JPS62127494A - Formation of porous layer - Google Patents
Formation of porous layerInfo
- Publication number
- JPS62127494A JPS62127494A JP26681285A JP26681285A JPS62127494A JP S62127494 A JPS62127494 A JP S62127494A JP 26681285 A JP26681285 A JP 26681285A JP 26681285 A JP26681285 A JP 26681285A JP S62127494 A JPS62127494 A JP S62127494A
- Authority
- JP
- Japan
- Prior art keywords
- porous layer
- anode
- copper
- substrate
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
Abstract
Description
【発明の詳細な説明】
し産業上の利用分野]
本発明は、例えば空調用の熱交換器の蒸発苦や凝縮管の
伝熱面、あるいはヒートパイプのウィックなとを構成す
るのに好適な多孔質層の形成方法に関し、特に、形成の
ためのコストが安く、伝熱特性を向上させることができ
ろ多孔質層の形成方法に関する。[Detailed Description of the Invention] Industrial Field of Application] The present invention is suitable for configuring, for example, the evaporator of a heat exchanger for air conditioning, the heat transfer surface of a condensing pipe, or the wick of a heat pipe. The present invention relates to a method of forming a porous layer, and particularly relates to a method of forming a porous layer that is inexpensive to form and can improve heat transfer characteristics.
[従来の技術]
内部の媒体と外部の媒体との熱交換を行わせるための伝
熱管において、その伝熱効率を上げるためには、
(1)伝熱面積を大きくする。[Prior Art] In order to increase the heat transfer efficiency of a heat transfer tube for exchanging heat between an internal medium and an external medium, (1) the heat transfer area must be increased;
(2)核沸騰を起こしやすくする。(2) Make it easier to cause nucleate boiling.
(3)毛細管現象を起こしやすくする。(3) Facilitate capillary action.
(4)乱流を起こしやすくする。(4) Make turbulence more likely.
ことが何効とされている。What are the benefits of this?
この(1)、(4)を満たすような方法として、鋼管の
内面に螺旋状の溝を転造法などにより形成する方を去が
用いられている。As a method that satisfies (1) and (4), a method is used in which a spiral groove is formed on the inner surface of a steel pipe by a rolling method or the like.
また、(2)を満たすような方法としては、伝熱体の表
面に核沸騰の核となる多孔質層を形成する方法か知られ
ており、板状の伝熱体においては焼結あるいはろう付は
法によりそのような多孔質層を形成することが行われて
いる。In addition, as a method that satisfies (2), there is a known method of forming a porous layer on the surface of the heat transfer body, which becomes the core of nucleate boiling. Formation of such a porous layer is carried out by a method.
「発明が解決しようとする問題点]
しかしながら、上記のような従来の方法においては、そ
れぞれ次のような問題点があった。"Problems to be Solved by the Invention" However, the above conventional methods have the following problems.
すなわち、螺旋溝を形成する場合には、上記の伝熱効率
を上げる方法のうち、最も効果の高い核沸騰現象を利用
しておらず、また、転造工具の製作技術上皮び転造の技
術上から、螺旋溝の条数やねじれの角度に制限かあるこ
となどの理由によ;〕、通なの溝無し管と比へてら熱特
性値が12〜15倍程変にしかならなず、性能が不充分
であっf二。また、製造において、転造工具と管内面の
19擦力が大きいため、大きな加圧力を必要とし、従っ
て大規模な装置を必要とずろととらに、工具の寿命が短
くなって、製作コストが高くなるという問題へがあった
。In other words, when forming a spiral groove, the nucleate boiling phenomenon, which is the most effective of the above methods for increasing heat transfer efficiency, is not used, and the manufacturing technology of the rolling tool, the technology of skin rolling, is not used. Due to reasons such as restrictions on the number of helical grooves and the angle of helix; the thermal properties are only 12 to 15 times different compared to regular grooveless pipes, resulting in poor performance. is insufficient. In addition, during manufacturing, the frictional force between the rolling tool and the inner surface of the tube is large, so a large pressing force is required, which requires large-scale equipment, shortens the life of the tool, and reduces manufacturing costs. There was a problem with getting expensive.
一方、多孔質層を形成する方法においては、伝熱管のよ
うな管状構造のものの内面に、焼結、仕付などにより多
孔質層を形成することは困難であった。また、金属表面
にスクリーン印刷等によりパターンマスキングを施した
後、電気鍍金することにより多孔質層を形成することは
可能であるが、この方法により管内面に多孔質層を形成
することは困難であり、また、印刷、焼き付は等の複雑
な工程を必要とし、製造コストが高くなるという問題点
があった。On the other hand, in the method of forming a porous layer, it is difficult to form a porous layer on the inner surface of a tubular structure such as a heat exchanger tube by sintering, finishing, etc. Additionally, it is possible to form a porous layer by applying pattern masking to the metal surface by screen printing, etc., and then electroplating, but it is difficult to form a porous layer on the inner surface of the tube using this method. In addition, there was a problem in that complicated processes such as printing and burning were required, resulting in high manufacturing costs.
[問題点を解決するための手段]
本発明は、上記のような問題点を解決するために、金属
製の基体を陰極とし、可溶性の陽極を用い、陽極スライ
ムが生成される陽極電流密度域において電気鍍金を行い
、上記基体の表面に、樹枝状、粒状の金属を析出させる
ようにしたものである。[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention uses a metal substrate as a cathode, a soluble anode, and an anode current density range in which anode slime is generated. Electroplating is performed to deposit dendritic and granular metal on the surface of the substrate.
1作用 ]
この方法において基体表面に多孔質層が形成される機構
は、次のように考えられる。可溶性陽極を用いて高い電
流密度で鍍金を行うと、陽極が溶解されてその表面上に
粉状の陽極金属(スライム)か生成されろ。この陽極ス
ライムは鍍金液の移動とと乙に陰極の基体表面に運ばれ
、鍍金膜内に取り込まれる。このスライムは導電性を育
するので、これを核としてri折金金属成長が起こり、
鍍金液の流動あるいは電流密度などの条件により、樹枝
状金属または陵状金属からなる多孔質層が形成される。1 Effect] The mechanism by which a porous layer is formed on the surface of the substrate in this method is thought to be as follows. When plating is performed at high current density using a soluble anode, the anode will melt and a powdered anode metal (slime) will be produced on its surface. As the plating solution moves, this anode slime is carried to the surface of the cathode substrate and incorporated into the plating film. This slime develops electrical conductivity, so ri-origin metal growth occurs using this as a core.
Depending on conditions such as flow of the plating solution or current density, a porous layer made of dendritic metal or ridge-like metal is formed.
なお、陽極電流密度は、可溶性陽極の材料の種類により
貢なろが、2OA/d+n”以下では充分な陽極スライ
ムが生成されないので、2OA/dm’以上であること
が好ましい。The anode current density varies depending on the type of material of the soluble anode, but if it is less than 2OA/d+n'', sufficient anode slime will not be generated, so it is preferably 2OA/dm' or more.
陰極である基体の表面に絶縁性の薄膜が形成されている
場合は、初期電析が薄膜の特に薄い部分あるいはとぎれ
た部分において起こるので、樹枝状あるいは粒状の金属
の析出がより容易に起こる。When an insulating thin film is formed on the surface of the substrate, which is the cathode, the initial electrodeposition occurs in particularly thin or broken parts of the thin film, so that dendritic or granular metal deposition occurs more easily.
基体と鍍金液の相対移動速度は0.5〜5m/secが
好ましく、これ以下では、基体表面への金属イオンの移
動が妨げられてもろい電析膜しか得られず、またこれ以
上にしても、エネルギーコストが増大するのみで特段の
効果が認められない。The relative movement speed between the substrate and the plating solution is preferably 0.5 to 5 m/sec; if it is less than this, the movement of metal ions to the substrate surface will be hindered and only a brittle deposited film will be obtained; , the energy cost increases and no particular effect is observed.
5実施例コ
以下、本発明の方法を伝熱体に対して応用した例につい
て具体的に述べる。5 Example Hereinafter, an example in which the method of the present invention is applied to a heat transfer body will be specifically described.
(実施例1)
第1図に示すように、外径9.52+n+n、肉厚0.
35mmの銅管lを長さ1000mmに切断し、その内
面にトリクレン洗浄を施して清浄化し、シリコンオイル
をエタノールで3倍に希釈した溶液を通して塗布した後
、エタノールを蒸発させて除去して内面にシリコンオイ
ルの波膜2を形成した。この銅管l内に、樹脂製のスペ
ーサ3をスパイラル状に巻き付けた銅製の外径4mmφ
のワイヤ4を挿入し、両端に張力をかけてたイつみを矯
正した。(Example 1) As shown in Fig. 1, the outer diameter is 9.52+n+n and the wall thickness is 0.
A 35 mm copper tube was cut to a length of 1000 mm, its inner surface was cleaned by trichlene cleaning, silicone oil was applied through a solution diluted 3 times with ethanol, the ethanol was removed by evaporation, and the inner surface was cleaned. A wave film 2 of silicone oil was formed. Inside this copper tube l, a resin spacer 3 is spirally wound, and the outer diameter is 4 mmφ.
The wire 4 was inserted and tension was applied to both ends to correct the problem.
そして、銅管l内に硫酸銅鍍金液(硫酸銅200g#!
、硫酸50g#)を貯槽5からケミカルポンプ6により
循環させながら、銅管1を陰極に、ワイヤ4を陽極にし
て、鍍金液の温度30℃、陰極電流密度+7A/dm”
、陽極電流密度31OA/dm’、鍍金液の流速1.5
m/sの条件下で15分間鍍金を施し、銅管1の内面に
、第2図に示すような、粒状の多孔質層からなる厚さ5
0μの電着金属層を得た。Then, put copper sulfate plating solution (copper sulfate 200g#!
While circulating sulfuric acid (50g #) from the storage tank 5 with the chemical pump 6, the copper tube 1 was used as a cathode and the wire 4 was used as an anode, the plating solution temperature was 30°C, and the cathode current density was +7A/d.
, anode current density 31OA/dm', plating solution flow rate 1.5
Plating is carried out for 15 minutes under conditions of
An electrodeposited metal layer of 0μ was obtained.
なお、この銅管lの内面を水洗し、乾燥した後、銅管l
を万力で押し潰すテストを行ったが、電着金属層の剥離
、脱落は全く見られず、優れた密着性と強度を示した。In addition, after washing the inner surface of this copper pipe l with water and drying it,
A test was conducted in which the electrodeposited metal layer was crushed in a vise, but no peeling or falling off of the electrodeposited metal layer was observed, indicating excellent adhesion and strength.
上記のように製作した鋼管について、第3図に示すよう
な熱特性試験装置により、次の表に示すような条件下で
熱特性を測定した。Thermal properties of the steel pipes manufactured as described above were measured using a thermal property testing apparatus as shown in FIG. 3 under the conditions shown in the following table.
この装置中、Tは温度センサ、Pは圧力計、PDは差圧
計、lOはポンプ、11はバルブ、12は流量計、13
は膨張弁、14はコンプレッサ、15はサブコンデンサ
、16はサブエバポレータ、17は恒温水運てあり、1
8が供試管としての鋼管である。この熱特性試験装置に
おいては、供試管18の内部にコンプレッサ14から供
給されろ冷媒か流され、外部には恒温水槽17からの温
水が冷媒に対向して流されるようになっている。恒温水
の温度は各冷媒流1に対応して、冷媒系が安定するよう
に制御した。In this device, T is a temperature sensor, P is a pressure gauge, PD is a differential pressure gauge, IO is a pump, 11 is a valve, 12 is a flow meter, 13
14 is an expansion valve, 14 is a compressor, 15 is a sub-condenser, 16 is a sub-evaporator, 17 is a constant temperature water conveyor, 1
8 is a steel pipe as a test pipe. In this thermal property testing apparatus, a refrigerant supplied from a compressor 14 is flowed into the inside of the test tube 18, and hot water from a constant temperature water tank 17 is flowed outside against the refrigerant. The temperature of the constant temperature water was controlled corresponding to each refrigerant flow 1 so that the refrigerant system was stabilized.
なお、この図中、矢印A、A’は、それぞれ蒸発試験の
場合の冷媒及び水の流れる方向を示し、矢印B、B’は
それぞれ凝縮試験の場合の冷媒及び水の流れる方向を示
している。In this figure, arrows A and A' indicate the flow directions of refrigerant and water, respectively, in the case of the evaporation test, and arrows B, B' indicate the flow directions of the refrigerant and water, respectively, in the case of the condensation test. .
この試験の結果、本発明の方法によって得られた実施例
1の銅管lは、その内側の境膜伝熱係数が第4図にCと
して示すような値を示し、同図にDとして示した通常の
鋼管に比べて約10倍の優れた熱特性を有することが判
った。As a result of this test, the copper tube l of Example 1 obtained by the method of the present invention showed a film heat transfer coefficient on the inside thereof as shown as C in FIG. 4, and a value shown as D in the same figure. It was found that this material has thermal properties that are about 10 times better than ordinary steel pipes.
(実施例2)
上記実施例1の素材と同一形状の鋼管の内面に、転造に
より螺旋溝を形成し、その後、実施例1の同一の前処理
及び鍍金を行って、第5図に示すような多孔質層を形成
した。そして、同様の方法で伝熱特性の測定を行った結
果、第4図にEとして示すような優れた熱伝達特性を示
した。(Example 2) A spiral groove was formed on the inner surface of a steel pipe having the same shape as the material in Example 1 by rolling, and then the same pretreatment and plating as in Example 1 were performed, as shown in Fig. 5. A porous layer was formed. The heat transfer characteristics were measured using the same method, and as a result, excellent heat transfer characteristics were shown as E in FIG. 4.
(実施例3)
上記実施例1と同一の素材につき、同一の前処理を施し
、鍍金条件を、鍍金液の温度30℃、陰極電流密度27
A/dm”、陽極電流密度500A/dm”S鍍金液の
移動速度1.5m/sとして10分間鍍金を施し、第6
図のような樹枝状の多孔質層を得た。前例と同様の方法
で伝熱特性を測定し、第4図にFとして示すような特性
値を得た。(Example 3) The same material as in Example 1 was subjected to the same pretreatment, and the plating conditions were as follows: plating solution temperature: 30°C; cathode current density: 27°C.
Plating was performed for 10 minutes at an anode current density of 500 A/dm" and a moving speed of the plating solution of 1.5 m/s.
A dendritic porous layer as shown in the figure was obtained. The heat transfer characteristics were measured in the same manner as in the previous example, and the characteristic values shown as F in FIG. 4 were obtained.
なお、これらの実施例においては、基体として鋼管を用
いたが、本発明の実施はこれに限られることなく、銅以
外の金属、あるいは平板状部材に応用してらよい。表面
に絶縁性の薄膜を形成しなくてもよく、また、可溶性陽
極として基体と同一の金属を用いずに異種の金属を多孔
質層として電析させてもよい。また、この発明は伝熱体
への実施に限られるものではない。In these Examples, a steel pipe was used as the base, but the present invention is not limited to this, and may be applied to metals other than copper or flat members. It is not necessary to form an insulating thin film on the surface, and instead of using the same metal as the substrate as the soluble anode, a different metal may be electrodeposited as a porous layer. Further, the present invention is not limited to implementation on heat transfer bodies.
[発明の効果コ
以上詳述したように、本発明は、金属製の基体を陰極と
し、可溶性の陽瓶を用い、陽瓶スライムが生成される陽
極7[I流密度域において電気鍍金を行い、上記基体の
表面に、樹枝状、粒状の金属を析出させるようにしたら
のであるので、細い管体の内面などにも多孔質層を形成
することができ、従って、核沸騰を利用した伝熱特性の
良い伝熱体を効率的に製造することができるとともに、
そのための素材や装置として複雑な、あるいは大規模な
ものを必要としないので製造コストが安いなどの利点を
有する。また、鍍金液の移動速度や鍍金の条件を変化さ
せることによって、目的に合った種・lの形状の多孔質
層を形成できる等の優れた効県を奏する。[Effects of the Invention] As detailed above, the present invention uses a metal substrate as a cathode, uses a soluble positive bottle, and performs electroplating in the anode 7 [I flow density region] where positive bottle slime is generated. By depositing dendritic or granular metal on the surface of the substrate, a porous layer can be formed even on the inner surface of a thin tube, and therefore heat transfer using nucleate boiling is possible. In addition to being able to efficiently manufacture heat transfer bodies with good characteristics,
It does not require complicated or large-scale materials or equipment, so it has advantages such as low manufacturing costs. Further, by changing the moving speed of the plating solution and the plating conditions, excellent effects such as forming a porous layer in a seed-shaped shape suitable for the purpose can be achieved.
第1図は本発明の方法の実施例を示す概略図、第2図は
本発明の方法により形成された第1実施例の多孔質層の
表面の形状を示す顕微鏡写真、第3図は伝熱特性を試験
するための装置の概略図、第4図は本発明の方法を適用
して製造された伝熱体の伝熱特性を示すグラフ、第5図
は本発明の第2実施例の多孔質層の顕微鏡写真、第6図
は第3実施例の多孔質層の顕微鏡写真である。
l ・・堰体、2・・・・・絶縁性薄膜、4 ・ 可溶
性陽極。FIG. 1 is a schematic diagram showing an example of the method of the present invention, FIG. 2 is a micrograph showing the surface shape of the porous layer of the first example formed by the method of the present invention, and FIG. A schematic diagram of an apparatus for testing thermal characteristics, FIG. 4 is a graph showing the heat transfer characteristics of a heat transfer body manufactured by applying the method of the present invention, and FIG. Microscopic photograph of porous layer. FIG. 6 is a microscopic photograph of the porous layer of the third example. l...Weir body, 2...Insulating thin film, 4. Soluble anode.
Claims (7)
、陽極スライムが生成される陽極電流密度域において電
気鍍金を行い、上記基体の表面に、樹枝状あるいは粒状
の金属を析出させることを特徴とする多孔質層の形成方
法。(1) Using a metal substrate as a cathode and a soluble anode, electroplating is performed in an anode current density region where anode slime is generated, and dendritic or granular metal is deposited on the surface of the substrate. A method for forming a porous layer characterized by:
た状態で形成した後、電気鍍金を行うことを特徴とする
特許請求の範囲第1項記載の多孔質層の形成方法。(2) The method for forming a porous layer according to claim 1, characterized in that electroplating is performed after forming an insulating thin film in a porous state on the surface of the substrate.
であることを特徴とする特許請求の範囲第1項または第
2項記載の多孔質層の形成方法。(3) The method for forming a porous layer according to claim 1 or 2, wherein the substrate is made of copper and the plating solution is a copper sulfate plating solution.
求の範囲第3項記載の多孔質層の形成方法。(4) The method for forming a porous layer according to claim 3, wherein the substrate is tubular.
を特徴とする特許請求の範囲第4項記載の多孔質層の形
成方法。(5) The method for forming a porous layer according to claim 4, characterized in that the substrate and the plating solution are moved relative to each other.
5m/secであることを特徴とする特許請求の範囲第
5項記載の多孔質層の形成方法。(6) The relative movement speed between the substrate and the plating solution is 0.5~
6. The method of forming a porous layer according to claim 5, wherein the rate is 5 m/sec.
とを特徴とする特許請求の範囲第4項記載の多孔質層の
形成方法。(7) The method for forming a porous layer according to claim 4, wherein the anode current density is 20 A/dm^2 or more.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26681285A JPS62127494A (en) | 1985-11-27 | 1985-11-27 | Formation of porous layer |
FI864684A FI86475C (en) | 1985-11-27 | 1986-11-18 | Heat transfer material and its manufacturing process |
US06/934,652 US4780373A (en) | 1985-11-27 | 1986-11-25 | Heat-transfer material |
EP86116447A EP0226861B1 (en) | 1985-11-27 | 1986-11-27 | Heat-transfer material and method of producing same |
DE8686116447T DE3680191D1 (en) | 1985-11-27 | 1986-11-27 | HEAT EXCHANGE ELEMENT AND METHOD FOR THE PRODUCTION THEREOF. |
US07/222,142 US4824530A (en) | 1985-11-27 | 1988-07-21 | Method of producing heat-transfer material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26681285A JPS62127494A (en) | 1985-11-27 | 1985-11-27 | Formation of porous layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62127494A true JPS62127494A (en) | 1987-06-09 |
JPH0238676B2 JPH0238676B2 (en) | 1990-08-31 |
Family
ID=17436014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26681285A Granted JPS62127494A (en) | 1985-11-27 | 1985-11-27 | Formation of porous layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62127494A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51130953A (en) * | 1975-04-28 | 1976-11-13 | Borg Warner | Heat exchanging method and device |
-
1985
- 1985-11-27 JP JP26681285A patent/JPS62127494A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51130953A (en) * | 1975-04-28 | 1976-11-13 | Borg Warner | Heat exchanging method and device |
Also Published As
Publication number | Publication date |
---|---|
JPH0238676B2 (en) | 1990-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4258783A (en) | Boiling heat transfer surface, method of preparing same and method of boiling | |
CN110998217B (en) | Heat exchange element with microstructured coating and method for producing same | |
US4826578A (en) | Method of producing heat-transfer material | |
US4018264A (en) | Boiling heat transfer surface and method | |
JPH07166123A (en) | Water-repellent coating material, its production and heat exchanger | |
US4824530A (en) | Method of producing heat-transfer material | |
Bahrami et al. | Dropwise condensation heat transfer enhancement on surfaces micro/nano structured by a two-step electrodeposition process [J] | |
JPS62127494A (en) | Formation of porous layer | |
US4186063A (en) | Boiling heat transfer surface, method of preparing same and method of boiling | |
JPS63273790A (en) | Heat transfer body and manufacture thereof | |
KR20200093199A (en) | Method for superhydrophobic surface of the outer panel or component for heat exchanger | |
JPH0240752B2 (en) | ||
JPS62206383A (en) | Heat transfer body | |
JPH0213038B2 (en) | ||
JPH0648153B2 (en) | Heat transfer body | |
JPH0565789B2 (en) | ||
CA1131159A (en) | Method for producing improved heat transfer surface | |
JPH0531080B2 (en) | ||
KR100535666B1 (en) | Heat Exchanger and Manufacture Method for the Same | |
JPS62116797A (en) | Formation of porous layer | |
JPS62196594A (en) | Heat pipe | |
JPH0413437B2 (en) | ||
JPS63183388A (en) | Heat transfer body | |
JPS60121264A (en) | Manufacture of radiator having fin with superior corrosion resistance | |
CN112880463A (en) | Elliptical heat exchange tube processing technology, anti-scaling high-efficiency heat exchange tube bundle and preparation method thereof |