JPH06117970A - Structure of liquid supply pipe - Google Patents

Structure of liquid supply pipe

Info

Publication number
JPH06117970A
JPH06117970A JP26636092A JP26636092A JPH06117970A JP H06117970 A JPH06117970 A JP H06117970A JP 26636092 A JP26636092 A JP 26636092A JP 26636092 A JP26636092 A JP 26636092A JP H06117970 A JPH06117970 A JP H06117970A
Authority
JP
Japan
Prior art keywords
liquid
supply pipe
film
metal
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26636092A
Other languages
Japanese (ja)
Inventor
Isao Kumazuki
功 熊懐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP26636092A priority Critical patent/JPH06117970A/en
Publication of JPH06117970A publication Critical patent/JPH06117970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To obtain a supply pipe which can supply a liquid fully to the end and can drop an accurate amount of liquid by covering the inner surface of the tip part of the pipe with a film obtained by performing dispersion and eutectic reaction of a particle with improved repellency into a metal matrix. CONSTITUTION:The supply pipe A is constituted of a cylindrical needleshaped body part 1 and a film 2 which is covered over the internal total surface and is fitted to the cylindrical metering part of a micro syringe and is used to drop a liquid into a desired container and another liquid. The body part 1 is constituted of a metal material such as stainless steel constituting a general needle. The film 2 consists of fluororesin particle which is subjected to fluoric treatment into a metal matrix or a repellent complex plating where graphite fluoride particle is subjected to dispersion and eutectic reaction. With the complex plating, the fluororesin particle which is subjected to fluoric treatment into a metal plating bath which becomes a matrix is obtained by dispersing a repellent non-metal particle such as graphite fluoride using a proper surface-active agent and then dipping the body part 1 into a dispersion liquid and then performing electrolytic deposition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特に微小量の液体の滴下
操作に用いて好適で液切れの優れた液体供給管の構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a liquid supply pipe which is suitable for dropping a small amount of liquid and is excellent in drainage.

【0002】[0002]

【従来の技術】微小量の液体の滴下操作に使用する器具
としてマイクロシリンジが知られている。このマイクロ
シリンジとは、液体を計量する筒状の計量部の先端部に
筒型針状のニードル(供給管)が装着されて構成され、
ガスクロマトグラフなどの化学分析において微量の液体
を容器や試料などに滴下するために用いるものである。
2. Description of the Related Art A microsyringe is known as an instrument used for dropping a small amount of liquid. This microsyringe is configured by mounting a cylindrical needle-like needle (supply tube) at the tip of a cylindrical measuring unit for measuring liquid,
It is used for dropping a small amount of liquid into a container or a sample in chemical analysis such as gas chromatography.

【0003】[0003]

【発明が解決しようとする課題】この種のマイクロシリ
ンジにおいては、計量した液体を滴下する際に液体が全
量完全に排出されて滴下されなくてはならない。特にガ
スクロマトグラフなどの化学分析において、この滴下量
が規定の量からずれるようであると、分析精度に悪影響
を及ぼすことも考えられる。ところが、一般に前記ニー
ドルは、ステンレス鋼などの金属材料から構成される外
径0.1〜0.5mm程度の極めて細い管であるので、そ
の内部に液体が残留し易く、液切れが悪い問題があっ
た。なお、前記マイクロシリンジにおいて、例えば、m
l単位以上の液体を滴下する時は残留液の誤差の影響は
少ないが、μl単位の極少量の液体を滴下する際は、ニ
ードルの先端部に付着した液滴までも完全に落下させる
必要がある。ところが、このニードル先端に付着した液
滴は容易には落下しないので、ニードルを振動させて強
制的に落下させなければならず、液滴を滴下する位置が
微小な場合は、目的とする位置に正確に滴下するのが極
めて困難となる問題がある。
In this type of microsyringe, when the measured liquid is dropped, the entire amount of the liquid must be completely discharged and dropped. Especially, in chemical analysis such as gas chromatography, if the amount of dropping is likely to deviate from the prescribed amount, it may adversely affect the accuracy of analysis. However, since the needle is an extremely thin tube having an outer diameter of about 0.1 to 0.5 mm, which is generally made of a metal material such as stainless steel, liquid easily remains inside the needle, which causes a problem of liquid shortage. there were. In the microsyringe, for example, m
When the liquid of 1 unit or more is dropped, the influence of the error of the residual liquid is small, but when the liquid of a very small amount of μl unit is dropped, it is necessary to completely drop even the liquid droplets attached to the tip of the needle. is there. However, since the droplets attached to the tip of the needle do not fall easily, it is necessary to vibrate the needle to forcefully drop it. There is a problem that it is extremely difficult to drop accurately.

【0004】ところで、本発明者は、前記液切れの問題
を解消するために、撥水性の良好な皮膜を利用すること
を考えている。ここで、撥水性の良好な皮膜として著明
なものにポリテトラフルオロエチレン(商品名:テフロ
ン)があり、このものは、ポリエチレン構造の水素をフ
ッ素で置換したものであり、炭化水素の水素原子をフッ
素原子で置換すると、その炭化水素の表面エネルギーが
大きく低下することが知られている。これは、C-F間
の強い結合エネルギーとC-F結合の分極率が小さいこ
とに由来し、材料末端基の種類に依存し、CF3基が最
も低い表面エネルギーになるので、水分子との付着力が
小さくなり、撥水性に優れることになる。ところが、前
記ポリテトラフルオロエチレンの樹脂を用いて撥水性の
皮膜を形成したくとも樹脂が軟化流動しないため、前記
のような筒状の細いニードルの内面には塗膜を形成でき
ないという問題がある。
By the way, the present inventor is considering using a film having good water repellency in order to solve the problem of liquid shortage. Here, polytetrafluoroethylene (trade name: Teflon) is prominent as a film having good water repellency, and this is one in which hydrogen in a polyethylene structure is replaced by fluorine, and a hydrogen atom of a hydrocarbon. It is known that the surface energy of the hydrocarbon is significantly reduced by substituting with a fluorine atom. This is because the strong bond energy between C and F and the polarizability of the C and F bond are small, and the CF 3 group has the lowest surface energy depending on the type of the terminal group of the material. The adhesive force of is reduced and the water repellency is excellent. However, there is a problem that a coating film cannot be formed on the inner surface of the cylindrical thin needle as described above because the resin does not soften and flow even if a water-repellent film is formed using the polytetrafluoroethylene resin. .

【0005】本発明は前記事情に鑑みてなされたもので
あり、金属マトリックス中に撥水性樹脂などの粒子を分
散させてメッキにより皮膜形成できる構造とすることに
よって、細径のニードルなどにおいても皮膜を設けるこ
とができ、液切れが良好で正確な量の液体滴下が可能な
供給管を提供することを目的とする。
The present invention has been made in view of the above circumstances and has a structure in which particles such as a water-repellent resin are dispersed in a metal matrix to form a film by plating, so that a film can be formed even on a needle having a small diameter. It is an object of the present invention to provide a supply pipe in which the liquid can be provided and which is capable of dripping an accurate amount of liquid with good drainage.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、内部を通過した液体が先端部
で滴下される供給管の構造において、前記供給管が筒状
の本体部と、この本体部の少なくとも先端部内表面に被
覆された撥水性の皮膜を具備してなり、前記皮膜が、フ
ッ化処理されたフッ素樹脂系粒子またはフッ化グラファ
イト粒子からなる非金属粒子が金属マトリックス中に分
散共析された複合メッキからなるものである。
According to a first aspect of the present invention, in order to solve the above problems, in a structure of a supply pipe in which a liquid passing through the inside is dropped at a tip portion, the supply pipe has a cylindrical main body. Part and a water-repellent film coated on at least the inner surface of the tip part of the body part, wherein the film is a non-metallic particle made of fluorinated fluororesin-based particles or fluorinated graphite particles. It is composed of composite plating that is dispersed and codeposited in a matrix.

【0007】請求項2記載の発明は前記課題を解決する
ために、請求項1記載の筒状の本体部をマイクロシリン
ジのニードルとしたものである。
In order to solve the above-mentioned problems, the invention according to claim 2 uses the cylindrical main body part according to claim 1 as a needle of a microsyringe.

【0008】[0008]

【作用】撥水性の良好な粒子を金属マトリックス中に分
散共析させる皮膜とすることで、メッキにより皮膜形成
が可能になる。そこで、ニードルなどのような細径の供
給管にも撥水性の良好な皮膜を形成できる。これによ
り、液切れの良好な細径の供給管が得られる。勿論、皮
膜を形成する供給管は、マイクロシリンジのニードルに
限らず、ピペット、ディスペンサ、分液ロート、一般の
ノズルなどでもあっても良く、これらに適用することで
も液切れの良好な供給管が得られる。
By forming a film in which particles having good water repellency are dispersed and co-deposited in a metal matrix, a film can be formed by plating. Therefore, a film having good water repellency can be formed even on a small-diameter supply pipe such as a needle. As a result, it is possible to obtain a small-diameter supply pipe with good drainage. Needless to say, the supply pipe for forming the film is not limited to the needle of the microsyringe, and may be a pipette, a dispenser, a separating funnel, a general nozzle, or the like. can get.

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1(a)、(b)は本発明に係る供給管
(ニードル)の一実施例を示すもので、この供給管A
は、筒型針状の本体部1とこの本体部1の内面全部およ
び外面全部に被覆された皮膜2から構成され、マイクロ
シリンジの筒状の計量部に装着されて液体を所望の容器
や液体に滴下するために使用されるものである。前記本
体部1は、一般のニードルを構成するステンレス鋼など
の一般的な金属材料から構成されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 (a) and 1 (b) show an embodiment of a supply pipe (needle) according to the present invention.
Is composed of a cylindrical needle-shaped main body 1 and a film 2 covering the entire inner surface and the entire outer surface of the main body 1, and is attached to the cylindrical measuring portion of a microsyringe to store a liquid in a desired container or liquid. It is used for dripping. The main body 1 is made of a general metal material such as stainless steel that constitutes a general needle.

【0009】前記皮膜2は、金属マトリックス中にフッ
化処理されたフッ素樹脂粒子またはフッ化グラファイト
粒子が分散共析された撥水性の複合メッキからなる。こ
の複合メッキは、マトリックスとなる金属のメッキ浴に
フッ化処理されたフッ素樹脂系粒子やフッ化グラファイ
ト等の撥水性の非金属粒子を適当な界面活性剤などを用
いて分散させ、この分散液中に目的とする本体部1を浸
漬し、電解析出させることにより得られる。ここで用い
られるマトリックス金属としては、Ni、Ni系合金、
Fe、Fe系合金、Cu、Zn、Snやこれらの合金な
ど、本体部1を構成する金属との密着性や使用環境にお
ける防食性、用いる液体に対する耐食性などを考慮して
種々のものを選択して用いることができる。
The coating 2 is made of a water-repellent composite plating in which a fluorocarbon resin particle or a graphite fluoride particle that has been fluorinated is dispersed and co-deposited in a metal matrix. This composite plating is carried out by dispersing fluorinated fluororesin-based particles or water-repellent non-metal particles such as graphite fluoride in a plating bath of a metal serving as a matrix using an appropriate surfactant or the like. It is obtained by immersing the desired main body 1 therein and electrolytically depositing it. The matrix metal used here is Ni, a Ni-based alloy,
Fe, Fe-based alloys, Cu, Zn, Sn, and alloys thereof, etc. are selected in consideration of their adhesion to the metal forming the main body 1, corrosion resistance in the environment of use, and corrosion resistance to the liquid used. Can be used.

【0010】マトリックス金属中に分散析出させる撥水
性の非金属粒子としては、フッ化処理されたフッ素樹脂
系粒子、またはフッ化グラファイト粒子が好適に使用さ
れ、その粒径は数μm(例えば4μm)程度のものであ
る。なお、本発明における、これらの撥水性の非金属粒
子はフッ素系樹脂粒子、または、フッ化グラファイト粒
子などの炭素材料とフッ素の直接反応により、その外表
面が高度にフッ素化されたフッ素密度の高い表面状態を
有するものである。フッ化グラファイト{(CF)n}
は、炭素材料とフッ素の直接反応により得られるもの
で、フッ素原子がグラファイト層間の炭素原子とSP3
混成軌道を形成した白色の共有結合型層間化合物であ
る。(CF)nはC-Fの結合力が大きく、また、端面に
は>CF2、-CF3が多数存在するために、構造上表面
のF密度が非常に高くなっているので、撥水性に優れ
る。
As the water-repellent non-metal particles dispersed and precipitated in the matrix metal, fluorinated fluororesin-based particles or fluorinated graphite particles are preferably used, and the particle size is several μm (for example, 4 μm). It is of a degree. In addition, in the present invention, these water-repellent non-metal particles are fluorine-based resin particles, or a carbon material such as fluorinated graphite particles is directly reacted with fluorine, and the outer surface thereof has a highly fluorinated fluorine density. It has a high surface condition. Graphite fluoride {(CF) n}
Is obtained by a direct reaction between a carbon material and fluorine. Fluorine atoms form carbon atoms between graphite layers and SP 3
It is a white covalent intercalation compound that forms a hybrid orbit. (CF) n has a large C—F bonding force, and since a large number of> CF 2 and —CF 3 are present on the end faces, the F density on the surface is extremely high due to the structure, and therefore the water repellency is high. Excellent in.

【0011】これらの撥水性非金属粒子とマトリックス
金属との体積比については、特に限定されるものではな
いが、撥水性粒子の示す体積比が大きすぎると、撥水性
はよくなるものの、本体部1と皮膜2との密着性が低下
し、逆に体積比が小さ過ぎると、基材との密着性や外傷
性には優れるものの、撥水性は低下するので、通常撥水
性非金属粒子の占める体積としては5〜50%の範囲が
好ましい。
The volume ratio of the water-repellent non-metal particles to the matrix metal is not particularly limited, but if the volume ratio of the water-repellent particles is too large, the water repellency is improved, but the main body 1 If the volume ratio is too small, on the other hand, the adhesiveness to the substrate and the trauma are excellent, but the water repellency is reduced, so the volume occupied by the water-repellent non-metal particles is usually small. Is preferably in the range of 5 to 50%.

【0012】また、本体部1と皮膜2との密着性を良好
にするためには、本体部1の皮膜形成部分に微細な凹凸
を形成して粗面化しておくことが好ましい。粗面化の手
段としては、本体部1の内径が小さいものの場合は、フ
ッ化水素酸、フッ化アンモニウム、塩酸等のエッチング
剤の水溶液を用いてこれに浸漬する化学的方法を実施す
れば良く、本体部1の内径が大きいものの場合は、ショ
ットブラスト、サンドブラスト、液体ホーニング処理や
スチールワイヤ、スチールウールなどによる研摩処理な
どの機械的な方法を適用することもできる。この微細な
凹凸の粗さは平均粗さでは0.5〜5μmの範囲が好ま
しく、更にこのような凹凸の粗面が形成された本体部1
に皮膜2が設けられる場合、最終的な表面粗さは平均粗
さで0.7〜3μm程度であることが好ましい。
Further, in order to improve the adhesion between the main body 1 and the film 2, it is preferable to form fine irregularities on the film forming portion of the main body 1 to roughen the surface. As a means for roughening the surface, if the inner diameter of the main body 1 is small, a chemical method of dipping it in an aqueous solution of an etching agent such as hydrofluoric acid, ammonium fluoride or hydrochloric acid may be used. When the inner diameter of the main body 1 is large, mechanical methods such as shot blasting, sand blasting, liquid honing treatment, and polishing treatment with steel wire, steel wool, etc. can also be applied. The roughness of the fine irregularities is preferably in the range of 0.5 to 5 μm in average roughness, and further, the main body 1 having such a roughened surface is formed.
When the coating film 2 is provided on the substrate, the final surface roughness is preferably about 0.7 to 3 μm in average roughness.

【0013】これらの撥水性の良好な樹脂粒子を金属マ
トリックス中に分散共析させる皮膜2を本体部1に形成
することで、内径0.1〜0.5mm程度の細径の本体部
1でもメッキにより皮膜形成が可能になる。そこで、ニ
ードルなどのような細径の供給管Aにも撥水性の良好な
皮膜2を形成できる。これにより、液切れの良好な細径
の供給管Aが得られる。
By forming a film 2 for dispersing and eutectifying these resin particles having good water repellency in a metal matrix in the main body 1, even the main body 1 having a small inner diameter of about 0.1 to 0.5 mm. A film can be formed by plating. Therefore, the coating 2 having good water repellency can be formed on the supply pipe A having a small diameter such as a needle. As a result, it is possible to obtain the supply pipe A having a small diameter with good drainage.

【0014】ところで、前記皮膜2によって供給管Aの
表面は、撥水性に優れるポリテトラフルオロエチレン単
体の表面よりも優れた撥水性となる。このような優れた
特性が得られる理由は、分散析出するフッ素樹脂系粒子
またはフッ化グラファイト粒子の表面がCF3基の多い
高度にフッ化された表面エネルギーの小さな表面状態を
有するとともに、これらの粒子が粗面化された本体部1
の表面に形成された複合メッキの表面に適当な密度で分
散して存在するために、粗面化により接触面積が低下す
る効果とが重なりあって、水滴等が付着しにくい、いわ
ば超撥水性の表面状態になるためである。
By the way, the coating 2 makes the surface of the supply pipe A more water repellent than the surface of polytetrafluoroethylene simple substance which is excellent in water repellency. The reason why such excellent properties are obtained is that the surface of the fluororesin-based particles or the fluorinated graphite particles that are dispersed and deposited has a highly fluorinated surface state with a small amount of surface energy and contains many CF 3 groups. Body 1 with roughened particles
Since it is dispersed and present on the surface of the composite plating formed at the surface with an appropriate density, it has the effect of reducing the contact area due to roughening, which makes it difficult for water drops to adhere, so to speak, super water repellent. This is because the surface state of

【0015】次に、液体の接触角とは、図3に示すよう
に固体表面3に液滴4を載置した場合に、θで示される
角度を示している。この接触角とはぬれ性の1つの尺度
と見ることができる。この接触角でいえば、Niメッキ
単層の接触角は64度であるが、Niマトリックス中に
3重量%の(CF)nを分散させることで皮膜表面の接
触角は130度以上に向上する。
Next, the contact angle of the liquid means the angle indicated by θ when the droplet 4 is placed on the solid surface 3 as shown in FIG. This contact angle can be seen as a measure of wettability. In terms of this contact angle, the contact angle of the Ni-plated single layer is 64 degrees, but by dispersing 3% by weight of (CF) n in the Ni matrix, the contact angle of the coating surface is improved to 130 degrees or more. .

【0016】次に、前記皮膜2の形成方法の一例につい
て説明する。図4は皮膜形成装置の一例を示すもので、
この例の装置において、5は温水6を収納した温浴槽、
7はメッキ液8を収納したメッキ浴槽、9、10は陽極
板、11は電源、12は電流制御装置を示している。こ
こで用いるメッキ液8としては、ワット浴「NiSO4
・6H2O:280g/l、NiCl2・6H2O:45
g/l、H3BO3:40g/l」、スルファミン酸浴
「Ni(NH2SO32・4H2O:350g、NiCl
2・6H2O:45g/l、H3BO3:40g/l」など
を用いることができる。また、界面活性剤としては、カ
チオン系界面活性剤(10g/l)(パーフルオロアル
キルトリメチルアンモニウム塩、フッ化グラファイト1
gに対して40mg必要)などを用いることができる。
Next, an example of a method of forming the film 2 will be described. FIG. 4 shows an example of the film forming apparatus.
In the apparatus of this example, 5 is a warm bath containing hot water 6,
7 is a plating bath containing the plating solution 8, 9 and 10 are anode plates, 11 is a power supply, and 12 is a current controller. The plating solution 8 used here is a watt bath “NiSO 4
· 6H 2 O: 280g / l , NiCl 2 · 6H 2 O: 45
g / l, H 3 BO 3 : 40g / l ", sulfamic acid bath" Ni (NH 2 SO 3) 2 · 4H 2 O: 350g, NiCl
2 · 6H 2 O: 45g / l, H 3 BO 3: 40g / l "or the like can be used. Further, as the surfactant, a cationic surfactant (10 g / l) (perfluoroalkyl trimethyl ammonium salt, graphite fluoride 1
40 mg / g is necessary) or the like can be used.

【0017】図4に示す装置のメッキ液8中に複合メッ
キするべき供給管Aを浸積してこれに電源の陰極を接続
し、陽極板9、10を陽極に接続してそれぞれに通電す
ることで電界析出させれば良い。この際のメッキ液温度
は40〜50℃程度、電流密度は0.5〜20A・dm
-2程度の適宜の値に設定することができる。この処理に
よって、筒型針状の本体部1の内面と外面に、マトリッ
クス金属中に非金属粒子が分散された皮膜2を生成させ
ることができる。なお、供給管Aの径が小さい場合は、
内面側に複合メッキが良く着くように供給管Aの内部に
メッキ液を流通させるようにすれば良い。
The supply pipe A to be composite-plated is immersed in the plating solution 8 of the apparatus shown in FIG. 4, the cathode of the power source is connected to this, and the anode plates 9 and 10 are connected to the anode to energize each. Therefore, electric field deposition may be performed. At this time, the plating solution temperature is about 40 to 50 ° C, and the current density is 0.5 to 20 A · dm.
It can be set to an appropriate value around -2 . By this treatment, the coating 2 in which the non-metal particles are dispersed in the matrix metal can be formed on the inner surface and the outer surface of the cylindrical needle-shaped main body 1. If the diameter of the supply pipe A is small,
The plating solution may be circulated inside the supply pipe A so that the composite plating is well deposited on the inner surface side.

【0018】(試験例)金属マトリックスとしてNiを
用い、フッ素系樹脂粒子としてポリテトラフルオロエチ
レン粒子を用い、図4に示す装置を用い複合てメッキを
行なった。複合メッキに供したのは、外径0.5mm、
内径0.16mm、長さ55mmの図1に示す形状の筒
型針状のニードルである。複合メッキの浴組成と処理条
件は以下の通りである。 浴組成 スルファミン酸ニッケル 23%、 塩化ニッケル 3%、 ホウ酸 3%、 PTFE 5%、 pH 4.1 浴温 45℃、 電流密度 5A/dm2、 処理時間 1479秒、 皮膜の厚さ 10〜13μm、
(Test Example) Ni was used as the metal matrix, and polytetrafluoroethylene particles were used as the fluorine-based resin particles, and composite plating was performed using the apparatus shown in FIG. For the composite plating, the outer diameter is 0.5 mm,
It is a cylindrical needle having an inner diameter of 0.16 mm and a length of 55 mm and having the shape shown in FIG. The bath composition and treatment conditions of the composite plating are as follows. Bath composition nickel sulfamate 23%, nickel chloride 3%, boric acid 3%, PTFE 5%, pH 4.1 bath temperature 45 ° C, current density 5A / dm 2 , treatment time 1479 seconds, film thickness 10-13 μm ,

【0019】得られたニードルに対し、蒸留水を滴下す
る実験を行ない、滴下歩留まりを測定した結果を図5に
示す。滴下歩留まりとは、{(滴下量/吸液量)×10
0}%で計算された値である。なお、試験時のサンプル
数は10とした。図5から明らかなように、皮膜を形成
した本発明品の試料が、皮膜を施していない試料よりも
液切れ性に優れていることが明らかになった。特に本発
明の試料では、吸液量が小さくなるほど滴下歩留まりが
優秀であり、0.2μlでは従来品の試料に対して大き
な差が生じた。
An experiment in which distilled water was dropped on the obtained needle and the dropping yield was measured is shown in FIG. The dropping yield is {(dropping amount / liquid absorption amount) × 10
It is a value calculated as 0}%. The number of samples during the test was 10. As is clear from FIG. 5, it was revealed that the sample of the product of the present invention having the film formed was superior to the sample having no film in the liquid drainage property. In particular, in the sample of the present invention, the smaller the liquid absorption amount, the better the drop yield, and 0.2 μl produced a large difference from the sample of the conventional product.

【0020】ところで、以上説明した例においては、液
体供給管としてマイクロシリンジのニードルを用いた例
について説明したが、液体供給管として、ピペット、デ
ィスペンサ、分液ロート、一般のノズルなどに本発明を
適用しても良いのは勿論である。また、供給管が導電性
のないものからなる場合は、複合メッキの皮膜2を形成
したい部分に導電膜を成膜し、これを利用して形成する
ことができる。
By the way, in the above-described examples, the example in which the needle of the microsyringe is used as the liquid supply pipe has been described, but the present invention is applied to a pipette, a dispenser, a separating funnel, a general nozzle, etc. as the liquid supply pipe. Of course, it may be applied. Further, when the supply pipe is made of a non-conductive material, a conductive film can be formed on the portion where the composite plating film 2 is desired to be formed, and it can be formed by utilizing this.

【0021】[0021]

【発明の効果】撥水性の良好なフッ素樹脂系粒子または
フッ化グラファイト粒子を金属マトリックス中に分散共
析させた構造の皮膜を本体部に形成することで、撥水性
に優れるようになり、液切れ性が向上する。また、金属
マトリックス中に前記粒子を分散させた皮膜ならば、複
合メッキによる皮膜形成が可能になる。そこで、ニード
ルなどのような細径の供給管にも撥水性の良好な皮膜を
形成することができる。これにより、液切れの良好な細
径の供給管が得られる。勿論、皮膜を形成する供給管
は、マイクロシリンジのニードルに限らず、ピペット、
ディスペンサ、分液ロート、一般のノズルなどでもあっ
ても良く、これらに適用することでも液切れの良好な供
給管が得られる。
EFFECTS OF THE INVENTION By forming a film having a structure in which fluororesin-based particles or graphite fluoride particles having good water repellency are dispersed and co-deposited in a metal matrix on the main body, water repellency becomes excellent, Sharpness is improved. In addition, a film in which the above particles are dispersed in a metal matrix enables film formation by composite plating. Therefore, a film having good water repellency can be formed even on a small-diameter supply pipe such as a needle. As a result, it is possible to obtain a small-diameter supply pipe with good drainage. Needless to say, the supply pipe for forming the film is not limited to the needle of the microsyringe, and the pipette,
It may be a dispenser, a separatory funnel, a general nozzle, or the like, and by applying to these, a supply pipe with good drainage can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は本発明に係るニードルの一実施例
の斜視図、憂1(b)は図1(a)のニードルの拡大図
である。
1 (a) is a perspective view of an embodiment of a needle according to the present invention, and FIG. 1 (b) is an enlarged view of the needle of FIG. 1 (a).

【図2】図2は図1に示すニードルで液体を滴下してい
る状態を示す斜視図である。
FIG. 2 is a perspective view showing a state in which liquid is being dropped by the needle shown in FIG.

【図3】図3は固体表面上の液体についての接触角を示
す説明図である。
FIG. 3 is an explanatory diagram showing a contact angle of a liquid on a solid surface.

【図4】図4は複合メッキ装置の一例を示す構成図であ
る。
FIG. 4 is a configuration diagram showing an example of a composite plating apparatus.

【図5】図5は本発明に係るニードルの試験結果を示す
図である。
FIG. 5 is a diagram showing test results of a needle according to the present invention.

【符号の説明】[Explanation of symbols]

1 ニードル、 2 皮膜、 5 温浴槽、 6 温浴、 7 メッキ槽、 8 メッキ浴、 9、10 陽極板、 11 電源、 1 needle, 2 film, 5 hot bath, 6 hot bath, 7 plating bath, 8 plating bath, 9, 10 anode plate, 11 power supply,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内部を通過させた液体を先端部で滴下さ
せる供給管の構造において、前記供給管が筒状の本体部
と、この本体部の少なくとも先端部内表面に被覆された
撥水性の皮膜を具備してなり、前記皮膜が、フッ化処理
されたフッ素樹脂系粒子またはフッ化グラファイト粒子
からなる非金属粒子を金属マトリックス中に分散共析さ
せた複合メッキからなることを特徴とする液体供給管の
構造。
1. A structure of a supply pipe in which a liquid passing through the interior is dropped at a tip portion thereof, wherein the supply pipe has a tubular main body portion, and a water-repellent film coated on at least the inner surface of the front end portion of the main body portion. A liquid supply, characterized in that the coating comprises composite plating in which non-metal particles consisting of fluorinated fluororesin-based particles or fluorinated graphite particles are dispersed and co-deposited in a metal matrix. Tube structure.
【請求項2】 請求項1記載の筒状の本体部が、マイク
ロシリンジのニードルであることを特徴とする液体供給
管の構造。
2. The structure of a liquid supply pipe, wherein the cylindrical main body according to claim 1 is a needle of a microsyringe.
JP26636092A 1992-10-05 1992-10-05 Structure of liquid supply pipe Pending JPH06117970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26636092A JPH06117970A (en) 1992-10-05 1992-10-05 Structure of liquid supply pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26636092A JPH06117970A (en) 1992-10-05 1992-10-05 Structure of liquid supply pipe

Publications (1)

Publication Number Publication Date
JPH06117970A true JPH06117970A (en) 1994-04-28

Family

ID=17429866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26636092A Pending JPH06117970A (en) 1992-10-05 1992-10-05 Structure of liquid supply pipe

Country Status (1)

Country Link
JP (1) JPH06117970A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256525A (en) * 2007-04-04 2008-10-23 Olympus Corp Liquid contact component
WO2010082273A1 (en) * 2009-01-15 2010-07-22 株式会社日立製作所 Hollow needle and method of manufacturing same
JP2010230566A (en) * 2009-03-27 2010-10-14 Hitachi High-Technologies Corp Autoanalyzer and pipetting nozzle for autoanalyzer
JP2011056422A (en) * 2009-09-10 2011-03-24 Aloka Co Ltd Nozzle washing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256525A (en) * 2007-04-04 2008-10-23 Olympus Corp Liquid contact component
WO2010082273A1 (en) * 2009-01-15 2010-07-22 株式会社日立製作所 Hollow needle and method of manufacturing same
JP2010230566A (en) * 2009-03-27 2010-10-14 Hitachi High-Technologies Corp Autoanalyzer and pipetting nozzle for autoanalyzer
JP2011056422A (en) * 2009-09-10 2011-03-24 Aloka Co Ltd Nozzle washing apparatus

Similar Documents

Publication Publication Date Title
US11634831B2 (en) Coated articles
Khorsand et al. Corrosion behaviour of super-hydrophobic electrodeposited nickel–cobalt alloy film
Khorsand et al. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process
CN104662183B (en) Metal porous body and its manufacture method
CN102639758B (en) For etch-proof electroplating nano laminated coating and covering
Xue et al. Fabrication of NiCo coating by electrochemical deposition with high super-hydrophobic properties for corrosion protection
KR20050024394A (en) Process for electroplating metallic and metall matrix composite foils, coatings and microcomponents
CN110724992B (en) Method for preparing corrosion-resistant super-hydrophobic film on surface of aluminum alloy
US20140255722A1 (en) Structural multi-layer cobalt coatings for polymer articles
JP2019214763A (en) Carbon film coating structure for work and carbon film coating method for work
WO2008109589A1 (en) Apparatus for measuring electrochemical corrosion
JPS62240795A (en) Method and roller electrode for electroplating of metal during movement
EP0224761B1 (en) Heat-transfer material and method of producing same
JPH06117970A (en) Structure of liquid supply pipe
JPS63109184A (en) Industrial nickel/phosphorus electroplating method
WO2015002838A1 (en) Coated articles comprising a metal layer
US20090090634A1 (en) Method of plating metal onto titanium
US7238432B2 (en) Metal member coated with metal layers
Hu et al. Flow Field‐Induced One‐Step Electrodeposition Process to Fabricate Superhydrophobic Films for Flexible Electronics
EP1500450A1 (en) Method for joining a metal foam to a metal part
US6737104B2 (en) Manufacturing method of anti-corrosive multi-layered structure material
JP2023504161A (en) Surface-treated copper foil, method for producing the same, and negative electrode for secondary battery including the same
Wang et al. Hydrogen bubble-templated electrodeposition of superhydrophobic Zn–Ni films
Adabi et al. Improvement of adhesion, corrosion and wear resistance of Ni electrodeposited coating by applying Cu intermediate layer after zincate process
Lille et al. Determination of modulus of elasticity, nanohardness and residual stresses in brush-plated gold and silver coatings on copper substrate