JPH0213038B2 - - Google Patents

Info

Publication number
JPH0213038B2
JPH0213038B2 JP60252357A JP25235785A JPH0213038B2 JP H0213038 B2 JPH0213038 B2 JP H0213038B2 JP 60252357 A JP60252357 A JP 60252357A JP 25235785 A JP25235785 A JP 25235785A JP H0213038 B2 JPH0213038 B2 JP H0213038B2
Authority
JP
Japan
Prior art keywords
porous layer
forming
substrate
layer according
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60252357A
Other languages
Japanese (ja)
Other versions
JPS62112795A (en
Inventor
Yasuo Masuda
Tsutomu Takahashi
Yoshio Takizawa
Shoichi Yoshiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP60252357A priority Critical patent/JPS62112795A/en
Priority to FI864554A priority patent/FI85060C/en
Priority to EP86115606A priority patent/EP0224761B1/en
Priority to DE8686115606T priority patent/DE3677338D1/en
Publication of JPS62112795A publication Critical patent/JPS62112795A/en
Priority to US07/221,999 priority patent/US4826578A/en
Priority to US07/221,990 priority patent/US4879185A/en
Publication of JPH0213038B2 publication Critical patent/JPH0213038B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing
    • F28F2200/005Testing heat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、例えば空調用の熱交換器の蒸発管や
凝縮管の伝熱面、あるいはヒートパイプのウイツ
クなどを構成するのに好適な多孔質層の形成方法
に関し、特に、形成のためのコストが安く、伝熱
特性を向上させることができる多孔質層の形成方
法に関する。 [従来の技術] 内部の媒体と外部の媒体との熱交換を行わせる
ための伝熱管において、その伝熱効率を上げるた
めには、 (1) 伝熱面積を大きくする。 (2) 核沸騰を起こしやすくする。 (3) 毛細管現象を起こしやすくする。 (4) 乱流を起こしやすくする。 ことが有効とされている。 この(1)、(4)を満たすような方法として、銅管の
内面に螺旋状の溝を転造法などにより形成する方
法が用いられている。 また、(2)を満たすような方法としては、伝熱体
の表面に核沸騰の核となる多孔質層を形成する方
法が知られており、板状の伝熱体においては焼結
あるいは鑞付法によりそのような多孔質層を形成
することが行われている。 [発明が解決しようとする問題点] しかしながら、上記のような従来の方法におい
ては、それぞれ次のような問題点があつた。 すなわち、螺旋溝を形成する場合には、上記の
伝熱効率を上げる方法のうち、最も効果の高い核
沸騰現象を利用しておらず、また転造工具の製作
技術上及び転造の技術上から、螺旋溝の条数やね
じれの角度に制限があることなどの理由により、
通常の溝無し管と比べても熱特性値が1.2〜1.5倍
程度にしかならなず、性能が不充分であつた。ま
た、製造において、転造工具と管内面の摩擦力が
大きいため、大きな加圧力を必要とし、従つて大
規模な装置を必要とするとともに、工具の寿命が
短くなつて、製作コストが高くなるという問題点
があつた。 一方、多孔質層を形成する方法においては、伝
熱管のような管状構造のものの内面に、焼結、鑞
付などにより多孔質層を形成することは困難であ
つた。また、金属表面にスクリーン印刷等により
パターンマスキングを施した後、電気鍍金するこ
とにより多孔質層を形成することは可能である
が、この方法により管内面に多孔質層を形成する
ことは困難であり、また、印刷、焼き付け等の複
雑な工程を必要とし、製造コストが高くなるとい
う問題点があつた。 本発明は、上記のような問題点に鑑み、核沸騰
を起こさせて伝熱特性を向上させる多孔質層を管
状体の内面においても容易に形成でき、伝熱特性
の優れた伝熱体を安価に製造するのに役立つ多孔
質層の形成方法を提供することを目的とするもの
である。 [問題点を解決するための手段] 本発明は、金属製の基体の表面に疎水性の薄膜
を形成した金属製の基体を陰極とし、不溶性の陽
極を用いて電気鍍金を行い、上記基体の表面に、
開口部が狭められた空孔(以下、狭口空孔とい
う)を有する鍍金層を形成するようにしたもので
ある。 [作用] この方法において基体表面に狭口空孔が形成さ
れる機構は、次のように考えられる。まず、不溶
性陽極を用いて鍍金を行うことにより、鍍金液中
の水が電気分解され、陽極において酸素ガスが生
成される。そして、この酸素ガスの一部が鍍金液
の移動とともに陰極の基体の表面に運ばれるが、
表面に形成された疎水性の薄膜により基体の鍍金
液に対する濡れ性が悪くなつており、運ばれたガ
スは基体の表面に気泡として付着する。従つて、
電析金属はこの気泡を包みこむ形で成長し、均一
かつ微細な狭口空孔が形成される。このため、基
体に付着する気泡の径が数は、陽極電流密度、あ
るいは鍍金液の基体に対する相対的移動速度を変
えることにより制御することができる。なお、陽
極電流密度が20A/dm2以下では酸素ガスの発生が
不充分であり好ましくない。 [実施例] 以下、本発明の方法を伝熱体に対して応用した
例について具体的に述べる。 管体の表面に疎水性の薄膜を形成するには、
油、塗料等の疎水性物質を溶媒に分散あるいは溶
解させた溶液を刷毛やスプレーにより塗布して管
体表面に付着させる。または、管体をこの溶液中
に浸漬させた後に引き上げ、溶媒を蒸発させて疎
水性の薄膜を残すなどの種々の方法が考えられ
る。この薄膜の好ましい厚さは、疎水性物質の種
類によつても異なるが、0.1〜5μmが適当であり、
これ以下では狭口空孔の生成率が低下し、これ以
上では絶縁性が高くなつて均一な鍍金層が得られ
なくなる。 このように管体の内面を鍍金する際には、特に
管体が細長いような場合、陽極用のワイヤを管体
の軸上に張力をかけて張り渡し、また、ワイヤの
周囲に絶縁性のスペーサを適当な間隔で設けて管
体とワイヤの接触による短絡を防ぐとよい。 鍍金の電流としては、断続電流、通常のパルス
電流またはPR電流などのパルス電流を適宜使い
分ける。このようなパルス電流は、直流に比べて
空孔内への金属イオンの搬送を容易にするので、
電析速度を増大させることができるとともに、直
流の場合に生じる局部的な髭状の析出を抑え、電
析金属による短絡を防止する。また、PR電流で
は、正電と逆電を交互に周期的に通すので、電析
膜の成長を一様にすることができる。 また、本方法においては不溶性の陽極を用いて
いるので、電析金属のイオンを適宜補充してその
濃度を適当な値に保つことが必要である。 実施例 1 第1図に示すように、外径9.35mm、肉厚0.35mm
の銅管1を抽伸により成形し、長さ1000mmに切断
した、この銅管1にトリクレン洗浄を施して内面
を清浄化し、シリコンオイルをエタノールで3倍
に希釈した溶液を内部に通した後、エタノールを
蒸発させて除去して内面に被膜2を形成した。こ
の銅管1内に、樹脂製のスペーサ3を一定間隔で
取り付けたTi−Pt製のワイヤを挿入し、両端に
張力をかけて張り渡して不溶性の陽極4とし、一
方銅管1を陰極とした。 そして、硫酸銅鍍金液(硫酸銅200g/、硫酸
50g/)を貯留する貯槽5と、この鍍金液を銅
管1に流すケミカルボンプ6とを設け、この貯槽
5で鍍金により減少した銅イオンに見合う量の塩
基性炭酸銅を補充して、循環使用するように構成
した。 上記のような装置により、鍍金液の温度30℃、
陰極電流密度33A/dm2、鍍金液の流速2m/sの条
件下で10分間鍍金を施し、銅管1内面に、第2図
及び第3図に示すような、孔空250μの均質な狭
口空孔が空孔率で18%形成された厚さ50μの電着
金属層を得た。 なお、この銅管1の内面を水洗し、乾燥した
後、銅管1を万力で押し漬すテストを行い、ま
た、銅管1を530℃で20分焼鈍し、マンドレルに
よる拡管を試みたが、いずれにおいても電着金属
層の剥離、脱落は全く見られず、優れた密着性と
強度を示した。 上記のように製作した銅管について、第4図に
示すような熱特性試験装置により、次頁の表に示
すような条件下で熱特性を測定した。 この装置中、Tは温度センサ、Pは圧力計、
PDは差圧計、10はポンプ、11はバルブ、1
2は流量計、13は膨張弁、14はコンプレツ
サ、15はサブコンデンサ、16はサブエバポレ
ータ、17は恒温水槽であり、18は供試管とし
ての銅管である。この熱特性試験装置において
は、供試管18の内部にコンプレツサ14から供
給される冷媒が流され、外部には恒温水槽17か
らの温水が冷媒に対向して流されるようになつて
いる。恒温水の温度は各冷媒流量に対応して、冷
媒系が安定するように制御した。 なお、この図中、矢印A,A′は、それぞれ蒸
発試験の場合の冷媒及び水の流れる方向を示す、
矢印B,B′はそれぞれ凝縮試験の場合の冷媒及
び水の流れる方向を示している。
[Industrial Application Field] The present invention relates to a method for forming a porous layer suitable for forming, for example, a heat transfer surface of an evaporation tube or a condensation tube of an air conditioning heat exchanger, or a heat pipe wick, etc. In particular, the present invention relates to a method of forming a porous layer that is inexpensive to form and can improve heat transfer properties. [Prior Art] In order to increase the heat transfer efficiency of a heat transfer tube for exchanging heat between an internal medium and an external medium, (1) the heat transfer area must be increased; (2) Makes nucleate boiling more likely. (3) Facilitates capillary action. (4) Make turbulence more likely. It is said that this is effective. As a method that satisfies (1) and (4), a method is used in which a spiral groove is formed on the inner surface of a copper tube by a rolling method or the like. In addition, as a method that satisfies (2), a method is known in which a porous layer is formed on the surface of the heat transfer body, which becomes the core of nucleate boiling. Such a porous layer is formed by a deposition method. [Problems to be Solved by the Invention] However, the above conventional methods have the following problems. In other words, when forming a spiral groove, the nucleate boiling phenomenon, which is the most effective of the above methods for increasing heat transfer efficiency, is not used, and it is difficult to make use of the nucleate boiling phenomenon, which is the most effective method for increasing heat transfer efficiency. , due to the limitations on the number of spiral grooves and the angle of twist,
The thermal characteristics were only about 1.2 to 1.5 times higher than ordinary grooveless tubes, and the performance was insufficient. In addition, during manufacturing, the frictional force between the rolling tool and the inner surface of the tube is large, so a large pressing force is required, which in turn requires large-scale equipment, shortens the life of the tool, and increases production costs. There was a problem. On the other hand, in the method of forming a porous layer, it is difficult to form a porous layer on the inner surface of a tubular structure such as a heat exchanger tube by sintering, brazing, etc. Additionally, it is possible to form a porous layer by applying pattern masking to the metal surface by screen printing, etc., and then electroplating, but it is difficult to form a porous layer on the inner surface of the tube using this method. Moreover, there was a problem in that it required complicated processes such as printing and baking, resulting in high manufacturing costs. In view of the above-mentioned problems, the present invention provides a heat transfer body with excellent heat transfer properties by easily forming a porous layer on the inner surface of a tubular body that improves heat transfer properties by causing nucleate boiling. It is an object of the present invention to provide a method for forming a porous layer that is useful for manufacturing at low cost. [Means for Solving the Problems] The present invention uses a metal substrate with a hydrophobic thin film formed on the surface thereof as a cathode, performs electroplating using an insoluble anode, and electrolytizes the substrate. on the surface,
A plating layer having pores with narrow openings (hereinafter referred to as narrow pores) is formed. [Operation] The mechanism by which narrow pores are formed on the substrate surface in this method is thought to be as follows. First, by performing plating using an insoluble anode, water in the plating solution is electrolyzed and oxygen gas is generated at the anode. A part of this oxygen gas is transported to the surface of the cathode substrate as the plating solution moves.
The hydrophobic thin film formed on the surface reduces the wettability of the substrate to the plating solution, and the carried gas adheres to the surface of the substrate as bubbles. Therefore,
The deposited metal grows to envelop these air bubbles, forming uniform and fine narrow pores. Therefore, the number of bubbles attached to the substrate can be controlled by changing the anode current density or the relative moving speed of the plating solution with respect to the substrate. Note that an anode current density of 20 A/dm 2 or less is not preferable because oxygen gas is insufficiently generated. [Example] Hereinafter, an example in which the method of the present invention is applied to a heat transfer body will be specifically described. To form a hydrophobic thin film on the surface of the tube,
A solution in which a hydrophobic substance such as oil or paint is dispersed or dissolved in a solvent is applied with a brush or spray to adhere to the surface of the tube. Alternatively, various methods can be considered, such as immersing the tubular body in this solution and then pulling it out to evaporate the solvent to leave a hydrophobic thin film. The preferred thickness of this thin film varies depending on the type of hydrophobic substance, but 0.1 to 5 μm is appropriate;
If it is less than this, the generation rate of narrow pores will decrease, and if it is more than this, the insulation will become too high and a uniform plating layer will not be obtained. When plating the inner surface of a tube in this way, especially if the tube is long and slender, the anode wire is stretched along the axis of the tube under tension, and an insulating layer is placed around the wire. It is preferable to provide spacers at appropriate intervals to prevent short circuits due to contact between the tube and the wire. As the current for plating, a pulse current such as an intermittent current, a normal pulse current, or a PR current is used as appropriate. Such pulsed current facilitates the transport of metal ions into the pores compared to direct current, so
It is possible to increase the electrodeposition rate, suppress local whisker-like deposition that occurs in the case of direct current, and prevent short circuits due to deposited metal. Furthermore, in the PR current, since positive and reverse currents are passed periodically and alternately, the growth of the deposited film can be made uniform. Furthermore, since an insoluble anode is used in this method, it is necessary to appropriately replenish the ions of the deposited metal to maintain its concentration at an appropriate value. Example 1 As shown in Figure 1, the outer diameter is 9.35 mm and the wall thickness is 0.35 mm.
A copper tube 1 was formed by drawing and cut to a length of 1000 mm. The inner surface of the copper tube 1 was cleaned by trichlene cleaning, and a solution of silicone oil diluted 3 times with ethanol was passed through the inside. The ethanol was removed by evaporation to form a coating 2 on the inner surface. A Ti-Pt wire with resin spacers 3 attached at regular intervals is inserted into this copper tube 1, and tension is applied to both ends to form an insoluble anode 4, while the copper tube 1 is used as a cathode. did. Then, copper sulfate plating solution (copper sulfate 200g/, sulfuric acid
A storage tank 5 for storing 50 g/) and a chemical pump 6 for flowing this plating solution into the copper pipe 1 are provided, and basic copper carbonate is replenished in an amount corresponding to the copper ions reduced by plating in this storage tank 5, and the circulation is started. configured for use. With the above equipment, the temperature of the plating solution is 30℃,
Plating was performed for 10 minutes under the conditions of a cathode current density of 33 A/dm 2 and a flow rate of the plating solution of 2 m/s to form a homogeneous narrow hole of 250 μm on the inner surface of the copper tube 1 as shown in Figures 2 and 3. An electrodeposited metal layer having a thickness of 50 μm and having pores with a porosity of 18% was obtained. In addition, after washing the inner surface of the copper tube 1 with water and drying it, a test was conducted in which the copper tube 1 was pressed in a vice, and the copper tube 1 was annealed at 530°C for 20 minutes, and expansion using a mandrel was attempted. However, in all cases, no peeling or falling off of the electrodeposited metal layer was observed, indicating excellent adhesion and strength. The thermal characteristics of the copper tubes manufactured as described above were measured using a thermal characteristics testing apparatus as shown in FIG. 4 under the conditions shown in the table on the next page. In this device, T is a temperature sensor, P is a pressure gauge,
PD is a differential pressure gauge, 10 is a pump, 11 is a valve, 1
2 is a flow meter, 13 is an expansion valve, 14 is a compressor, 15 is a sub-condenser, 16 is a sub-evaporator, 17 is a constant temperature water tank, and 18 is a copper tube as a test tube. In this thermal property testing apparatus, a refrigerant supplied from a compressor 14 is flowed inside the test tube 18, and hot water from a constant temperature water tank 17 is flowed outside against the refrigerant. The temperature of the constant temperature water was controlled in accordance with each refrigerant flow rate so that the refrigerant system was stabilized. In this figure, arrows A and A' indicate the flow directions of refrigerant and water, respectively, in the case of the evaporation test.
Arrows B and B' indicate the flow directions of refrigerant and water, respectively, in the case of the condensation test.

【表】 この試験の結果、本発明の方法によつて得られ
た実施例1の銅管1は、その内側の境膜伝熱係数
が第5図Cとして示すような値を示し、同図にD
として示した通常の銅管に比べて7〜8倍の優れ
た熱特性を有することが判つた。 実施例 2 上記実施例1の素材と同一形状の銅管の内面
に、転造により螺旋溝を形成し、その後、実施例
1の方法により、螺旋溝の傾斜壁に狭口空孔を有
する鍍金層を形成た。そして、同様の方法で伝熱
特性の測定を行つた結果、通常の銅管と比べてほ
ぼ10倍の熱伝達特性を示した。 実施例 3 200×100×1(t)mmの銅板にロールコーター
法により滑油を塗布し、銅板表面に疎水性の油膜
を形成した後、陰極電流密度25A/dm2、鍍金液の
流速2m/sで10分間鍍金を行つた。この銅板を温
水中に入れ、温水を下面より熱したところ、空孔
から核沸騰が起きるのが確認された。 なお、上記各例においては、基体の金属として
銅を用いたが、本発明の実施は勿論これに限られ
るものではない。また、本発明の応用は伝熱体に
限られるものではない。 [発明の効果] 以上詳述したように、本発明は、表面に疎水性
の薄膜が形成された金属製の基体を陰極とし、不
溶性の陽極を用いて電気鍍金を行い、上記基体の
表面に開口部が狭められた空孔を有する鍍金層を
形成するようにしたものであるので、管状の金属
の内表面にも均一な狭口空孔を有する鍍金層を、
その空孔の大きさや数を制御しながら形成するこ
とができ、従つて、核沸騰を利用した伝熱特性の
良い伝熱体を効率的に製造することができるとと
もに、そのための素材や装置として複雑な、ある
いは大規模なものを必要としないので製造コスト
が安いなどの利点を有する。
[Table] As a result of this test, the copper tube 1 of Example 1 obtained by the method of the present invention showed a film heat transfer coefficient on the inside as shown in FIG. niD
It was found that the thermal properties were 7 to 8 times better than that of ordinary copper tubes. Example 2 A spiral groove was formed on the inner surface of a copper tube having the same shape as the material of Example 1 by rolling, and then, by the method of Example 1, plating with narrow holes was formed on the inclined wall of the spiral groove. formed a layer. The heat transfer properties were measured using the same method, and the results showed that the heat transfer properties were approximately 10 times higher than those of ordinary copper tubes. Example 3 After applying lubricating oil to a 200 x 100 x 1 (t) mm copper plate using a roll coater method to form a hydrophobic oil film on the copper plate surface, the cathode current density was 25 A/dm 2 and the flow rate of the plating solution was 2 m. Plating was performed for 10 minutes with /s. When this copper plate was placed in hot water and the hot water was heated from the bottom, nucleate boiling was observed to occur from the pores. In each of the above examples, copper was used as the metal of the base, but the implementation of the present invention is of course not limited to this. Furthermore, the application of the present invention is not limited to heat transfer bodies. [Effects of the Invention] As detailed above, the present invention uses a metal substrate on which a hydrophobic thin film is formed on the surface as a cathode, performs electroplating using an insoluble anode, and coats the surface of the substrate with electroplating. Since the plating layer has pores with narrow openings, it is possible to form a plating layer with uniform narrow pores on the inner surface of the tubular metal.
The size and number of pores can be controlled and formed, and therefore, it is possible to efficiently manufacture a heat transfer body with good heat transfer characteristics using nucleate boiling, and it is also possible to use it as a material or device for this purpose. It has advantages such as low manufacturing cost because it does not require anything complicated or large-scale.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の実施例を示す概略図、
第2図は本発明の方法により形成された多孔質層
の断面の形状を示す図面、第3図は同じく多孔質
層の表面の形状を示す図面、第4図は伝熱特性を
試験するための装置の概略図、第5図は本発明の
方法を適用して製造された伝熱体の伝熱特性を示
すグラフである。 1…基体、2…疎水性薄膜、4…不溶性陽極。
FIG. 1 is a schematic diagram showing an embodiment of the method of the present invention;
Figure 2 is a diagram showing the cross-sectional shape of a porous layer formed by the method of the present invention, Figure 3 is a diagram showing the surface shape of the porous layer, and Figure 4 is a diagram showing the shape of the surface of the porous layer. FIG. 5 is a graph showing the heat transfer characteristics of a heat transfer body manufactured by applying the method of the present invention. 1...Substrate, 2...Hydrophobic thin film, 4...Insoluble anode.

Claims (1)

【特許請求の範囲】 1 表面に疎水性の薄膜を形成した金属製の基体
を陰極とし、不溶性の陽極を使用して電気鍍金を
行い、上記基体の表面に、開口部が相対的に狭め
られた空孔を形成することを特徴とする多孔質層
の形成方法。 2 パルス電流により鍍金を行うことを特徴とす
る特許請求の範囲第1項記載の多孔質層の形成方
法。 3 上記基体が銅製であり、鍍金液が硫酸銅鍍金
液であることを特徴とする特許請求の範囲第1項
記載の多孔質層の形成方法。 4 上記基体が管状であることを特徴とする特許
請求の範囲第3項記載の多孔質層の形成方法。 5 上記基体と鍍金液とを相対的に移動させるこ
とを特徴とする特許請求の範囲第4項記載の多孔
質層の形成方法。 6 上記基体と鍍金液の相対的移動速度が0.5〜
5m/secであることを特徴とする特許請求の範囲
第5項記載の多孔質層の形成方法。 7 陰極電流密度が15A/dm2以上であることを特
徴とする特許請求の範囲第3項記載の多孔質層の
形成方法。 8 陽極電流密度が20A/dm2以上であることを特
徴とする特許請求の範囲第3項記載の多孔質層の
形成方法。
[Claims] 1. A metal substrate with a hydrophobic thin film formed on its surface is used as a cathode, electroplating is performed using an insoluble anode, and an opening is relatively narrowed on the surface of the substrate. A method for forming a porous layer, the method comprising forming pores. 2. The method for forming a porous layer according to claim 1, wherein the plating is performed using a pulsed current. 3. The method of forming a porous layer according to claim 1, wherein the substrate is made of copper and the plating solution is a copper sulfate plating solution. 4. The method for forming a porous layer according to claim 3, wherein the substrate is tubular. 5. The method for forming a porous layer according to claim 4, characterized in that the substrate and the plating solution are moved relative to each other. 6 The relative movement speed of the above substrate and plating solution is 0.5~
5. The method for forming a porous layer according to claim 5, wherein the rate is 5 m/sec. 7. The method for forming a porous layer according to claim 3, wherein the cathode current density is 15 A/dm 2 or more. 8. The method for forming a porous layer according to claim 3, wherein the anode current density is 20 A/dm 2 or more.
JP60252357A 1985-11-11 1985-11-11 Method for forming porous layer Granted JPS62112795A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60252357A JPS62112795A (en) 1985-11-11 1985-11-11 Method for forming porous layer
FI864554A FI85060C (en) 1985-11-11 1986-11-10 Heat transfer material and process for making the same
EP86115606A EP0224761B1 (en) 1985-11-11 1986-11-11 Heat-transfer material and method of producing same
DE8686115606T DE3677338D1 (en) 1985-11-11 1986-11-11 HEAT TRANSFER MATERIAL AND METHOD FOR THE PRODUCTION THEREOF.
US07/221,999 US4826578A (en) 1985-11-11 1988-07-20 Method of producing heat-transfer material
US07/221,990 US4879185A (en) 1985-11-11 1988-07-20 Heat transfer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60252357A JPS62112795A (en) 1985-11-11 1985-11-11 Method for forming porous layer

Publications (2)

Publication Number Publication Date
JPS62112795A JPS62112795A (en) 1987-05-23
JPH0213038B2 true JPH0213038B2 (en) 1990-04-03

Family

ID=17236166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60252357A Granted JPS62112795A (en) 1985-11-11 1985-11-11 Method for forming porous layer

Country Status (1)

Country Link
JP (1) JPS62112795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182065A (en) * 1991-01-16 1993-07-23 Morito Kk Article ejecting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112796A (en) * 1985-11-12 1987-05-23 Mitsubishi Metal Corp Formation of porous layer
JP6543526B2 (en) * 2015-07-13 2019-07-10 株式会社Jcu Electroplating bath for forming porous cage-like copper plating film and method for forming porous cage-like copper plating film using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182065A (en) * 1991-01-16 1993-07-23 Morito Kk Article ejecting device

Also Published As

Publication number Publication date
JPS62112795A (en) 1987-05-23

Similar Documents

Publication Publication Date Title
JPH0765230B2 (en) Method for forming porous layer on metal surface
US4826578A (en) Method of producing heat-transfer material
US4136428A (en) Method for producing improved heat transfer surface
US4018264A (en) Boiling heat transfer surface and method
CN110998217A (en) Heat exchange element with microstructured coating and method for producing same
JPH0213038B2 (en)
US7060329B2 (en) Patterned hydrophilic-oleophilic metal oxide coating and method of forming
US4780373A (en) Heat-transfer material
US4311733A (en) Method of preparing a capillary heat-pipe wicking structure
JPH0240752B2 (en)
JPH0565789B2 (en)
JPH0648153B2 (en) Heat transfer body
US4136427A (en) Method for producing improved heat transfer surface
US4186063A (en) Boiling heat transfer surface, method of preparing same and method of boiling
JPS63273790A (en) Heat transfer body and manufacture thereof
JPH0531080B2 (en)
US4200674A (en) Method of preparing heat-transfer members
JPS62206383A (en) Heat transfer body
JPH0238676B2 (en)
JPH02170998A (en) Surface treatment of heat exchanger made of aluminum
JPS6376894A (en) Formation of porous layer on metal surface
JPS63183388A (en) Heat transfer body
JPS63183389A (en) Heat transfer body
CN116367504A (en) Super-hydrophilic inverse opal structured liquid suction core and preparation method thereof
JPS63183393A (en) Heat transfer pipe