wherein the base body is a tube body.
(6)、上記凹所は、上記管体の面の法線に対して、該
管体の軸を含む面内において傾斜して形成されているこ
とを特徴とする特許請求の範囲第5項記載の伝熱体。
(6) The recess is formed to be inclined in a plane including the axis of the tube with respect to the normal to the surface of the tube. The heat transfer body described.
JP25235885A 1985-11-11 1985-11-11 Heat-transmitting body Granted JPS62112996A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25235885A JPS62112996A (en) 1985-11-11 1985-11-11 Heat-transmitting body
FI864554A FI85060C (en) 1985-11-11 1986-11-10 Heat transfer material and process for making the same
DE8686115606T DE3677338D1 (en) 1985-11-11 1986-11-11 HEAT TRANSFER MATERIAL AND METHOD FOR THE PRODUCTION THEREOF.
EP86115606A EP0224761B1 (en) 1985-11-11 1986-11-11 Heat-transfer material and method of producing same
US07/221,990 US4879185A (en) 1985-11-11 1988-07-20 Heat transfer material
US07/221,999 US4826578A (en) 1985-11-11 1988-07-20 Method of producing heat-transfer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25235885A JPS62112996A (en) 1985-11-11 1985-11-11 Heat-transmitting body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2237740A Division JPH0648153B2 (en) 1990-09-07 1990-09-07 Heat transfer body

Publications (2)

Publication Number Publication Date
JPS62112996A true JPS62112996A (en) 1987-05-23
JPH0565789B2 JPH0565789B2 (en) 1993-09-20

Family

ID=17236180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25235885A Granted JPS62112996A (en) 1985-11-11 1985-11-11 Heat-transmitting body

Country Status (1)

Country Link
JP (1) JPS62112996A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576111B1 (en) * 1998-05-16 2003-06-10 Balsberg Oberflächentechnik GmbH Process for the copper plating of substrates
CN101799251A (en) * 2010-03-24 2010-08-11 北京化工大学 Unit combination type strengthening and heat transferring device outside pipes
JP2011510816A (en) * 2008-01-10 2011-04-07 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Gas supply device for wave soldering or tin plating equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399553A (en) * 1977-02-10 1978-08-31 Mitsubishi Electric Corp Heat radiating body
JPS53138969A (en) * 1977-05-12 1978-12-04 Ebara Corp Preparation of boiling heat conductive tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399553A (en) * 1977-02-10 1978-08-31 Mitsubishi Electric Corp Heat radiating body
JPS53138969A (en) * 1977-05-12 1978-12-04 Ebara Corp Preparation of boiling heat conductive tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576111B1 (en) * 1998-05-16 2003-06-10 Balsberg Oberflächentechnik GmbH Process for the copper plating of substrates
JP2011510816A (en) * 2008-01-10 2011-04-07 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Gas supply device for wave soldering or tin plating equipment
CN101799251A (en) * 2010-03-24 2010-08-11 北京化工大学 Unit combination type strengthening and heat transferring device outside pipes

Also Published As

Publication number Publication date
JPH0565789B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
JPS6376895A (en) Formation of porous layer on metal surface
US4826578A (en) Method of producing heat-transfer material
US8152047B2 (en) Method of producing a corrosion resistant aluminum heat exchanger
JP2008261566A (en) Double-pipe heat exchanger
JPS62112996A (en) Heat-transmitting body
US20200166299A1 (en) Heat Exchange Element and Process for Production
US4824530A (en) Method of producing heat-transfer material
JPH03230094A (en) Heat transfer medium
JPS62206383A (en) Heat transfer body
US4311733A (en) Method of preparing a capillary heat-pipe wicking structure
US4136427A (en) Method for producing improved heat transfer surface
JPS63243297A (en) Production of heat transfer tube
JPH0240752B2 (en)
JPH0213038B2 (en)
CN203657552U (en) Reboiler with low-temperature high-flux tube
JPS62206382A (en) Heat pipe
JPS63273790A (en) Heat transfer body and manufacture thereof
JPS63183388A (en) Heat transfer body
JPS62196594A (en) Heat pipe
JPH0531080B2 (en)
JPS62127494A (en) Formation of porous layer
JPS63183386A (en) Heat transfer body
JPS63190195A (en) Centering device for tubular body
KR100535666B1 (en) Heat Exchanger and Manufacture Method for the Same
JPS63183393A (en) Heat transfer pipe