JPS63183392A - Heat transfer pipe - Google Patents

Heat transfer pipe

Info

Publication number
JPS63183392A
JPS63183392A JP62012728A JP1272887A JPS63183392A JP S63183392 A JPS63183392 A JP S63183392A JP 62012728 A JP62012728 A JP 62012728A JP 1272887 A JP1272887 A JP 1272887A JP S63183392 A JPS63183392 A JP S63183392A
Authority
JP
Japan
Prior art keywords
pipe
projections
tube
porous
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62012728A
Other languages
Japanese (ja)
Inventor
Yoshio Takizawa
与司夫 滝沢
Tsutomu Takahashi
務 高橋
Yasuo Masuda
保夫 増田
Yutaka Saito
豊 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP62012728A priority Critical patent/JPS63183392A/en
Publication of JPS63183392A publication Critical patent/JPS63183392A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Abstract

PURPOSE:To prevent electrodeposited metal from stripping off or collapsing by preventing porous layers from coming into contact with a plug, by forming a plurality of projections which are continued to the axial direction on the inside surface of a metallic pipe nearly at predetermined intervals in the circumferential direction, and by forming porous layers which are thinner than the height of projections on the area except projections. CONSTITUTION:A plurality of projections 11... extending spirally to the axial direction are formed on the inside of a pipe 10 consisting of a metal such as copper at predetermined intervals in the circumferential direction. Porous plated layers 12 which are thinner than the height of projections 11 are electrodeposited on the inside of a pipe 10 excluding the area of projections 11.... The porous plated layers 12 are collective bodies of a number of electrodeposited metal pieces 13 with tree branches. When a pipe expansion plug is forcibly inserted into the pipe in order to fix fins on the outer surface of a pipe, the diameter of a heat transfer pipe is expanded with the projections 11... formed on the inner surface of a pipe 10 only by the outer face of a plug. During this time the porous plated layers 12 do not contact to the plug, so that the electrodeposited metal 13 does not collapse or strip off and they are kept in the complete state even after a pipe expanding work is completed.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、例えば空調用の熱交換器の蒸発管や凝縮管、
あるいは道路の融雪装置などにおいて使用されるヒート
パイプ等の伝熱管に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention is applicable to, for example, evaporation tubes and condensation tubes of heat exchangers for air conditioning;
It also relates to heat transfer tubes such as heat pipes used in road snow melting devices and the like.

「従来の技術」 上記の蒸発管、凝縮管、あるいはヒートパイプは、いず
れも管の内外の温度差により管内に封入された媒体の相
変態(気体←→液体)を行わせ、さらにこの媒体を移送
して管の長手方向の伝熱を行うものである。
"Prior Art" The above-mentioned evaporation tube, condensation tube, or heat pipe all cause the phase transformation of the medium sealed inside the tube (gas ←→ liquid) due to the temperature difference between the inside and outside of the tube. The heat is transferred in the longitudinal direction of the tube.

例えばヒートパイプは、減圧した金属管の内部に水また
はアルコールなどの液体を封入したもので、バイブの一
端を加ハすると液体が沸騰して蒸気圧差により蒸気が他
端側に流れ、そこで放熱して液体となり、この液体が流
れて加熱部に戻るように設計されており、そのような機
能を果たすために、管内面にウィックと呼ばれる構造体
を形成している。従って、ヒートパイプにおいて伝熱性
能を向上させるためには、(イ)管内外の伝熱性能、(
ロ)管内面における沸騰、あるいは凝縮を促進させる性
能、(ハ)管の長手方向に媒体(特に液体)を移送する
性能、を向上させたウィックを形成することが要求され
る。
For example, a heat pipe is a metal tube with a reduced pressure and a liquid such as water or alcohol sealed inside it. When one end of the vibrator is heated, the liquid boils and steam flows to the other end due to the vapor pressure difference, where it radiates heat. The pipe is designed so that it becomes a liquid and this liquid flows back to the heating section.To perform this function, a structure called a wick is formed on the inner surface of the pipe. Therefore, in order to improve the heat transfer performance in a heat pipe, (a) heat transfer performance inside and outside the tube, (
It is required to form a wick that has improved (b) ability to promote boiling or condensation on the inner surface of the tube, and (c) ability to transport a medium (particularly liquid) in the longitudinal direction of the tube.

この種の伝熱管の改良として、本出願人は先に、特願昭
61−47763号において第4図に示すようなものを
提案した。
As an improvement to this type of heat exchanger tube, the present applicant previously proposed the one shown in FIG. 4 in Japanese Patent Application No. 47763/1983.

この伝熱管は、金属製管体lの内面に、樹枝状あるいは
粒状の電析金属2・・・の集合体である多孔質めっき層
3を形成したことを特徴とするもので、この多孔質めっ
き層3により、管体lの内面の伝熱面積を増大させて上
記(イ)の性能を向上するとともに、気泡発生のための
核生成を促して核沸騰を促進させて上記(ロ)の性能を
向上し、さらに毛細管力を利用して(ハ)の性能を高め
て、熱輸送能力の向上を図ったものである。
This heat exchanger tube is characterized by forming a porous plating layer 3, which is an aggregate of dendritic or granular electrodeposited metal 2, on the inner surface of the metal tube l. The plating layer 3 increases the heat transfer area on the inner surface of the tube body l to improve the performance of (a) above, and also promotes nucleation for bubble generation and promotes nucleate boiling, thereby achieving the performance of (b) above. This improves the performance and further improves the performance (c) by utilizing capillary force to improve the heat transport ability.

「発明が解決しようとする問題点」 ところで、この種の伝熱管にあっては、外部との熱交換
能率を向上するために、その外面に金属製フィンを取り
付けて使用されることが多い。
"Problems to be Solved by the Invention" By the way, this type of heat transfer tube is often used with metal fins attached to its outer surface in order to improve the efficiency of heat exchange with the outside.

このようなフィンとしては、通常、伝熱管の外径よりも
若干大きな径の孔を有する板状のものが用いられ、この
孔に伝熱管を挿通した状態で、伝熱管の内径よりも大き
な外径を有する拡管用プラグと呼ばれる治具を管内に一
端側から押し込むことにより、伝熱管を内側から押し広
げて、その外面をフィンに圧着させ、これを固定してい
る。
Such fins are usually plate-shaped with holes that are slightly larger than the outside diameter of the heat exchanger tube, and when the heat exchanger tube is inserted through these holes, the fins have an outer diameter that is larger than the inside diameter of the heat exchanger tube. By pushing a jig called a tube expansion plug having a diameter into the tube from one end, the heat transfer tube is expanded from the inside, and its outer surface is crimped to the fins to fix it.

ところが、前記のように内面に多孔質めっき層3が形成
された伝熱管では、内部に拡管用プラグを通すと電析金
属2・・・が潰れて脱落し、管の目詰まりなどの原因と
なったり、核沸騰を促進する効果が低下したりするとい
った問題があった。
However, in a heat transfer tube with a porous plating layer 3 formed on the inner surface as described above, when a tube expansion plug is passed inside the tube, the deposited metal 2 is crushed and falls off, which can cause clogging of the tube. There was a problem that the effect of promoting nucleate boiling was reduced.

「問題点を解決するための手段」 本発明は上記問題点を解決するためのもので、金属製管
体の内面に、管体の軸方向に連続する複数の突条を周方
向路一定間隔分に形成するとともに、これら突条を除く
部分に、樹枝状あるいは粒状の電析金属からなりかつ前
記突条の突出量よりも肉厚が小さい多孔質層を形成した
ことを特徴とする。
"Means for Solving the Problems" The present invention is intended to solve the above problems, and includes a plurality of protrusions continuous in the axial direction of the pipe body at regular intervals in the circumferential direction on the inner surface of the metal pipe body. It is characterized in that a porous layer made of dendritic or granular electrodeposited metal and having a thickness smaller than the amount of protrusion of the protrusions is formed in the portion excluding these protrusions.

「作用 」 本発明では、伝熱管の外面にフィンを固定するに際し、
拡管用プラグを管内に押し込むと、管の内面に形成され
た突条のみが拡管用プラグに押し広げられて伝熱管の拡
径がなされる。したがって、多孔質層は突条に保護され
てプラグに接触しないため、この多孔質層を構成する電
析金属が脱落することはない。
"Function" In the present invention, when fixing the fins to the outer surface of the heat exchanger tube,
When the tube expansion plug is pushed into the tube, only the protrusions formed on the inner surface of the tube are pushed out by the tube expansion plug, thereby expanding the diameter of the heat exchanger tube. Therefore, since the porous layer is protected by the protrusions and does not come into contact with the plug, the electrodeposited metal constituting the porous layer does not fall off.

「実施例」 以下、図面を参照して本発明の実施例を詳細に説明する
"Embodiments" Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図および第2図は、ともに一実施例の伝熱管を示す
もので、第1図は横断゛面性状、第2図は内面性状をそ
れぞれ示す拡大図である。
1 and 2 both show a heat exchanger tube of one embodiment, with FIG. 1 being an enlarged view showing the cross-sectional surface properties, and FIG. 2 being an enlarged view showing the inner surface properties.

これらの図において、符号IOは銅などの金属からなる
管体であり、この管体lOの内面には軸方向に螺旋状に
延びる複数の突条11・・・が周方向一定間隔毎に形成
されている。これら突条11の本数は、拡管用プラグ(
図示せず)による拡管作業に支障を及ぼさない範囲でで
きるだけ少なくすることが望ましく、また、個々の突条
11の幅も拡管作業に十分に耐える範囲で狭くすること
が望ましい。
In these figures, the symbol IO is a tube made of metal such as copper, and on the inner surface of this tube IO, a plurality of protrusions 11 extending spirally in the axial direction are formed at regular intervals in the circumferential direction. has been done. The number of these protrusions 11 is determined by the number of tube expansion plugs (
It is desirable to reduce the width of each protrusion 11 as much as possible without interfering with the pipe expansion work (not shown), and it is also desirable to reduce the width of each protrusion 11 to the extent that it can sufficiently withstand the pipe expansion work.

また、これら突条11・・・を除く管体10の内面には
、突条11の突出量よりも薄肉な多孔質めっき層12が
電着されている。この多孔質めっき層12は、多数の樹
枝状の電析金属13・・・の集合体である。
Further, a porous plating layer 12 thinner than the amount of protrusion of the protrusions 11 is electrodeposited on the inner surface of the tube body 10 excluding the protrusions 11 . This porous plating layer 12 is an aggregate of a large number of dendritic deposited metals 13 .

次に、このような伝熱管の製造方法を説明する。Next, a method for manufacturing such a heat exchanger tube will be explained.

まず、管体10の内面全面に、絶縁性を有するマスキン
グ剤を塗布する。次いで、この管体lOを転造装置にセ
ットし、絶縁性被膜が形成された内面に幅広の溝を形成
し、これら溝以外の部分を突条11・・・とじて残す。
First, an insulating masking agent is applied to the entire inner surface of the tube body 10. Next, this tubular body IO is set in a rolling device, and wide grooves are formed on the inner surface on which the insulating film is formed, and the portions other than these grooves are closed off and left as is.

すると、溝の底面は転造によってマスキング膜が破壊さ
れて金属面が露出する一方、突条11・・・の部分はそ
のままマスキング膜が残った状態となる。
Then, the masking film on the bottom surface of the groove is destroyed by rolling and the metal surface is exposed, while the masking film remains on the protrusions 11 . . . .

次に、シリコンオイル等の疎水性物質をエタノール等の
揮発性溶剤で希釈したものを管体10の内面に塗布し、
溶剤を蒸発させて疎水性の薄膜を形成する。この疎水性
薄膜の厚さは、0.1〜5μズであることが好ましく、
5μmを超えろと絶縁性が高くなりすぎて均一な多孔質
めっき層12が得られなくなる。
Next, a hydrophobic substance such as silicone oil diluted with a volatile solvent such as ethanol is applied to the inner surface of the tube body 10,
The solvent is evaporated to form a hydrophobic film. The thickness of this hydrophobic thin film is preferably 0.1 to 5 μm,
If it exceeds 5 μm, the insulation becomes too high and a uniform porous plating layer 12 cannot be obtained.

次いで、この管体lOを第3図に示すようなめっき装置
にセットし、その内面に多孔質めっき層12を形成する
。この装置は、銅、ニッケル、亜鉛味等の可溶性の陽極
ワイヤ14を、管体lOの軸線に沿って張力をかけて張
り渡し、ワイヤ14の周囲に絶縁性のスペーサI5を適
当な間隔で設け、硫酸銅めっき液を貯留する貯槽16と
、めっき液を管体10内に流すケミカルポンプ17とを
設けたものである。
Next, this tubular body IO is set in a plating apparatus as shown in FIG. 3, and a porous plating layer 12 is formed on its inner surface. In this device, a soluble anode wire 14 made of copper, nickel, zinc, etc. is stretched under tension along the axis of a tube 10, and insulating spacers I5 are provided around the wire 14 at appropriate intervals. , a storage tank 16 for storing a copper sulfate plating solution, and a chemical pump 17 for flowing the plating solution into the pipe body 10.

そして、前記陽極ワイヤ14と管体lOとの間に、断続
電流1通常のパルス電流またはPR雷電流どのパルス電
流を適宜使い分けて通電する。すると、陽極ワイヤ14
は漸次溶解して導電性を有する粉状のスライムを生成し
、このスライムがめつき液の流れによって運ばれ、その
一部が管体lOの内面に付着する。すると、この導電性
を有するスライムを核として順次金属が析出していき、
樹枝状の電析金属13 ・が形成される。なお、陽極電
流密度は20A/dti”以上であることが必要で、そ
れ以下ではスライムが十分に生成しない。また、めっき
液の流速は05〜5i/sec、であることが好ましく
、0.5III/see、未満ではもろい電析膜しか得
られず、他方!l/secより大きいとエネルギーコス
トが増すばかりで効果がない。
Then, between the anode wire 14 and the tubular body 1O, a pulse current such as an intermittent current 1, a normal pulse current, or a PR lightning current is used as appropriate. Then, the anode wire 14
is gradually dissolved to produce a conductive powdery slime, which is carried by the flow of the plating solution and a portion of it adheres to the inner surface of the tube IO. Then, metals are sequentially deposited using this conductive slime as a core.
A dendritic deposited metal 13 is formed. Note that the anode current density must be 20 A/dti" or more; if it is less than that, slime will not be sufficiently generated. In addition, the flow rate of the plating solution is preferably 0.5 to 5 i/sec, and 0.5 III If it is less than /see, only a brittle deposited film will be obtained, while if it is more than !l/sec, the energy cost will only increase and there will be no effect.

やがて、多孔質めっき層12が所定の厚さに達したら、
装置から管体lOを取り外して洗浄し、マスキング剤を
除去して伝熱管を得る。
Eventually, when the porous plating layer 12 reaches a predetermined thickness,
The tube body 10 is removed from the apparatus and washed, and the masking agent is removed to obtain a heat transfer tube.

このような構成からなる伝熱管においては、その外面に
フィンを固定するに際し、拡管用プラグを管内に押し込
むと、管体lOの内面に形成された突条11・・・のみ
がプラグ外面に押し広げられて伝熱管の拡径がなされる
。その間、多孔質めっき届12はプラグに接触しないた
め、電析金属13・・・が潰れたり脱落したりすること
がなく、拡管作業の後にも完全な状態に保たれ、多孔質
めっき層12の特性を十分に発揮して高い伝熱性能を得
ることが可能である。
In a heat exchanger tube having such a structure, when the tube expansion plug is pushed into the tube when fixing the fins to the outer surface of the tube, only the protrusions 11 formed on the inner surface of the tube body 10 are pushed against the outer surface of the plug. The diameter of the heat transfer tube is expanded by expanding it. During this time, the porous plating layer 12 does not come into contact with the plug, so the electrodeposited metal 13 will not be crushed or fall off, and will remain in perfect condition even after the pipe expansion work. It is possible to fully demonstrate the characteristics and obtain high heat transfer performance.

また、この伝熱管では、突条IIが螺旋状に形成されて
いるので、管内を流れる蒸気等の流体が突条II・・・
に沿って回転され、流体とめっき層12との接触が促進
されるといった利点も得られる。
In addition, in this heat exchanger tube, the protrusions II are formed in a spiral shape, so that the fluid such as steam flowing inside the tube is transferred to the protrusions II...
There is also an advantage that contact between the fluid and the plating layer 12 is promoted.

なお、必要に応じて、突条11を螺旋状に形成する代わ
りに、管体10の軸線方向に沿う直線状に形成した構成
としてもよい。
Note that, if necessary, instead of forming the protrusion 11 in a spiral shape, the protrusion 11 may be formed in a linear shape along the axial direction of the tube body 10.

また、前記実施例では樹枝状の電析金属13・・・によ
って多孔質めっき層I2を構成した場合を示したが、め
っき条件を変更することにより、粒状の電析金属によっ
て多孔質めっき層を構成してもよい。
Furthermore, in the above embodiment, the case where the porous plating layer I2 was formed by the dendritic electrodeposited metal 13 was shown, but by changing the plating conditions, the porous plating layer I2 could be formed by the granular electrodeposited metal. may be configured.

「発明の効果」 本発明の伝熱管では、その外面にフィンを固定する際に
拡管用プラグを伝熱管内に押し込むと、管体の内面に形
成された突条のみがプラグに当接し、この突条が押し広
げられて管体の拡径がなされろ。このため、多孔質層は
プラグに接触せず、電析金属が剥離したり潰れたりする
といったことがなく、多孔質層の特性を十分に発揮して
高い伝熱性能を得ることができる。
"Effects of the Invention" In the heat exchanger tube of the present invention, when the expansion plug is pushed into the heat exchanger tube when fixing fins to the outer surface of the tube, only the protrusions formed on the inner surface of the tube come into contact with the plug, and this The protrusions are pushed out and the diameter of the tube is expanded. Therefore, the porous layer does not come into contact with the plug, and the deposited metal does not peel off or collapse, making it possible to fully exhibit the characteristics of the porous layer and obtain high heat transfer performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の伝熱管の断面性状を示す拡
大図、第2図は同伝熱管の内面の性状を示す拡大図、第
3図は同伝熱管を製造するためのめっき装置の構成図で
ある。 また、第4図は本出願人が先に出願した伝熱管の断面性
状を示す拡大図である。 IO・・・管体、      11・・・突条、12・
・・多孔質めっき層、13・・電析金属。
Fig. 1 is an enlarged view showing the cross-sectional properties of a heat transfer tube according to an embodiment of the present invention, Fig. 2 is an enlarged view showing the properties of the inner surface of the heat transfer tube, and Fig. 3 is a plating for manufacturing the heat transfer tube. It is a block diagram of a device. Moreover, FIG. 4 is an enlarged view showing the cross-sectional properties of a heat exchanger tube previously filed by the present applicant. IO...Pipe body, 11...Protrusion, 12.
... Porous plating layer, 13... Electrodeposited metal.

Claims (1)

【特許請求の範囲】[Claims]  金属製管体の内面に、管体の軸方向に連続する複数の
突条を周方向略一定間隔毎に形成するとともに、これら
突条を除く部分に、樹枝状あるいは粒状の電析金属から
なりかつ前記突条の突出量よりも肉厚が小さい多孔質層
を形成したことを特徴とする伝熱管。
A plurality of protrusions are formed on the inner surface of the metal tube at approximately regular intervals in the circumferential direction, and the parts other than these protrusions are made of dendritic or granular electrodeposited metal. A heat exchanger tube characterized in that a porous layer having a wall thickness smaller than the amount of protrusion of the protrusions is formed.
JP62012728A 1987-01-22 1987-01-22 Heat transfer pipe Pending JPS63183392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62012728A JPS63183392A (en) 1987-01-22 1987-01-22 Heat transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62012728A JPS63183392A (en) 1987-01-22 1987-01-22 Heat transfer pipe

Publications (1)

Publication Number Publication Date
JPS63183392A true JPS63183392A (en) 1988-07-28

Family

ID=11813496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62012728A Pending JPS63183392A (en) 1987-01-22 1987-01-22 Heat transfer pipe

Country Status (1)

Country Link
JP (1) JPS63183392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3346220A1 (en) * 2017-01-05 2018-07-11 The Boeing Company Heat pipe with non-uniform cross-section

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3346220A1 (en) * 2017-01-05 2018-07-11 The Boeing Company Heat pipe with non-uniform cross-section
US10480866B2 (en) 2017-01-05 2019-11-19 The Boeing Company Heat pipe with non-uniform cross-section

Similar Documents

Publication Publication Date Title
Xie et al. Review of critical-heat-flux enhancement methods
US4246057A (en) Heat transfer surface and method for producing such surface
US3803688A (en) Method of making a heat pipe
US3513908A (en) Embedded tube heat exchanger
JPS6325491A (en) Evaporator tube, heat transfer property of which is improved, and manufacture thereof
JP2016102643A (en) Heat exchanger
JPS63183392A (en) Heat transfer pipe
EP0226861B1 (en) Heat-transfer material and method of producing same
JPS63183393A (en) Heat transfer pipe
JPS62284193A (en) Heat transfer pipe
JPS5952195A (en) Heat exchanger
JP2007046871A (en) Manufacturing method of pipe with fin
JPS63243297A (en) Production of heat transfer tube
JPS63183389A (en) Heat transfer body
JP2822015B2 (en) Pipe for heat exchanger and method for producing the same
JPS60232496A (en) Heat exchanger
KR100535666B1 (en) Heat Exchanger and Manufacture Method for the Same
JPH04110597A (en) Heat transfer pipe of heat exchanger
JPS63183388A (en) Heat transfer body
JP2541056B2 (en) Method of manufacturing heat pipe type heat exchanger
JPS6115092A (en) Heat transfer tube for use in heat exchanger
JPS63183387A (en) Heat transfer body
JPS63183386A (en) Heat transfer body
JPS63243296A (en) Production of heat transfer tube
JPS62206383A (en) Heat transfer body