JPH07166123A - Water-repellent coating material, its production and heat exchanger - Google Patents

Water-repellent coating material, its production and heat exchanger

Info

Publication number
JPH07166123A
JPH07166123A JP31771093A JP31771093A JPH07166123A JP H07166123 A JPH07166123 A JP H07166123A JP 31771093 A JP31771093 A JP 31771093A JP 31771093 A JP31771093 A JP 31771093A JP H07166123 A JPH07166123 A JP H07166123A
Authority
JP
Japan
Prior art keywords
water
repellent
coating
particles
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31771093A
Other languages
Japanese (ja)
Inventor
Yukiko Ikeda
由紀子 池田
Kiju Endo
喜重 遠藤
Katsumi Muroi
克美 室井
Hiroshi Kusumoto
寛 楠本
Nobuatsu Watanabe
信淳 渡辺
容宝 ▲鄭▼
Youhou Tei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31771093A priority Critical patent/JPH07166123A/en
Publication of JPH07166123A publication Critical patent/JPH07166123A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide a coating film having fine ruggedness made up by water- repellent particles on the surface, exhibiting water repellency even to a fine water drop since the whole surface is made of a water-repellent material and excellent in duration of the water repellency. CONSTITUTION:A plating layer 2 in which water-repellent particles 3 are compounded is formed on a base 1 and a water-repellent coating film 4' having a melting point lower than that of the water-repellent particles 3 is placed thereon. The water-repellent particles 3 are partly projected above the coating film 4' in a state where they are partly buried in the coating film 4'.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は撥水性を必要とする電化
製品、自動車機器、医療機器等で用いる被膜及びその製
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating used in electric appliances, automobile equipment, medical equipment and the like which require water repellency and a method for producing the coating.

【0002】[0002]

【従来の技術】従来撥水性を目的として用いられる被膜
は、シリコン系、またはフッ素系の樹脂化合物からなる
ものが多く、その製法としてはそれらの樹脂化合物の溶
液を塗布する方法が用いられている。これらの被膜の接
触角は110度前後の場合が多い。また、接触角170
度以上の被膜として、特開平4−285199号公報に
記載のように金属をマトリックスとして、これに撥水性
粒子を複合した被膜がある。
2. Description of the Related Art Conventionally, many coatings used for the purpose of water repellency are composed of a silicon-based or fluorine-based resin compound, and a method of applying a solution of these resin compounds is used as a manufacturing method thereof. . The contact angle of these coatings is often around 110 degrees. Also, the contact angle 170
As a coating film having a thickness of at least one degree, as described in JP-A-4-285199, there is a coating film in which a metal is used as a matrix and water-repellent particles are combined therewith.

【0003】また、被膜形成方法としては、特公昭64
−1560号公報記載のように、めっき被膜上の表面の
一部もしくは全部にフッ素樹脂被膜を形成する方法など
が知られている。
Further, as a film forming method, Japanese Patent Publication No.
As described in JP-A-1560, there is known a method of forming a fluororesin film on a part or all of the surface of the plating film.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の撥水性
と言われる接触角110度前後の被膜では、直径約1m
mの水滴は転がり落ちず、水滴が落ちるには直径約3m
m以上でなければならない。また上記記載の接触角17
0度以上の被膜も、流水や直径約1mm以上の水滴には
優れた撥水性を示すが、水蒸気中や霧状の水滴あるいは
凝縮水に対しては、撥水性が低下する。これは、図10
に示すように皮膜表面を拡大図すると、被膜表面にマト
リックスの金属部2が存在し、そこに水蒸気や霧状の水
10が付着するためと考えられている。この被膜表面の
親水性である金属部2に一度水が付着すると撥水性が低
下し、この被膜はその水を、完全に乾燥させ除去しない
かぎり、撥水性が大きく低下する。
However, in the case of a conventional coating having a contact angle of around 110 degrees, which is said to be water repellent, the diameter is about 1 m.
m water drops do not roll down, and about 3 m in diameter for water drops to fall
must be at least m. In addition, the contact angle 17 described above
A coating film of 0 degree or more also shows excellent water repellency for running water or water droplets having a diameter of about 1 mm or more, but the water repellency is reduced for water vapor, mist-like water droplets, or condensed water. This is shown in FIG.
It is considered that when the surface of the film is enlarged as shown in (3), the metal part 2 of the matrix exists on the surface of the film, and water vapor or mist-like water 10 adheres thereto. Once water adheres to the hydrophilic metal part 2 on the surface of the coating, the water repellency decreases, and unless the water is completely dried to remove the water, the water repellency greatly decreases.

【0005】また、これらは処理直後は優れた撥水性を
示すが、時間の経過と共に撥水性が徐々に低下してい
く。これは先に述べた、被膜表面金属部の水の残存や、
また撥水性粒子の表面からの脱落が原因と考えられてい
る。
Further, although they show excellent water repellency immediately after the treatment, the water repellency gradually decreases with the passage of time. This is due to the water remaining on the coating surface metal part,
It is also considered that the water-repellent particles fall off the surface.

【0006】またこのような複合めっきを用いる被膜の
製法において、上述の従来例のようにフッ素樹脂粒子複
合めっき形成後更に表面に粒子を供給し、粒子が融解す
る温度で熱処理することにより、被膜表面全域を被覆す
る方法があるが、これらの被膜は非粘着性を目的とし、
型離れ性に優れた金型などへ利用されている。しかしこ
の被膜は、図11に示すように、熱処理により粒子が融
解し被膜表面は凹凸のない平滑な面3’となるので、接
触角は110度程度となる。
Further, in the method for producing a coating film using such a composite plating, as in the above-mentioned conventional example, after the fluororesin particle composite plating is formed, particles are further supplied to the surface, and heat treatment is performed at a temperature at which the particles melt to form a coating film. There is a method of coating the entire surface, but these coatings are intended for non-stickiness,
It is used for molds with excellent mold release properties. However, in this coating, as shown in FIG. 11, the particles are melted by the heat treatment and the surface of the coating becomes a smooth surface 3 ′ having no unevenness, so that the contact angle is about 110 degrees.

【0007】さらに熱交換器のフィンの表面に撥水性被
膜を処理し、熱交換効率を向上させる方法が報告されて
いるが、連続使用すると効果が低下することが知られて
いる。 今後製品に対応した被膜として、あらゆる形態
の水分に対応しかつ、耐久性のある被膜が要求されてい
る。
Further, a method of treating the surface of the fins of the heat exchanger with a water-repellent coating to improve the heat exchange efficiency has been reported, but it is known that the effect decreases when continuously used. In the future, as a film compatible with products, a film that is compatible with all forms of moisture and that is durable is required.

【0008】本発明は、水蒸気や霧状の水滴に対しても
撥水性を示し、かつ耐久性のある被膜、その製法及びそ
の被膜を備える熱交換器を提供することを目的とする。
It is an object of the present invention to provide a coating film which is water-repellent to water vapor and mist-like water drops and has durability, a method for producing the coating film, and a heat exchanger including the coating film.

【0009】[0009]

【課題を解決するための手段】上記目的は、撥水性が低
下する原因の1つである被膜を構成する親水性のマトリ
ックス部の露出を、表面の凹凸形状を維持したままかぎ
りなく少なくした被膜とすることにより達成される。
Means for Solving the Problems The above-mentioned object is to reduce the exposure of the hydrophilic matrix portion constituting the coating film, which is one of the causes of the decrease in water repellency, to the utmost while maintaining the unevenness of the surface. It is achieved by

【0010】このため、本発明の被膜は、基板上に直接
または間接に撥水性被膜を配置し、その被膜中に一部が
埋まり、かつその被膜上に一部が突出するように撥水性
粒子を分散させ、前記撥水性被膜の材質と前記撥水性粒
子の材質とは融点を異にするという構成を備えるもので
ある。
Therefore, in the coating film of the present invention, a water-repellent coating film is arranged directly or indirectly on a substrate, and a part of the water-repellent coating film is buried in the coating film and a part of the water-repellent coating film is projected on the coating film. And the water repellent coating material and the water repellent particles have different melting points.

【0011】撥水性被膜及び粒子は疎水性の基を有する
物質により構成されていればよく、疎水性の基はフルオ
ロカーボン、及びハイドロカーボンの表面構造を有する
ものであればよい。
The water-repellent coating and the particles may be made of a substance having a hydrophobic group, and the hydrophobic group may be one having a fluorocarbon or hydrocarbon surface structure.

【0012】また、撥水性被膜及び粒子は水の表面張力
より小さい臨界表面張力をもつ基を有する物質により構
成してもよい。更に、粒子はポリテトラフルオロエチレ
ン(以下、PTFEと称する)の臨界表面張力より小さ
い臨界表面張力をもつ基を有する物質により構成しても
よい。
Further, the water-repellent coating and the particles may be composed of a substance having a group having a critical surface tension smaller than that of water. Further, the particles may be composed of a substance having a group having a critical surface tension smaller than that of polytetrafluoroethylene (hereinafter referred to as PTFE).

【0013】また、前記目的を達成するために、本発明
の被膜は、基板上に直接または間接に撥水撥油性被膜を
配置し、その被膜中に一部が埋まり、かつその被膜上に
一部が突出するように撥水撥油性粒子を分散させ、前記
撥水撥油性被膜の材質と前記撥水撥油性粒子の材質とは
融点を異にするという構成を備えるものである。
In order to achieve the above-mentioned object, the coating film of the present invention has a water- and oil-repellent coating disposed directly or indirectly on a substrate, a part of which is buried in the coating, and a single layer is formed on the coating. The water-repellent and oil-repellent particles are dispersed so that the parts protrude, and the water-repellent oil-repellent coating and the water-repellent oil-repellent particles have different melting points.

【0014】撥水撥油性被膜及び粒子は、フッ素樹脂か
ら構成されるものを用いればよい。
The water- and oil-repellent coating and the particles may be made of a fluororesin.

【0015】また、撥水性被膜及び撥水撥油性被膜は、
撥水性粒子及び撥水撥油性粒子の材質の融点より低い融
点を持つ材質により構成されていればよい。
The water-repellent coating and the water- and oil-repellent coating are
It may be made of a material having a melting point lower than that of the material of the water-repellent particles and the water- and oil-repellent particles.

【0016】更に上記目的は、冷却された冷媒が内部を
流動する管群と、この管群に固定されその間を空気が流
れるフィン群を有する熱交換器において、フィン群の表
面に、その被膜中に一部が埋まり、かつ一部が被膜上に
突出し融点が被膜の融点と異なる撥水性粒子を分散させ
た撥水性被膜を、直接または間接に形成することにより
達成される。
A further object of the present invention is to provide a heat exchanger having a group of tubes through which a cooled refrigerant flows, and a group of fins fixed to the group of tubes and allowing air to flow between them. It is achieved by directly or indirectly forming a water-repellent coating in which the water-repellent particles, which are partially buried in and are projected on the coating, have a melting point different from the melting point of the coating.

【0017】撥水性被膜は、上記構成のものを用いれば
よい。
The water-repellent coating may have the above-mentioned structure.

【0018】更に上記目的は、撥水性被膜の製法を、基
板表面に高融点の撥水性粒子を複合した被膜を電気的作
用により形成する第1工程と、この被膜の表面に高融点
の撥水性粒子より低融点の撥水性粒子を供給する第2工
程と、被膜の表面に供給した低融点の撥水性粒子が軟化
もしくは融解する温度で熱処理する第3工程とからなる
方法とすることにより達成される。
Further, the above-mentioned object is to prepare a water-repellent coating by a first step of forming a coating on the surface of a substrate in which high-melting-point water-repellent particles are composited by an electric action, and a high-melting-point water-repellent coating on the surface of this coating. It is achieved by a method comprising a second step of supplying water-repellent particles having a melting point lower than that of the particles and a third step of heat-treating at a temperature at which the water-repellent particles of low melting point supplied to the surface of the coating are softened or melted. It

【0019】又、基板表面に融点の異なる2種類以上の
撥水性粒子を複合した被膜を電気的作用により形成する
第1の工程と、2種類以上の撥水性粒子の中の低融点の
粒子が軟化もしくは融解する温度で熱処理する第2の工
程とからなる撥水性被膜の製法としてもよい。
Further, the first step of forming a coating film, which is a composite of two or more kinds of water-repellent particles having different melting points, on the surface of the substrate by an electric action, and the low-melting point particles of the two or more kinds of water-repellent particles are A water-repellent film may be produced by a second step of heat treatment at a softening or melting temperature.

【0020】又、基板表面に融点の異なる2種類以上の
撥水性粒子を複合した被膜を電気的作用により形成する
第1の工程と、この表面に2種類以上の撥水性粒子の中
の低融点の撥水性粒子を供給する第2工程と、低融点の
撥水性粒子が軟化もしくは融解する温度で熱処理する第
3の工程とからなる撥水性被膜の製法としてもよい。
Further, the first step of forming a coating film on the surface of the substrate, which is composed of two or more kinds of water-repellent particles having different melting points, by an electric action, and a low melting point of the water-repellent particles of two or more kinds on the surface. The method for producing a water-repellent coating film may include a second step of supplying the water-repellent particles and a third step of performing heat treatment at a temperature at which the low-melting-point water-repellent particles are softened or melted.

【0021】上記の撥水性被膜の製法において、電気的
作用により被膜を形成する方法として金属めっき法か、
電着被覆法を用いればよい。
In the above water-repellent coating manufacturing method, a metal plating method is used as a method for forming the coating by an electric action.
An electrodeposition coating method may be used.

【0022】めっき被膜のマトリックスが、ニッケルも
しくはニッケル合金であればよい。
The matrix of the plating film may be nickel or nickel alloy.

【0023】又、撥水性被膜の製法は、基板表面に融点
の異なる2種類以上の撥水性粒子を塗布する第1の工程
と、2種類以上の撥水性粒子の中の低融点の撥水性粒子
が軟化もしくは融解し、かつ高融点の撥水性粒子の融点
以下で熱処理する第2の工程とからなる方法としてもよ
く、この方法において第1の工程は基板表面に2種類以
上の撥水性粒子を複数回繰返し塗布するようにしてもよ
い。
The method for producing the water-repellent coating is as follows: the first step of applying two or more kinds of water-repellent particles having different melting points to the substrate surface, and the low-melting-point water-repellent particles among the two or more kinds of water-repellent particles. May be softened or melted, and a heat treatment may be performed at a temperature equal to or lower than the melting point of the water-repellent particles having a high melting point. In this method, the first step is to form two or more kinds of water-repellent particles on the substrate surface. You may make it apply several times repeatedly.

【0024】また、融点の異なる2種類以上の撥水性粒
子は粒径が異なるものとしてもよい。
The two or more types of water repellent particles having different melting points may have different particle sizes.

【0025】[0025]

【作用】本発明によれば、被膜表面に撥水性の粒子によ
る微小な凹凸を形成することができる。これにより、水
滴と点接触を維持できるので撥水性を高めることができ
る。なお、粒子の粒径を変えれば、表面の凹凸の大きさ
も容易に変えることができる。
According to the present invention, minute irregularities can be formed by water-repellent particles on the surface of the coating film. This makes it possible to maintain point contact with the water droplets, thus improving water repellency. By changing the particle size of the particles, the size of the surface irregularities can be easily changed.

【0026】また、撥水性被膜は融点の低い粒子を軟化
もしくは融解することによって形成するので、この被膜
は表面に付着した融点の高い粒子をつなぎ止めるバイン
ダーの役割を果たす。これにより被膜表面からの粒子の
脱落を防ぎ、耐久性のある被膜とすることができる。
Further, since the water-repellent coating is formed by softening or melting the particles having a low melting point, this coating plays a role of a binder for holding the particles having a high melting point attached to the surface. As a result, it is possible to prevent the particles from falling off from the surface of the coating film and obtain a durable coating film.

【0027】なお、撥水性の粒子はPTFE、テトラフ
ルオロエチレン−ヘキサフルオロプロペン共重合体(以
下、PFAと称する)、テトラフルオロエチレン−ペル
フルオロ(アルキル=ビニル=エーテル)共重合体(以
下、FEPと称する)等のフッ素系樹脂が好ましいが、
ポリエチレン(PE)など撥水を示すものであれば特に
限定されない。また、これらの粒子は、融点に幅を持つ
ものが多いので、融点の差が10℃以上異なる粒子、好
ましくは20℃以上差があるもののほうが熱処理が容易
である。また、用いる撥水性粒子の平均粒径は、0.1
〜100μm程度で、特に0.2〜20μmが好まし
い。この場合、低融点粒子を後から供給して表面層を形
成するため、この表面層の膜厚を制御するためには低融
点粒子の粒径が高融点粒子の粒径よりも小さい方が望ま
しい。なお、高融点粒子は、必ず軟化もしくは融解した
低融点粒子から構成される表面層の上に突出して凹凸を
形成している。この高融点粒子が主に被膜の撥水性を決
めるので、高融点粒子はポリテトラフルオロエチレンの
臨界表面張力より小さい臨界表面張力をもつ基を有する
物質とする方が望ましい。
The water-repellent particles are PTFE, tetrafluoroethylene-hexafluoropropene copolymer (hereinafter referred to as PFA), tetrafluoroethylene-perfluoro (alkyl = vinyl = ether) copolymer (hereinafter referred to as FEP). Fluorine-based resins such as
There is no particular limitation as long as it exhibits water repellency such as polyethylene (PE). Since many of these particles have a wide range of melting points, heat treatment is easier for particles having a difference in melting point of 10 ° C. or more, preferably 20 ° C. or more. The average particle diameter of the water-repellent particles used is 0.1.
˜100 μm, and particularly preferably 0.2 to 20 μm. In this case, since the low melting point particles are supplied later to form the surface layer, it is desirable that the particle size of the low melting point particles is smaller than that of the high melting point particles in order to control the film thickness of the surface layer. . In addition, the high melting point particles always project and form irregularities on the surface layer composed of the softened or melted low melting point particles. Since the high melting point particles mainly determine the water repellency of the coating film, the high melting point particles are preferably made of a substance having a group having a critical surface tension smaller than that of polytetrafluoroethylene.

【0028】また、被膜のマトリックスとして、金属あ
るいはポリマー等を使用できる。例えば金属としては、
ニッケル、ニッケル合金、銅、鉄、鉄合金、コバルト、
銀、亜鉛などの金属めっきを用いることができる。また
はポリマーとしてはエポキシ系、アクリル系などの市販
の電着液を用いることができる。
Further, a metal, a polymer or the like can be used as the matrix of the coating. For example, as a metal,
Nickel, nickel alloy, copper, iron, iron alloy, cobalt,
Metal plating such as silver or zinc can be used. Alternatively, as the polymer, a commercially available electrodeposition liquid such as an epoxy type or an acrylic type can be used.

【0029】また基板は、電気的作用により皮膜を形成
するため導電性のあるもの、または表面に導電性の物質
が存在するものであれば特に限定されない。
The substrate is not particularly limited as long as it is electrically conductive because it forms a film by an electric action or has an electrically conductive substance on its surface.

【0030】本発明の撥水性被膜の製法によれば、導電
性の基板を陰極とし、溶液中にプラスに帯電させた高融
点の撥水性粒子を分散させ、その溶液中で電気的作用に
より粒子を複合した被膜を形成する工程においては、既
存の方法を用いることができ、これに低融点の撥水性粒
子を供給し熱処理することにより、新しい機能を簡単に
持たせることができる。
According to the method for producing a water-repellent coating of the present invention, a conductive substrate is used as a cathode, positively charged high-melting-point water-repellent particles are dispersed in a solution, and the particles are electrically operated in the solution. An existing method can be used in the step of forming a composite film of, and a new function can be easily provided by supplying water-repellent particles having a low melting point and heat-treating the same.

【0031】なお、上記製法において被膜を形成する際
に用いる溶液中の撥水性粒子の分散量は、3〜15wt
%程度で、特に5〜10wt%が好ましく、この場合被
膜中の粒子の複合率は、35〜45vol%となる。前
記範囲より少ない場合は、被膜表面の撥水性粒子の量が
少なくなり被膜の撥水性が低下するためであり、前記範
囲より多い場合は、分散溶液の粘度が高くなり被膜形成
時の液撹拌が不均一となり、形成する被膜もムラやあれ
が多くなるためである。
The amount of the water-repellent particles dispersed in the solution used for forming the coating film in the above-mentioned manufacturing method is 3 to 15 wt.
%, Particularly 5 to 10 wt% is preferable, and in this case, the composite rate of particles in the coating is 35 to 45 vol%. When the amount is less than the above range, the amount of water-repellent particles on the surface of the coating decreases and the water repellency of the coating decreases, and when the amount exceeds the above range, the viscosity of the dispersion solution increases and liquid agitation during coating formation becomes difficult. This is because it becomes non-uniform, and the coating film to be formed is also more uneven and uneven.

【0032】また、被膜表面に粒子を供給する方法とし
て、ディッピング、スプレーコート、スピンコート等の
方法を用いることができる。またこの際用いる溶液中の
撥水性粒子の分散量は、粒子によって異なるが1〜10
wt%程度で、必要に応じて繰返し同様の操作で重ね塗
りすることで簡単に追加することができる。
As a method of supplying particles to the surface of the coating film, a method such as dipping, spray coating, spin coating or the like can be used. The amount of water-repellent particles dispersed in the solution used at this time varies depending on the particles, but is from 1 to 10
About wt%, it is possible to easily add by repeatedly applying the same operation repeatedly if necessary.

【0033】[0033]

【実施例】以下、実施例により具体的に説明する。EXAMPLES The present invention will be specifically described below with reference to examples.

【0034】本実施例では被膜のマトリックスとしてニ
ッケルを用い、電気めっきにより形成した。本実施例で
は、ベースとなるめっき液として下記組成のスルファミ
ン酸ニッケル浴を用いた。
In this example, nickel was used as the matrix of the coating film, and the film was formed by electroplating. In this example, a nickel sulfamate bath having the following composition was used as a base plating solution.

【0035】〈組成〉 スルファミン酸ニッケル 350〜450g/l 塩化ニッケル 0〜45g/l ホウ酸 30〜40g/l 基板には導電性の金属を用い、その基板に適した前処理
を行った。基板は有機溶媒で洗浄した後、脱脂、エッチ
ング、酸活性を行った。なお、アルミニウム、又はアル
ミニウム合金については、ジンケート(亜鉛置換)処理
を行った。
<Composition> Nickel sulfamate 350-450 g / l Nickel chloride 0-45 g / l Boric acid 30-40 g / l A conductive metal was used for the substrate, and pretreatment suitable for the substrate was performed. After the substrate was washed with an organic solvent, degreasing, etching and acid activation were performed. Note that aluminum or aluminum alloy was subjected to zincate (zinc substitution) treatment.

【0036】又、基板の表面状態が安定しないものにつ
いては、必要に応じてニッケルのストライクめっきを行
った。
If the surface condition of the substrate is not stable, nickel strike plating is performed if necessary.

【0037】本発明に適用可能な粒子として表1に材質
とその融点を示す。なお、本発明に用いる粒子は、撥水
性を示し複数の粒子の融点に差があるものであれば表1
に示すものに制限されるものではない。
Table 1 shows the materials and their melting points as particles applicable to the present invention. If the particles used in the present invention are water-repellent and have different melting points, the particles in Table 1
It is not limited to those shown in.

【0038】[0038]

【表1】 [Table 1]

【0039】表1の中から数種の粒子を選択し被膜の作
成を行った。融点の高い粒子として、PTFE(セント
ラル硝子(株)製、商品名、セフラルルーブI、平均粒径
5μm)、PFA(旭硝子(株)製、商品名、アフロンP
FA,平均粒径7μm)、融点の低い粒子としてPTF
E(セントラル硝子(株)製、商品名、セフラルルーブ
V、平均粒径1μm)、FEP(三井デュポンフロロケ
ミカル(株)製、商品名、テフロン120−J、平均粒径
0.2μm)を用いた。
Several kinds of particles were selected from Table 1 to form a film. As the particles having a high melting point, PTFE (manufactured by Central Glass Co., Ltd., trade name, Cefraral Lube I, average particle size 5 μm), PFA (manufactured by Asahi Glass Co., Ltd., trade name, Aflon P)
FA, average particle size 7 μm), PTF as particles with low melting point
E (manufactured by Central Glass Co., Ltd., trade name, Cefraral Lube V, average particle size 1 μm), FEP (manufactured by Mitsui DuPont Fluorochemical Co., Ltd., trade name, Teflon 120-J, average particle size 0.2 μm) were used. .

【0040】以下に本発明の実施例を示す。Examples of the present invention will be shown below.

【0041】《実施例1》下記に示す組成1の粒子複合
めっき液を作成し、下記のめっき条件で粒子複合ニッケ
ルめっきを行った。本実施例では、試料として大きさが
30mm×100mm×1mmの無酸素銅板を用いた。
Example 1 A particle composite plating solution having the following composition 1 was prepared and subjected to particle composite nickel plating under the following plating conditions. In this embodiment, the size of the sample is
An oxygen-free copper plate of 30 mm x 100 mm x 1 mm was used.

【0042】〈組成1〉 スルファミン酸ニッケル 350g/l 塩化ニッケル 45g/l ホウ酸 40g/l 高融点粒子(PTFE分子量大 or PFA) 140g カチオン系界面活性剤(1wt%水溶液) 140g 《めっき処理条件》 pH 4.0〜4.2 処理温度 45±2℃ 電流密度 5A/dm2 処理時間 10min めっき厚さはめっき被膜に複合する粒子径に依存し、粒
子を十分に包込む厚さが必要であり、本実施例では複合
した粒子径に対応して約10μmとした。又、めっき液は
粒子を複合しないものに比べ、本実施例のものは粒子が
混合されているため、めっき条件の重要因子であるめっ
き電流密度について検討した。その結果、低電流密度で
は撥水性粒子の含有率が低下し、高電流密度では撥水性
粒子の凝集体が形成され、試料の端部にエッジ効果によ
り粗な部分ができることが判明し適正な電流密度として
5±1A/dm2を用いた。
<Composition 1> Nickel sulfamate 350 g / l Nickel chloride 45 g / l Boric acid 40 g / l High melting point particles (high PTFE molecular weight or PFA) 140 g Cationic surfactant (1 wt% aqueous solution) 140 g << Plating treatment conditions >> pH 4.0 to 4.2 Treatment temperature 45 ± 2 ℃ Current density 5A / dm 2 Treatment time 10min The plating thickness depends on the diameter of the composite particles in the plating film. Then, it was set to about 10 μm corresponding to the composite particle size. In addition, the particles of the present embodiment are mixed with the plating solution as compared with the case where the plating solution does not contain particles, so the plating current density, which is an important factor of the plating conditions, was examined. As a result, it was found that the content of water-repellent particles decreased at low current densities, aggregates of water-repellent particles were formed at high current densities, and rough portions were formed at the edges of the sample due to the edge effect, and the appropriate current A density of 5 ± 1 A / dm 2 was used.

【0043】めっき後の被膜の断面摸式図を図2に示
す。図に明らかなように撥水性粒子を複合したニッケル
めっき層2は基板1の境界部分がニッケルのみの層とな
っているが、ニッケルイオンと粒子とを比較すると粒子
の方が約1万倍大きいため、ニッケルイオンの方が先に
基板上に析出し、その後ニッケルイオンと粒子が複合し
て析出するために図のような断面構造となる。
A schematic cross-sectional view of the coating after plating is shown in FIG. As is clear from the figure, the nickel plating layer 2 composited with water-repellent particles has a nickel-only layer at the boundary of the substrate 1. However, when nickel ions and particles are compared, the particles are about 10,000 times larger. Therefore, nickel ions are first deposited on the substrate, and then nickel ions and particles are combined and deposited, so that the cross-sectional structure shown in the figure is obtained.

【0044】この被膜は基板1の上にニッケルをマトリ
ックスとし、撥水性粒子3を被膜中に複合した形態を呈
している。この断面形態の被膜は、従来の撥水性被膜の
ものと同じであり、流水や直径1mm以上の水滴には優れ
た撥水性を示す。
This coating has a form in which nickel is used as a matrix on the substrate 1 and the water-repellent particles 3 are compounded in the coating. The coating of this cross-sectional shape is the same as that of the conventional water-repellent coating, and exhibits excellent water repellency against running water or water droplets having a diameter of 1 mm or more.

【0045】しかし、被膜表面の粒子3はマトリックス
中に取り込まれず表面に付着しているだけのものもあ
り、表面への軽い接触だけで、被膜表面に傷が付いた
り、撥水性粒子3が脱落する等、耐久性に問題がある。
However, there are some particles 3 on the surface of the coating film which are not taken into the matrix and are merely attached to the surface, and the surface of the coating film is scratched or the water-repellent particles 3 fall off by only light contact with the surface. There is a problem in durability.

【0046】次に、図2に示した断面形態の被膜に組成
2の溶液を用いて、ディッピング処理を行った。
Next, a dipping treatment was applied to the coating having the cross-sectional shape shown in FIG.

【0047】ディッピング処理は、前述のめっき液作成
方法と同様に撥水性粒子と界面活性剤、水酸化ナトリウ
ム水溶液及びエタノールをそれぞれ混合した後、両者を
混合することにより作成した。又、ディッピング処理は
ディッピング液を撥水性粒子が均一に分散するように撹
拌し、その中に試料を浸した後液面に対し垂直方向にゆ
っくり(約5〜50mm/sec)引き上げた後、乾燥する方法
により行なった。
The dipping treatment was carried out by mixing the water-repellent particles, the surfactant, the aqueous sodium hydroxide solution and ethanol, respectively, and then mixing both, as in the above-mentioned plating solution preparation method. In the dipping process, the dipping liquid is stirred so that the water-repellent particles are evenly dispersed, the sample is immersed in the dipping liquid, then slowly (about 5 to 50 mm / sec) is pulled up in the direction perpendicular to the liquid surface, and then dried. It was performed by the method.

【0048】この段階における被覆部の断面形態を図3
に示す。図2に示す被膜表面の撥水性粒子3の間及び表
面にディッピング処理によって低融点の撥水性粒子4が
付着している。
The cross-sectional morphology of the coating portion at this stage is shown in FIG.
Shown in. The low-melting-point water-repellent particles 4 are adhered to the surface and between the water-repellent particles 3 shown in FIG. 2 by the dipping treatment.

【0049】〈組成2〉 PTFE粒子(m.p.242〜255℃) 5g カチオン系界面活性剤(1wt%水溶液) 5g 水酸化ナトリウム水溶液(0.01M) 50g エタノール 50g 最後の処理として、ディッピングにより被膜表面に付着
した低融点の撥水性粒子4であるPTFE粒子が、融解
する温度245±2℃での加熱処理を行った。
<Composition 2> PTFE particles (mp242 to 255 ° C.) 5 g Cationic surfactant (1 wt% aqueous solution) 5 g Sodium hydroxide aqueous solution (0.01 M) 50 g Ethanol 50 g As a final treatment, the particles were attached to the coating surface by dipping. The heat treatment was performed at a temperature of 245 ± 2 ° C. at which the PTFE particles, which are the water-repellent particles 4 having a low melting point, melt.

【0050】その結果、図1の一部断面斜視図に示すよ
うな断面形態の撥水性被膜を得た。
As a result, a water-repellent coating having a cross-sectional shape as shown in the partial cross-sectional perspective view of FIG. 1 was obtained.

【0051】図に示すように図3において高融点の撥水
性粒子3の表面及び間に付着していた低融点の撥水性粒
子4が融解して、高融点粒子3の間の金属マトリックス
部の上に溶け落ち、厚さが約1μmの被膜4’を形成し
ている。つまり、被膜表面に高融点粒子3による凹凸形
状があり、低融点粒子4が融解してできた被膜4’が高
融点粒子をつなぎ止めるバインダーの役割をしている断
面構造となっている。高融点粒子3と低融点粒子4の溶
融物とは互いに撥水性を有しているために混じりあわな
いためこのような断面構造が形成される。
As shown in FIG. 3, the low-melting-point water-repellent particles 4 attached to the surface and between the high-melting-point water-repellent particles 3 in FIG. A coating 4'having a thickness of about 1 .mu.m is formed on the top of the coating 4 '. That is, the surface of the coating film has an uneven shape due to the high melting point particles 3, and the coating film 4 ′ formed by melting the low melting point particles 4 serves as a binder that holds the high melting point particles together. Since the high melting point particles 3 and the low melting point particles 4 are water-repellent and do not mix with each other, such a cross-sectional structure is formed.

【0052】この結果、従来の被膜構造である図2と比
較すると明らかなように被膜表面の金属部の露出は無く
なる。なお本実施例では、熱処理温度を融点の温度幅の
低い方に設定したため、熱処理時間は低融点粒子4が十
分に高融点粒子3の間に入り込むように1時間かけた
が、熱処理温度を高めに設定すれば熱処理時間を短くす
ることができる。2種類の粒子の融点の差が大きい場合
は、温度を高めに設定した方が処理時間の短縮となる。
尚、熱処理では被覆部分が昇温することが条件であり試
料の熱容量が大小によって時間を調節しなければならな
いことは言うまでもない。
As a result, as is apparent from comparison with the conventional coating structure shown in FIG. 2, the metal portion on the coating surface is not exposed. In this example, since the heat treatment temperature was set to the one having a lower melting point temperature range, the heat treatment time was set to 1 hour so that the low melting point particles 4 could sufficiently enter between the high melting point particles 3, but the heat treatment temperature was increased. If set to, heat treatment time can be shortened. When the difference between the melting points of the two types of particles is large, the processing time can be shortened by setting the temperature higher.
Needless to say, the heat treatment is required to raise the temperature of the coated portion, and the time must be adjusted depending on the heat capacity of the sample.

【0053】尚、下記に示す組成3のディッピング溶液
を用いて同様のディッピング処理を行ない、260±2
℃で1時間過熱した後の断面構造も組成2を溶液を用い
た場合と同じであった。
The same dipping process was performed using a dipping solution having the composition 3 shown below to obtain 260 ± 2.
The cross-sectional structure after heating at 1 ° C. for 1 hour was also the same as when the composition 2 was used as a solution.

【0054】 〈組成3〉 FEP粒子ディスパージョン(55w%、m.p.254〜270℃) 5g エタノール 95g 本実施例に示す被覆方法による被膜を評価するために、
被膜材質を変えた水蒸気凝縮試験を行った。比較用とし
て代表的な従来の撥水性被膜として図2に示す断面構造
の被膜について撥水性粒子の種類を変えたもの2種類と
無被覆銅材面について評価した。
<Composition 3> FEP particle dispersion (55% by weight, mp 254 to 270 ° C.) 5 g Ethanol 95 g In order to evaluate a film by the coating method shown in this example,
A steam condensation test was performed with different coating materials. As a typical conventional water-repellent coating for comparison, two types of coatings having different cross-sectional structures shown in FIG. 2 with different types of water-repellent particles and an uncoated copper material surface were evaluated.

【0055】実験用試験片は、無酸素銅板(30mm×40mm
×1mm)を用い、その片面に上記の撥水性処理を行った。
試験片に形成した被膜は、表2に示すようにめっき層に
複合する撥水性粒子の材質の組合せを変えて試験片1-1
から試験片1-4までの4種類作成した。その試験片を下
記雰囲気中の恒温室内に垂直に設置し背面より冷却す
る。一定時間(約10分)経過すると被膜表面に凝縮水が付
き初め、徐々に成長して大きくなり、水滴として流れ落
ちる。この流れ落ちる水滴の状態を写真に撮り粒径を測
定した。
An experimental test piece is an oxygen-free copper plate (30 mm × 40 mm).
The water repellent treatment described above was performed on one surface of the surface of the surface of the surface of the surface of the surface of the surface of the sheet.
As shown in Table 2, the coating formed on the test piece was prepared by changing the combination of the materials of the water-repellent particles to be combined with the plating layer.
To four test pieces 1-4 were prepared. The test piece is installed vertically in a thermostatic chamber in the following atmosphere and cooled from the back. After a lapse of a certain time (about 10 minutes), condensed water begins to attach to the surface of the film, gradually grows and becomes larger, and drops off as water droplets. The state of the water droplets flowing down was photographed to measure the particle size.

【0056】《凝縮条件》 雰囲気温度 15±1℃ 冷却面温度 2±2℃ 露点温度 13±0.5℃ 湿度 70% 評価試験結果を表2に示す。表より明らかなように、水
蒸気が凝縮して水滴となって転がり落ちる最小粒径は、
本発明の撥水性被膜が0.3mm〜1.0mm程度であり、比較し
た従来の被膜の3mm〜5mm程度及び銅材の裸面の4mmより
小さく、凝縮水に対し、撥水性効果が非常に大きいこと
が判明した。特に、試験片1-1の試験片は、水滴となっ
て転がり落ちる最小粒径がわずか0.3mmであり、水蒸気
が凝縮しても極めて小さい水滴で落下するため、被膜表
面の水滴の量が従来のものに比べて格段に低減する。
<< Condensation Conditions >> Ambient temperature 15 ± 1 ° C Cooling surface temperature 2 ± 2 ° C Dew point temperature 13 ± 0.5 ° C Humidity 70% Table 2 shows the evaluation test results. As is clear from the table, the minimum particle size that water vapor condenses and rolls into water droplets is:
The water-repellent coating of the present invention is about 0.3 mm to 1.0 mm, which is smaller than about 3 mm to 5 mm of the conventional coating and 4 mm of the bare surface of the copper material, which has a very large water-repellent effect on condensed water. There was found. In particular, the test piece of test piece 1-1 has a minimum particle diameter of 0.3 mm that rolls down as water droplets, and even if water vapor condenses, it drops with extremely small water droplets. Remarkably reduced compared to the one.

【0057】[0057]

【表2】 [Table 2]

【0058】《実施例2》下記に示す組成4の粒子複合
めっき液を用いて、上記実施例1と同じめっき条件で粒
子複合電気ニッケルめっきを行った。本実施例では、め
っき液に高融点の撥水性粒子と低融点の撥水性粒子の両
方を同時に混合し、ディッピング処理を行なわず前記実
施例とほぼ同じ構造の被膜を形成した点が前記実施例と
異なる。
Example 2 Using the particle composite plating solution having the composition 4 shown below, particle composite electric nickel plating was performed under the same plating conditions as in Example 1 above. In this embodiment, both high-melting-point water-repellent particles and low-melting-point water-repellent particles are simultaneously mixed in the plating solution, and a coating film having substantially the same structure as that of the above-mentioned embodiment is formed without performing dipping treatment. Different from

【0059】本実施例においては、めっき液中の高融点
の撥水性粒子と低融点の撥水性粒子との混合比を10:
2とした。本実施例で使用した低融点の撥水性粒子は高
融点の撥水性粒子よりも粒径が小さいため被膜中に複合
されやすいためであり、種々検討を行なった結果、混合
比は10:1から10:4程度がよいことが分かった。
即ち、低融点の撥水性粒子が多いと、めっき処理時に
めっき被膜中に複合される高融点の撥水性粒子の低融点
の撥水性粒子に対する含有比率が低下し、熱処理によっ
て低融点の撥水性粒子を溶解した時に表面に形成される
高融点の撥水性粒子の凹凸形状が疎らになり撥水性が低
下する。又、低融点の撥水性粒子が少ないと、低融点の
撥水性粒子を溶解してもその量が少ないためめっき被膜
のニッケル表面を覆うことができなくなるためである。
In this embodiment, the mixing ratio of the high melting point water repellent particles and the low melting point water repellent particles in the plating solution was 10:
It was set to 2. This is because the low-melting point water-repellent particles used in this example are smaller in particle size than the high-melting point water-repellent particles and are therefore likely to be compounded in the coating film. As a result of various studies, the mixing ratio was 10: 1. It turns out that about 10: 4 is good.
That is, when there are many low-melting-point water-repellent particles, the content ratio of the high-melting-point water-repellent particles compounded in the plating film during the plating treatment to the low-melting-point water-repellent particles decreases, and the heat treatment causes the low-melting-point water-repellent particles to decrease. When water is dissolved, the uneven shape of the high melting point water repellent particles formed on the surface becomes sparse, and the water repellency decreases. Further, if the low-melting-point water-repellent particles are small, even if the low-melting-point water-repellent particles are dissolved, the amount thereof is small and the nickel surface of the plating film cannot be covered.

【0060】〈組成4〉 スルファミン酸ニッケル 350g/l 塩化ニッケル 45g/l ホウ酸 40g/l 高融点粒子(PTFE分子量大 or PFA) 120g 低融点粒子(PTFE分子量小 or FEP) 24g カチオン系界面活性剤(1wt%水溶液) 144g めっき後の被膜の断面形態を図4に示す。図に示すよう
に基板1に形成されるニッケルめっき層2の中に高融点
の撥水性粒子3と低融点の撥水性粒子4の両方が複合さ
れており、ニッケルめっき層2の表面にも両方の粒子が
付着した状態となっている。
<Composition 4> Nickel sulfamate 350 g / l Nickel chloride 45 g / l Boric acid 40 g / l High melting point particles (PTFE molecular weight large or PFA) 120 g Low melting point particles (PTFE molecular weight small or FEP) 24 g Cationic surfactant (1 wt% aqueous solution) 144 g The cross-sectional morphology of the coating after plating is shown in FIG. As shown in the figure, both the high melting point water repellent particles 3 and the low melting point water repellent particles 4 are compounded in the nickel plating layer 2 formed on the substrate 1, and both are formed on the surface of the nickel plating layer 2. The particles are attached.

【0061】次に上記実施例1に示した条件で熱処理を
行い、図5に示す断面構造の被膜を得た。この被膜は低
融点の撥水性粒子4のみが融解して、高融点の撥水性粒
子3の間の金属マトリックス部2上に溶け落ち、被膜
4’を形成している。上記実施例1の被膜に対し、被膜
4’の一部がニッケルめっき層2の表面に食い込んだ部
分が形成されているが、この原因はニッケルめっき層2
に複合した低融点の撥水性粒子4のうち一部ニッケルめ
っき層2の表面に露出した状態のものが表面から溶け落
ちたものと一体化するためであり、被膜4’の厚さが薄
いためことに起因する。
Next, heat treatment was performed under the conditions shown in the above Example 1 to obtain a coating film having a sectional structure shown in FIG. Only the low-melting water-repellent particles 4 are melted in the coating film, and are melted down on the metal matrix portion 2 between the high-melting-point water-repellent particles 3 to form a coating film 4 '. In contrast to the coating of Example 1 described above, a portion of the coating 4 ′ that digs into the surface of the nickel plating layer 2 is formed. The cause is the nickel plating layer 2
This is because some of the low melting point water-repellent particles 4 composited with the one that are partially exposed on the surface of the nickel plating layer 2 are integrated with those that have melted down from the surface, and the thickness of the coating film 4'is thin. Due to that.

【0062】本実施例によれば、高融点の撥水性粒子3
と低融点の撥水性粒子4を被膜中に同時に複合した後熱
処理を行なえばよいため、上記実施例1の工程に比べデ
ィッピング処理がない分作業工程が少なくてよい。
According to this embodiment, the high melting point water-repellent particles 3 are used.
Since the heat treatment may be performed after the water-repellent particles 4 having a low melting point are simultaneously compounded in the coating film, the number of working steps may be reduced as compared with the steps of the above-described Example 1 because the dipping process is not performed.

【0063】《実施例3》本実施例においては、まず上
記実施例2に示した工程と同様の工程によって図4に示
す被膜を形成する。次に前記実施例1で用いた組成2の
ディッピング溶液を用いて、ディッピング処理を行っ
た。この段階における被膜の断面構造は図6のようにな
っている。最後に245±2℃での加熱処理を行い、図
7に示す被膜を得た。本実施例による被膜は前記実施例
2の被膜に比べ被膜4’の厚さ約2μmと厚くなってお
りその表面が平面状となっている点が異なる。
Example 3 In this example, first, the film shown in FIG. 4 is formed by the same steps as the steps shown in Example 2 above. Next, dipping treatment was performed using the dipping solution having the composition 2 used in Example 1 above. The sectional structure of the coating film at this stage is as shown in FIG. Finally, heat treatment at 245 ± 2 ° C. was performed to obtain a film shown in FIG. The coating according to the present embodiment is different from the coating according to the second embodiment in that the thickness of the coating 4'is as thick as about 2 μm and the surface thereof is flat.

【0064】本実施例によれば被膜表面に形成される被
膜4’により、高融点の撥水性粒子3を保持するアンカ
ー効果が増加し、より耐久性が向上する。
According to this embodiment, the coating film 4'formed on the surface of the coating film increases the anchoring effect for holding the high melting point water-repellent particles 3 and further improves the durability.

【0065】《実施例4》本実施例は、上記実施例で行
なっためっき処理を行なわずにディッピング処理による
重ね塗りによって撥水性被膜を得た例である。本実施例
では、基板表面に直接低融点の撥水性被膜4’を被覆す
るため、基板と被膜との密着性を上げるため、基板表面
には機械的切削痕を形成した。基板を前処理した後下記
の組成5の溶液を用いて、ディッピング処理を行った。
Example 4 This example is an example in which a water-repellent film was obtained by overcoating by dipping without the plating performed in the above example. In this example, since the substrate surface was directly coated with the low melting point water-repellent coating 4 ′, mechanical cutting marks were formed on the substrate surface in order to improve the adhesion between the substrate and the coating. After pretreating the substrate, dipping treatment was performed using a solution having the following composition 5.

【0066】〈組成5〉 高融点粒子(PTFE分子量大 or PFA) 10g 低融点粒子(PTFE分子量小 or FEP) 2g カチオン系界面活性剤(1wt%水溶液) 12g 水酸化ナトリウム水溶液(0.01M) 100g エタノール 24g ディッピング処理は、同じ液を用いて3回行なった。十
分に乾燥した後、245±2℃での加熱処理を行い、図
8に示す被膜を得た。
<Composition 5> High melting point particles (large PTFE molecular weight or PFA) 10 g Low melting point particles (small PTFE molecular weight or FEP) 2 g Cationic surfactant (1 wt% aqueous solution) 12 g Sodium hydroxide aqueous solution (0.01 M) 100 g Ethanol The 24 g dipping treatment was performed three times using the same solution. After being sufficiently dried, heat treatment was performed at 245 ± 2 ° C. to obtain a film shown in FIG.

【0067】本実施例によれば、めっき工程が削除でき
るため設備の簡素化が図れる。尚、基板と被膜との密着
性を上げる方法としては、上記の他、化学的、電気化学
的方法等によってもよい。
According to this embodiment, the plating process can be eliminated, so that the facility can be simplified. As a method for improving the adhesion between the substrate and the coating, other than the above, a chemical or electrochemical method may be used.

【0068】《実施例5》図9に本発明の撥水性被膜を
その表面に処理した熱交換器5の斜視図を示す。熱交換
器5は、複数のアルミニウム製プレートフィン6をチュ
ーブ7が貫通した構造をしており、チューブ7内には冷
媒が流れ、冷媒の熱をチューブ7からプレートフィン6
に伝え、そのプレートフィン6の間を流れる空気9と熱
交換する構造となっている。本実施例では、この熱交換
器を冷媒蒸発器として使用した。
Example 5 FIG. 9 is a perspective view of the heat exchanger 5 having the surface treated with the water-repellent coating of the present invention. The heat exchanger 5 has a structure in which a tube 7 penetrates a plurality of aluminum plate fins 6, a refrigerant flows in the tube 7, and the heat of the refrigerant is transferred from the tube 7 to the plate fins 6.
And has a structure for exchanging heat with the air 9 flowing between the plate fins 6. In this example, this heat exchanger was used as a refrigerant evaporator.

【0069】アルミニウム製プレートフィン6の表面に
は実施例1の条件で作成した撥水性被膜8を施した。冷
媒蒸発器では、チューブ内7を流れる冷媒とプレートフ
ィン6間を通過する空気9とが熱交換することによりプ
レートフィン6の表面温度が低下し、空気中の水分がプ
レートフィンの表面8に凝縮して付着する。しかし、本
実施例ではプレートフィン表面には撥水性被膜を施して
あるため、先に述べた凝縮実験のように表面の水滴は小
さい径の状態でプレートフィン表面から転がり落ちた。
このため、表面には霜の原因となる水滴の付着が少な
く、また付着している水滴もフィンとの付着面積が小さ
いため、着霜しにくくなり、連続運転時間を大幅に延長
することが可能となった。
The surface of the aluminum plate fin 6 was coated with the water-repellent coating 8 prepared under the conditions of Example 1. In the refrigerant evaporator, heat exchange between the refrigerant flowing in the tube 7 and the air 9 passing between the plate fins 6 lowers the surface temperature of the plate fins 6, and the water content in the air is condensed on the surface 8 of the plate fins. And attach. However, in this embodiment, since the surface of the plate fin is coated with a water-repellent coating, water droplets on the surface of the plate fin fell off from the surface of the plate fin with a small diameter as in the condensation test described above.
For this reason, there are few water droplets that cause frost on the surface, and because the water droplets that are attached have a small area of attachment with the fins, it is difficult for frost to form and the continuous operation time can be greatly extended. Became.

【0070】[0070]

【発明の効果】本発明によれば、水蒸気中及び霧状の水
滴にたいしても優れた撥水性を示し、かつ耐久性に優れ
た被膜を得ることができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a coating film which exhibits excellent water repellency even with respect to water vapor and mist-like water droplets and which has excellent durability.

【0071】又、この被膜を用いた熱交換器は、フィン
表面に着く水滴が少なく、連続運転時間の大幅延長がで
きる。
Further, the heat exchanger using this coating has few water droplets adhering to the fin surface, and the continuous operation time can be greatly extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示す撥水性被膜の一部断面
斜視図である。
FIG. 1 is a partial cross-sectional perspective view of a water-repellent coating showing Example 1 of the present invention.

【図2】従来の撥水性被膜の断面図である。FIG. 2 is a cross-sectional view of a conventional water-repellent coating.

【図3】本発明の実施例1の被覆処理工程中の被膜断面
図である。
FIG. 3 is a cross-sectional view of a coating during a coating treatment process according to the first embodiment of the present invention.

【図4】本発明の実施例2の被覆処理工程中の被膜断面
図である。
FIG. 4 is a cross-sectional view of a coating film during a coating treatment process of Example 2 of the present invention.

【図5】本発明の実施例2を示す撥水性被膜の断面図で
ある。
FIG. 5 is a cross-sectional view of a water-repellent coating showing Example 2 of the present invention.

【図6】本発明の実施例3の被覆処理工程中の被膜断面
図である。
FIG. 6 is a cross-sectional view of a coating film during a coating treatment process of Example 3 of the present invention.

【図7】本発明の実施例3を示す撥水性被膜の断面図で
ある。
FIG. 7 is a cross-sectional view of a water-repellent coating showing Example 3 of the present invention.

【図8】本発明の実施例4を示す撥水性被膜の断面図で
ある。
FIG. 8 is a cross-sectional view of a water-repellent coating showing Example 4 of the present invention.

【図9】本発明の実施例5を示す熱交換器の斜視図であ
る。
FIG. 9 is a perspective view of a heat exchanger showing Embodiment 5 of the present invention.

【図10】従来の撥水性被膜表面の拡大断面図である。FIG. 10 is an enlarged cross-sectional view of the surface of a conventional water-repellent coating.

【図11】従来例の被膜の断面図である。FIG. 11 is a cross-sectional view of a coating film of a conventional example.

【符号の説明】[Explanation of symbols]

1…基板、2…めっき層、3……高融点の撥水性粒子、
3’…高融点の撥水性粒子が融解してできた被膜、4…
…低融点の撥水性粒子、4’…低融点の撥水性粒子が融
解してできた被膜、5……熱交換器、6……プレートフ
ィン、7……チューブ、8……撥水性被膜、9……空
気、10…水分子。
1 ... Substrate, 2 ... Plating layer, 3 ... High melting point water-repellent particles,
3 '... a film formed by melting high-melting-point water-repellent particles, 4 ...
... low melting point water-repellent particles, 4 '... coating formed by melting low melting point water-repellent particles, 5 ... heat exchanger, 6 ... plate fin, 7 ... tube, 8 ... water-repellent coating, 9 ... Air, 10 ... Water molecule.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F28F 13/18 A (72)発明者 楠本 寛 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 渡辺 信淳 京都府長岡京市うぐいす台136 (72)発明者 ▲鄭▼ 容宝 京都府京都市上京区千本通出水下る十四軒 町391−1西陣グランドハイツ601号─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F28F 13/18 A (72) Inventor Hiroshi Kusumoto 502 Kandachicho, Tsuchiura-shi, Ibaraki Hiritsu Seisakusho Co., Ltd. Inside the Mechanical Research Laboratory (72) Inventor Nobuyoshi Watanabe 136 Uguisudai, Nagaokakyo, Kyoto Prefecture (72) Inventor ▲ Zheng ▼ Bao, 391-1 Nishijin Grand Heights, No. 39, 14 Sengen-dori, Senbon-dori, Kyoto City, Kyoto Prefecture

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】基板上に直接または間接に配置する撥水性
被膜であって、その被膜中に一部が埋まり、かつその被
膜上に一部が突出するように撥水性粒子を分散させ、前
記撥水性被膜の材質と前記撥水性粒子の材質とは融点を
異にすることを特徴とする撥水性被膜。
1. A water-repellent coating which is directly or indirectly arranged on a substrate, wherein water-repellent particles are dispersed so that a part of the coating is embedded in the coating and a part of the coating is projected onto the coating. A water-repellent coating characterized in that the material of the water-repellent coating and the material of the water-repellent particles have different melting points.
【請求項2】請求項1記載の撥水性被膜において、前記
撥水性被膜は、疎水性の基を有する物質により構成され
たものであることを特徴とする撥水性被膜。
2. The water-repellent coating according to claim 1, wherein the water-repellent coating is composed of a substance having a hydrophobic group.
【請求項3】請求項1記載の撥水性被膜において、前記
撥水性被膜は、水の表面張力より小さい臨界表面張力を
もつ基を有する物質により構成されたものであることを
特徴とする撥水性被膜。
3. The water-repellent coating according to claim 1, wherein the water-repellent coating is composed of a substance having a group having a critical surface tension smaller than the surface tension of water. Coating.
【請求項4】請求項1記載の撥水性被膜において、前記
撥水性被膜は、水の表面張力より小さい臨界表面張力を
もつ基を有する物質により構成され、前記撥水性粒子は
ポリテトラフルオロエチレンの臨界表面張力と同等、あ
るいはそれより小さい臨界表面張力をもつ基を有する物
質により構成されたものであることを特徴とする撥水性
被膜。
4. The water-repellent coating according to claim 1, wherein the water-repellent coating is composed of a substance having a group having a critical surface tension smaller than the surface tension of water, and the water-repellent particles are made of polytetrafluoroethylene. A water-repellent coating comprising a substance having a group having a critical surface tension equal to or lower than the critical surface tension.
【請求項5】請求項1乃至4のいずれか記載の撥水性被
膜において、前記撥水性被膜の材質の融点が、前記撥水
性粒子の材質の融点より低いことを特徴とする撥水性被
膜。
5. The water-repellent coating according to claim 1, wherein the material of the water-repellent coating has a melting point lower than that of the material of the water-repellent particles.
【請求項6】基板上に直接または間接に撥水撥油性被膜
を配置し、その被膜中に一部が埋まり、かつその被膜上
に一部が突出するように撥水撥油性粒子を分散させ、前
記撥水撥油性被膜の材質と前記撥水撥油性粒子の材質と
は融点を異にすることを特徴とする撥水撥油性被膜。
6. A water- and oil-repellent coating is arranged directly or indirectly on a substrate, and water- and oil-repellent particles are dispersed so that a part of the water- and oil-repellent coating is embedded in the coating and a part of the water- and oil-repellent coating is projected on the coating. The water- and oil-repellent coating film, wherein the water- and oil-repellent coating material and the water- and oil-repellent particle material have different melting points.
【請求項7】請求項6に記載の撥水撥油性被膜におい
て、前記撥水撥油性被膜はフッ素樹脂から構成されたも
のであることを特徴とする撥水撥油性被膜。
7. The water- and oil-repellent coating according to claim 6, wherein the water- and oil-repellent coating is made of a fluororesin.
【請求項8】請求項6または7に記載の撥水撥油性被膜
において、前記撥水撥油性被膜の材質の融点が前記撥水
撥油性粒子の材質の融点より低いことを特徴とする撥水
撥油性被膜。
8. The water / oil repellent coating according to claim 6 or 7, wherein the melting point of the material of the water / oil repellent coating is lower than the melting point of the material of the water / oil repellent particles. Oil repellent coating.
【請求項9】冷却された冷媒が内部を流動する管群と、
この管群に固定されその間を空気が流れるフィン群を有
する熱交換器において、前記フィン群の表面に、その被
膜中に一部が埋まり、かつ一部が被膜上に突出し融点が
被膜の融点と異なる撥水性粒子を分散させた撥水性被膜
を、直接または間接に形成したことを特徴とする熱交換
器。
9. A group of tubes in which a cooled refrigerant flows,
In a heat exchanger having a group of fins fixed to this tube group and through which air flows, a part of the fin group is buried in the coating on the surface of the fin group, and a part of the fin projects on the coating so that the melting point is the melting point of the coating. A heat exchanger characterized in that a water-repellent film in which different water-repellent particles are dispersed is directly or indirectly formed.
【請求項10】請求項9に記載の熱交換器において、前
記撥水性被膜は疎水性の基を有する物質により構成され
たものであることを特徴とする熱交換器。
10. The heat exchanger according to claim 9, wherein the water repellent coating film is made of a substance having a hydrophobic group.
【請求項11】請求項9に記載の熱交換器において、前
記撥水性被膜は水の表面張力より小さい臨界表面張力を
もつ基を有する物質により構成されたものであることを
特徴とする熱交換器。
11. The heat exchanger according to claim 9, wherein the water-repellent coating is composed of a substance having a group having a critical surface tension smaller than the surface tension of water. vessel.
【請求項12】請求項9に記載の熱交換器において、前
記撥水性被膜は水の表面張力より小さい臨界表面張力を
もつ基を有する物質により構成され、前記撥水性粒子は
ポリテトラフルオロエチレンの臨界表面張力と同等、あ
るいはそれより小さい臨界表面張力をもつ基を有する物
質により構成されたものであることを特徴とする熱交換
器。
12. The heat exchanger according to claim 9, wherein the water repellent coating film is composed of a substance having a group having a critical surface tension smaller than the surface tension of water, and the water repellent particles are made of polytetrafluoroethylene. A heat exchanger comprising a substance having a group having a critical surface tension equal to or smaller than the critical surface tension.
【請求項13】請求項9乃至12のいずれか記載の熱交
換器において、前記撥水性被膜の材質の融点が、前記撥
水性粒子の材質の融点より低いことを特徴とする熱交換
器。
13. The heat exchanger according to claim 9, wherein the material of the water-repellent coating has a melting point lower than that of the material of the water-repellent particles.
【請求項14】冷却された冷媒が内部を流動する管群
と、この管群に固定されその間を空気が流れるフィン群
を有する熱交換器において、前記フィン群の表面に、そ
の被膜中に一部が埋まり、かつ一部が被膜上に突出し融
点が被膜の融点と異なる撥水撥油性粒子を分散させた撥
水撥油性被膜を、直接または間接に形成したことを特徴
とする熱交換器。
14. A heat exchanger having a group of tubes in which a cooled refrigerant flows, and a group of fins fixed to the group of tubes and allowing air to flow between them. A heat exchanger characterized by directly or indirectly forming a water- and oil-repellent coating in which water-repellent and oil-repellent particles in which a part is buried and a part of which projects above the coating and whose melting point is different from the melting point of the coating are dispersed.
【請求項15】請求項14に記載の熱交換器において、
前記撥水撥油性被膜はフッ素樹脂から構成されたもので
あることを特徴とする熱交換器。
15. The heat exchanger according to claim 14, wherein
The heat exchanger, wherein the water-repellent and oil-repellent coating is made of a fluororesin.
【請求項16】請求項14または15に記載の熱交換器
において、前記撥水撥油性被膜の材質の融点が前記撥水
撥油性粒子の材質の融点より低いことを特徴とする熱交
換器。
16. The heat exchanger according to claim 14, wherein the water-repellent and oil-repellent coating has a melting point lower than that of the water- and oil-repellent particles.
【請求項17】請求項9乃至16のいずれか記載の熱交
換器を搭載したことを特徴とする空調機器。
17. An air conditioner equipped with the heat exchanger according to any one of claims 9 to 16.
【請求項18】請求項9乃至16のいずれか記載の熱交
換器を搭載したことを特徴とする冷凍冷蔵機器。
18. A refrigerating machine equipped with the heat exchanger according to any one of claims 9 to 16.
【請求項19】基板表面に高融点の撥水性粒子を複合し
た被膜を電気的作用により形成する第1工程と、この被
膜の表面に、前記高融点の撥水性粒子より低融点の撥水
性粒子を供給する第2工程と、被膜の表面に供給した低
融点の撥水性粒子が軟化もしくは融解する温度で熱処理
する第3工程、からなることを特徴とする撥水性被膜の
製法。
19. A first step of forming a composite film of water-repellent particles having a high melting point on the surface of a substrate by an electric action, and water-repellent particles having a melting point lower than that of the water-repellent particles having a high melting point on the surface of the film. And a third step of heat-treating at a temperature at which the low-melting-point water-repellent particles supplied to the surface of the coating are softened or melted.
【請求項20】基板表面に融点の異なる2種類以上の撥
水性粒子を複合した被膜を電気的作用により形成する第
1の工程と、前記2種類以上の撥水性粒子の中の低融点
の粒子が軟化もしくは融解する温度で熱処理する第2の
工程、からなることを特徴とする撥水性被膜の製法。
20. A first step of forming a coating film, which is composed of two or more kinds of water repellent particles having different melting points, on the surface of a substrate by an electric action, and particles having a low melting point among the two or more kinds of water repellent particles. A second step of heat-treating at a temperature at which is softened or melted, and a method for producing a water-repellent coating film.
【請求項21】基板表面に融点の異なる2種類以上の撥
水性粒子を複合した被膜を電気的作用により形成する第
1の工程と、この表面に前記2種類以上の撥水性粒子の
中の低融点の撥水性粒子を供給する第2工程と、低融点
の撥水性粒子が軟化もしくは融解する温度で熱処理する
第3の工程、からなることを特徴とする撥水性被膜の製
法。
21. A first step of forming a coating film, which is composed of two or more kinds of water-repellent particles having different melting points, on the surface of a substrate by an electric action, and a low step of the two or more kinds of water-repellent particles on the surface. A method for producing a water-repellent coating, comprising a second step of supplying water-repellent particles having a melting point and a third step of heat-treating at a temperature at which the low-melting water-repellent particles are softened or melted.
【請求項22】請求項19乃至21のいずれか記載の撥
水性被膜の製法において、前記電気的作用により被膜を
形成する方法が、金属めっき法であることを特徴とする
撥水性被膜の製法。
22. The method for producing a water-repellent coating according to claim 19, wherein the method for forming the coating by the electric action is a metal plating method.
【請求項23】請求項19乃至21のいずれか記載の撥
水性被膜の製法において、前記電気的作用により被膜を
形成する方法が、電着被覆法を用いることを特徴とする
撥水性被膜の製法。
23. The method for producing a water-repellent coating according to claim 19, wherein the method for forming the coating by the electrical action uses an electrodeposition coating method. .
【請求項24】請求項22に記載の撥水性被膜の製法に
おいて、めっき被膜のマトリックスがニッケルもしくは
ニッケル合金であることを特徴とする撥水性被膜の製
法。
24. The method for producing a water-repellent coating according to claim 22, wherein the matrix of the plated coating is nickel or a nickel alloy.
【請求項25】基板表面に融点の異なる2種類以上の撥
水性粒子を塗布する第1の工程と、前記2種類以上の撥
水性粒子の中の低融点の撥水性粒子が軟化もしくは融解
し、かつ高融点の撥水性粒子の融点以下で熱処理する第
2の工程、からなることを特徴とする撥水性被膜の製
法。
25. A first step of applying two or more types of water-repellent particles having different melting points to a surface of a substrate, and the low-melting-point water-repellent particles of the two or more types of water-repellent particles are softened or melted, And a second step of performing a heat treatment at a temperature equal to or lower than the melting point of the water-repellent particles having a high melting point, and a method for producing a water-repellent film.
【請求項26】請求項25に記載の撥水性被膜の製法に
おいて、前記第1の工程は基板表面に前記2種類以上の
撥水性粒子を複数回繰返し塗布することを特徴とする撥
水性被膜の製法。
26. A method for producing a water-repellent coating according to claim 25, wherein in the first step, the surface of the substrate is coated with the water-repellent particles of two or more types repeatedly a plurality of times. Manufacturing method.
【請求項27】請求項19乃至26のいずれか記載の撥
水性被膜の製法において、前記融点の異なる2種類以上
の撥水性粒子は粒径が異なるものであることを特徴とす
る撥水性被膜の製法。
27. The method for producing a water-repellent coating according to claim 19, wherein the two or more types of water-repellent particles having different melting points have different particle sizes. Manufacturing method.
JP31771093A 1993-12-17 1993-12-17 Water-repellent coating material, its production and heat exchanger Pending JPH07166123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31771093A JPH07166123A (en) 1993-12-17 1993-12-17 Water-repellent coating material, its production and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31771093A JPH07166123A (en) 1993-12-17 1993-12-17 Water-repellent coating material, its production and heat exchanger

Publications (1)

Publication Number Publication Date
JPH07166123A true JPH07166123A (en) 1995-06-27

Family

ID=18091173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31771093A Pending JPH07166123A (en) 1993-12-17 1993-12-17 Water-repellent coating material, its production and heat exchanger

Country Status (1)

Country Link
JP (1) JPH07166123A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157553A (en) * 1995-12-06 1997-06-17 Michio Takeuchi Insulation coating material and method for insulation coating
JPH09279056A (en) * 1996-04-18 1997-10-28 Hitachi Ltd Ultra-water-repellent coating material and ultra-water-repellent coating film using the same
JPH1025469A (en) * 1996-07-09 1998-01-27 Matsushita Electric Ind Co Ltd Water-repellent surface structure and method for forming the same
JPH11217699A (en) * 1998-01-30 1999-08-10 Noge Denki Kogyo:Kk Plated formed body
WO2000058415A1 (en) * 1999-03-25 2000-10-05 Wilhelm Barthlott Method and device for the loss-free transport of liquids
WO2003093388A1 (en) * 2002-04-30 2003-11-13 Daikin Industries, Ltd. Surface treating composition excellent in water repellency and water sliding property
JP2004271050A (en) * 2003-03-07 2004-09-30 Daikin Ind Ltd Outdoor unit of separate type heat pump air conditioner
JP2006503187A (en) * 2002-10-18 2006-01-26 エルテック・システムズ・コーポレーション Coating for inhibiting undesired oxidation in electrochemical cells
JP2007281125A (en) * 2006-04-05 2007-10-25 Murata Mfg Co Ltd Electronic component
JP2012220080A (en) * 2011-04-07 2012-11-12 Mitsubishi Electric Corp Method for coating heat exchanger
JP2013204887A (en) * 2012-03-28 2013-10-07 Sharp Corp Fin for heat exchanger and heat exchanger
JP2014052184A (en) * 2013-11-01 2014-03-20 Uacj Corp Aluminum fin material for heat exchanger, and heat exchanger using the same
JP2019504214A (en) * 2015-12-30 2019-02-14 マックステリアル・インコーポレイテッドMaxterial, Inc. Coatings and coated surfaces with selected surface features and shapes
JP2019189773A (en) * 2018-04-26 2019-10-31 株式会社吉野工業所 Liquid repellent article and manufacturing method thereof
WO2021162061A1 (en) * 2020-02-13 2021-08-19 株式会社神戸製鋼所 Aluminum fin material, heat exchanger, and method for producing aluminum fin material
CN117070127A (en) * 2023-10-13 2023-11-17 天津天和盛新材料科技有限公司 Preparation and application of high-heat-conductivity anti-icing coating

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157553A (en) * 1995-12-06 1997-06-17 Michio Takeuchi Insulation coating material and method for insulation coating
JPH09279056A (en) * 1996-04-18 1997-10-28 Hitachi Ltd Ultra-water-repellent coating material and ultra-water-repellent coating film using the same
JPH1025469A (en) * 1996-07-09 1998-01-27 Matsushita Electric Ind Co Ltd Water-repellent surface structure and method for forming the same
JPH11217699A (en) * 1998-01-30 1999-08-10 Noge Denki Kogyo:Kk Plated formed body
WO2000058415A1 (en) * 1999-03-25 2000-10-05 Wilhelm Barthlott Method and device for the loss-free transport of liquids
WO2003093388A1 (en) * 2002-04-30 2003-11-13 Daikin Industries, Ltd. Surface treating composition excellent in water repellency and water sliding property
JP2006503187A (en) * 2002-10-18 2006-01-26 エルテック・システムズ・コーポレーション Coating for inhibiting undesired oxidation in electrochemical cells
JP2004271050A (en) * 2003-03-07 2004-09-30 Daikin Ind Ltd Outdoor unit of separate type heat pump air conditioner
JP2007281125A (en) * 2006-04-05 2007-10-25 Murata Mfg Co Ltd Electronic component
JP2012220080A (en) * 2011-04-07 2012-11-12 Mitsubishi Electric Corp Method for coating heat exchanger
JP2013204887A (en) * 2012-03-28 2013-10-07 Sharp Corp Fin for heat exchanger and heat exchanger
JP2014052184A (en) * 2013-11-01 2014-03-20 Uacj Corp Aluminum fin material for heat exchanger, and heat exchanger using the same
JP2019504214A (en) * 2015-12-30 2019-02-14 マックステリアル・インコーポレイテッドMaxterial, Inc. Coatings and coated surfaces with selected surface features and shapes
JP2022065007A (en) * 2015-12-30 2022-04-26 マックステリアル・インコーポレイテッド Coatings and coated surfaces with selected surface characteristics and shapes
JP2019189773A (en) * 2018-04-26 2019-10-31 株式会社吉野工業所 Liquid repellent article and manufacturing method thereof
WO2021162061A1 (en) * 2020-02-13 2021-08-19 株式会社神戸製鋼所 Aluminum fin material, heat exchanger, and method for producing aluminum fin material
CN117070127A (en) * 2023-10-13 2023-11-17 天津天和盛新材料科技有限公司 Preparation and application of high-heat-conductivity anti-icing coating

Similar Documents

Publication Publication Date Title
JPH07166123A (en) Water-repellent coating material, its production and heat exchanger
TWI718843B (en) Copper foil with carrier and copper clad laminate
Schuchert et al. Electrochemical copper deposition in etched ion track membranes: Experimental results and a qualitative kinetic model
US5773087A (en) Coated article and method for producing same
TWI289421B (en) Multilayer printed wiring board and method for manufacturing the multilayer printed wiring board
Liang et al. Fabrication and corrosion resistance of superhydrophobic hydroxide zinc carbonate film on aluminum substrates
CN101950685B (en) Polypyrrole microelectrode with three-dimensional structure and preparation method thereof
JPH10281690A (en) Air conditioner, heat exchanger and its production
US4895625A (en) Method for producing a galvanically deposited protection layer against hot gas corrosion
EP0224761B1 (en) Heat-transfer material and method of producing same
JPH08246163A (en) Method for imparting liquid pepellency to metallic surface
JP3040799B2 (en) Fluorine-based cation exchange membrane
Song et al. Hierarchically branched siloxane brushes for efficient harvesting of atmospheric water
JPH0776797A (en) Organic coating film and its formation
CA2065536C (en) Organic composite coated steel strip having improved corrosion resistance and spot weldability
JPH07197017A (en) Solid with water-repellent surface and method for forming the same
US4486278A (en) Cathode and electrolysis
US4128459A (en) Continuous electroplating of alloy onto metallic strip
US20060049058A1 (en) Method for the electrolytic deposition of metals
CN107287628B (en) A kind of manufacture craft with surface optical diffusion microstructural mold roller
JPH06117970A (en) Structure of liquid supply pipe
JP2011086472A (en) Separator of fuel cell, and manufacturing method thereof
JPH06322595A (en) Production of water repellent metallic material
JP2002298674A (en) Manufacturing method of insulation wire and insulation wire
JPH1143777A (en) Aluminum or aluminum alloy material excellent in water repellency and frosting preventability and its production