JP2001108384A - Heat pipe - Google Patents

Heat pipe

Info

Publication number
JP2001108384A
JP2001108384A JP28843499A JP28843499A JP2001108384A JP 2001108384 A JP2001108384 A JP 2001108384A JP 28843499 A JP28843499 A JP 28843499A JP 28843499 A JP28843499 A JP 28843499A JP 2001108384 A JP2001108384 A JP 2001108384A
Authority
JP
Japan
Prior art keywords
hollow
working fluid
heat pipe
heat
closed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28843499A
Other languages
Japanese (ja)
Inventor
Kenya Kawabata
賢也 川畑
Hajime Noda
一 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP28843499A priority Critical patent/JP2001108384A/en
Publication of JP2001108384A publication Critical patent/JP2001108384A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pipe in which a capillary tube force of wick material is increased, a maximum heat transfer power is increased, and a heat transfer can be carried out without producing any dry-out phenomenon even at a relative long distance space or a location having a relative elevational height difference. SOLUTION: There is provided a heat pipe in which wick materials 2 are arranged within a hermetically closed container 1 along its longitudinal direction and working fluid is sealingly filled in it. The wick materials 2 are provided with hollow linear members 3 having hollow circulating flow passages 4 for use in returning the working fluid of liquid phase condensed at a heat radiating section. Substantial wedge-shaped fine clearances 6 for use in returning the working fluid of liquid phase back to a heating segment are formed at least between an outer surface of each of the hollow linear members 3 and an inner wall surface of the hermetically closed container 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ウイック材の構造
に改良を施したヒートパイプに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe having an improved wick material structure.

【0002】[0002]

【従来の技術】ヒートパイプは、密閉容器内にその長手
方向に添ってウイック材を設けると共に少量の作動流体
を封入してなり、作動流体を一方の端末の加熱部で蒸発
させ、他方の端末の放熱部で凝縮させ、潜熱によって熱
輸送を行う装置である。このとき、加熱部で蒸発した作
動流体の蒸気(気相の作動流体)は圧力差で放熱部に移
動するが、凝縮した液体(液相の作動流体)は、加熱部
に帰還させるために力が必要である。この力は一般に
は、重力や毛細管力を利用している。この毛細管力を生
じさせるために毛細管構造をしたウイック材が用いられ
る。代表的なウイック材としては、密閉容器の内壁にグ
ルーブを構築するもの、金属メッシュ材や多孔質焼結金
属を設置するものがある。また、最近ではワイヤ束を添
設したものも提案されている。
2. Description of the Related Art A heat pipe is provided by providing a wick material along a longitudinal direction in a closed vessel and enclosing a small amount of working fluid. The working fluid is evaporated in a heating section of one terminal, and the other end is heated. Is a device that condenses in the heat radiating section and performs heat transport by latent heat. At this time, the vapor of the working fluid evaporated in the heating unit (gas phase working fluid) moves to the heat radiating unit due to the pressure difference, but the condensed liquid (liquid phase working fluid) is forced to return to the heating unit by force. is necessary. This force generally utilizes gravity or capillary force. A wick material having a capillary structure is used to generate the capillary force. As a typical wick material, there are a material for forming a groove on the inner wall of a closed container, and a material for installing a metal mesh material or a porous sintered metal. Recently, a wire bundle has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ウイッ
ク材としてグルーブを構築するものは、パイプ内に毛細
管力を大きくするためのグルーブの形成が困難で、毛細
管力を大きくすることが容易でなかった。また、金属メ
ッシュ材や多孔質焼結金属を設置するものは、グルーブ
タイプのものよりも毛細管力を大きくすることができる
が、液相の作動流体の圧力損失が大きくなるため、特に
ヒートパイプが長尺化したり、大量の熱を特に上から下
に輸送しようとする場合(下部の放熱部で凝縮した液相
の作動流体を上部の加熱部へ帰還させる必要がある)、
ドライアウト(乾き上がり)現象を生じる恐れがあり、
より一層の毛細管力の向上が望まれていた。さらに、ワ
イヤ束を用いたものは、ワイヤ同士をワイヤ束に交差す
る横糸で編んで一体化する必要があり、この結節部分で
加熱部に帰還する液相の作動流体の圧力損失が大きくな
って、作動流体の流れが悪くなり、同様に毛細管力を大
きくすることができなかった。このように、従来のヒー
トパイプのウイック材は、いずれも毛細管力を大きくす
ることが容易でなく、熱輸送能力を向上させることがで
きなかった。
However, in the case of forming a groove as a wick material, it is difficult to form a groove for increasing a capillary force in a pipe, and it is not easy to increase a capillary force. In addition, a metal mesh material or a porous sintered metal is provided with a larger capillary force than a groove type, but the pressure loss of a working fluid in a liquid phase is increased. If the length is to be increased or a large amount of heat is to be transported particularly from top to bottom (it is necessary to return the liquid-phase working fluid condensed in the lower heat radiating section to the upper heating section)
Dry out phenomenon may occur,
It has been desired to further improve the capillary force. Further, in the case of using the wire bundle, it is necessary to knit the wires with a weft thread crossing the wire bundle and integrate them, and the pressure loss of the liquid-phase working fluid returning to the heating unit at this knot becomes large. However, the flow of the working fluid became poor, and the capillary force could not be similarly increased. As described above, none of the conventional wick materials of the heat pipe can easily increase the capillary force, and cannot improve the heat transport ability.

【0004】本発明は上記の問題を解決し、ウイック材
の毛細管力を大きくして、最大熱輸送力を増加させ、比
較的長距離の区間や、比較的高低差のある場所において
も、ドライアウト現象を生じることなく熱輸送すること
を可能にしたヒートパイプを提供するものである。
[0004] The present invention solves the above problems, increases the capillary force of the wick material to increase the maximum heat transport force, and can be used in a relatively long distance section or a place with a relatively high level difference. An object of the present invention is to provide a heat pipe capable of performing heat transport without causing an out phenomenon.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明におけるヒートパイプは、密閉容器内にその
長手方向に添ってウイック材を設けると共に作動流体を
封入してなるものにおいて、前記ウイック材は、放熱部
で凝縮した液相の作動流体を加熱部へ帰還させる中空還
流通路を有する中空線状体を備え、少なくとも中空線状
体の外表面と密閉容器内壁面との間に液相の作動流体を
加熱部へ帰還させる微小な隙間が形成されるように設け
てなるものである。
Means for Solving the Problems In order to solve the above-mentioned problems, a heat pipe according to the present invention is provided by providing a wick material along a longitudinal direction in a closed container and sealing a working fluid. The wick material includes a hollow linear body having a hollow reflux passage for returning a liquid-phase working fluid condensed in the heat radiating section to the heating section, and a liquid is provided between at least an outer surface of the hollow linear body and an inner wall surface of the closed container. It is provided so that a minute gap for returning the working fluid of the phase to the heating unit is formed.

【0006】また、前記中空線状体は中空還流通路を有
する中空撚線で構成されていると好ましいものである。
さらに、前記密閉容器が矩形状又は長円形状の穴部を有
する板状容器からなり、また前記穴部に挿通される中空
線状体が前記穴部の短径に大略等しい外径を有し、前記
中空線状体の外表面と前記穴部の両短辺内壁面との間に
液相の作動流体を加熱部へ帰還させる微小な隙間が形成
されるように構成されていると好ましいものである。
Further, it is preferable that the hollow wire is constituted by a hollow stranded wire having a hollow reflux passage.
Further, the closed container is a plate-shaped container having a rectangular or elliptical hole, and the hollow linear body inserted into the hole has an outer diameter substantially equal to the minor diameter of the hole. It is preferable that a minute gap is formed between the outer surface of the hollow linear body and the inner wall surfaces on both short sides of the hole to return the working fluid in the liquid phase to the heating unit. It is.

【0007】[0007]

【発明の実施の形態】次に、本発明の実施の形態を、図
面により詳細に説明する。図1(イ)(ロ)は本発明に
係るヒートパイプの横断面図、一部分縦断面図、図2は
図1(イ)の一部分を拡大して示す部分拡大断面図であ
り、このヒートパイプは、例えば円形管状体からなる密
閉容器1内にその長手方向に添ってウイック材2を設け
ると共に、水、アセトン等の作動流体を封入して構成さ
れる。
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIGS. 1A and 1B are a cross-sectional view and a partial vertical cross-sectional view of a heat pipe according to the present invention, and FIG. 2 is a partially enlarged cross-sectional view showing a part of FIG. The wick material 2 is provided along a longitudinal direction in a closed container 1 made of, for example, a circular tubular body, and a working fluid such as water or acetone is sealed.

【0008】前記ウイック材2は図1(ロ)に詳細に示
すように、例えば、熱伝導性の良好な銅、アルミ条をギ
ャップ巻きでスパイラル状に巻き付けて形成されたスパ
イラルコア5の外周上に、多数本の例えば銅、アルミ製
の円形の中空単線からなる中空線状体3を撚合わせて構
成され、各中空線状体3の中心部には、一方の端末の放
熱部で凝縮した液相の作動流体を他方の端末の加熱部へ
帰還させる中空還流通路4が形成される。また、中空線
状体3の外表面と密閉容器1の内壁面との間及び中空線
状体3間には液相の作動流体を加熱部へ帰還させる略く
さび状の微小な隙間6がそれぞれ形成される。前記スパ
イラルコア5は中空線状体3を密閉容器1内に保持させ
る役目をする。なお、7は加熱部で蒸発された気相の作
動流体を放熱部へ移動させる蒸気送流通路である。上記
のようなウイック材2を用いると、少なくとも中空線状
体3の外表面と密閉容器1の内壁面との間に形成される
微小な隙間6と中空線状体3に形成される中空還流通路
4の両方から毛細管力が生じる。この結果、従来よりも
多くの液相の作動流体を放熱部(凝縮部)から加熱部
(蒸発部)へ帰還させることができる。なお、前記微小
な隙間6が略くさび状に形成されていると、特に先端狭
隙部分で大きな毛細管力が生じるため効果的である。
As shown in detail in FIG. 1B, the wick material 2 is formed, for example, on the outer periphery of a spiral core 5 formed by spirally winding copper and aluminum strips having good heat conductivity by gap winding. In addition, a large number of hollow wires 3 made of a circular hollow single wire made of, for example, copper or aluminum are twisted together, and the central portion of each hollow wire 3 is condensed by the heat radiation portion of one terminal. A hollow recirculation passage 4 for returning the working fluid in the liquid phase to the heating section of the other terminal is formed. Further, between the outer surface of the hollow linear body 3 and the inner wall surface of the closed container 1 and between the hollow linear bodies 3, there are formed substantially wedge-shaped minute gaps 6 for returning the liquid-phase working fluid to the heating unit. It is formed. The spiral core 5 serves to hold the hollow linear body 3 in the closed container 1. Reference numeral 7 denotes a vapor transmission passage for moving the gas-phase working fluid evaporated in the heating unit to the heat radiation unit. When the wick material 2 as described above is used, at least the minute gap 6 formed between the outer surface of the hollow wire 3 and the inner wall surface of the closed container 1 and the hollow reflux formed in the hollow wire 3 Capillary forces are generated from both passages 4. As a result, more liquid-phase working fluid than before can be returned from the heat radiating section (condensing section) to the heating section (evaporating section). When the minute gap 6 is formed in a substantially wedge shape, a large capillary force is generated particularly in a narrow end portion, which is effective.

【0009】図3に示すものは、ヒートパイプの他の実
施の形態の例であり、複数個の矩形状の穴部9が幅方向
に並列して設けられた例えばアルミ押出し材で出来た板
状の密閉容器8の各穴部9に、その穴部9の短径に大略
等しい外径を有し、中空還流通路4を有する中空線状体
3を挿通してウイック材10を設け、中空線状体3の外
表面と穴部9の両短辺内壁面との間の4箇所に、液相の
作動流体を加熱部へ帰還させる略くさび状の微小な隙間
6が形成されるようにしたものである。なお、11は加
熱部で蒸発された気相の作動流体を放熱部へ移動させる
蒸気送流通路である。このようなウイック材10を用い
ると、従来のような金属メッシュや多孔質焼結金属によ
るウイック材を前記穴部の内壁面に密着固定させる困難
な作業が不要となるほか、ワイヤ束を使用するものと比
較しても、前記微小な隙間6と中空還流通路4の両方か
ら毛細管力を生じさせることができ、ウイック材を装着
しにくい板状のヒートパイプでも、多くの液相の作動流
体を加熱部へ効率よく帰還させて、熱輸送力を高めるこ
とができ好ましい。
FIG. 3 shows another embodiment of the heat pipe, in which a plate made of, for example, extruded aluminum is provided with a plurality of rectangular holes 9 arranged in parallel in the width direction. A wick member 10 is provided in each of the holes 9 of the hollow container 8 having an outer diameter substantially equal to the minor diameter of the hole 9 and having a hollow recirculation passage 4 inserted therein. At the four positions between the outer surface of the linear body 3 and the inner wall surfaces on both short sides of the hole 9, small wedge-shaped small gaps 6 for returning the liquid-phase working fluid to the heating unit are formed. It was done. In addition, reference numeral 11 denotes a vapor transmission passage for moving the gas-phase working fluid evaporated in the heating unit to the heat radiation unit. The use of such a wick material 10 eliminates the need for a difficult operation of closely contacting and fixing the wick material made of a metal mesh or a porous sintered metal to the inner wall surface of the hole, and uses a wire bundle. In comparison with the heat pipe, a capillary force can be generated from both the minute gap 6 and the hollow recirculation passage 4, and even in a plate-like heat pipe in which a wick material is difficult to be mounted, many liquid-phase working fluids can be formed. This is preferable because the heat can be efficiently returned to the heating section to increase the heat transport power.

【0010】なお、前記中空線状体3はいずれも中空単
線で形成されているが、これのみに限定されるものでは
なく、例えば、図4に示すように、多数本の例えば銅、
アルミ製の中実の素線13を撚合わせて内部に中空還流
通路14を有する中空撚線からなる中空線状体12で形
成しても良い。また図示しないが、中空撚線は一層構造
だけでなく、二層以上の多層構造にしても良い。このよ
うな中空線状体12でウイック材を構成すると、中空線
状体12の外表面と密閉容器1、8との間に形成される
微小な隙間6、中空還流通路14ばかりでなく、各素線
13間のくぼみ13aからも毛細管力が生じ、さらに撚
線なので、素線間を結束する結節部がなくて作動流体の
圧力損失も少なく、液相の作動流体をより多量に放熱部
から加熱部へ帰還させることができ、熱輸送力を高める
ことができる。
The hollow wire 3 is formed of a single hollow wire, but is not limited to this. For example, as shown in FIG.
It may be formed by twisting aluminum solid wires 13 made of aluminum and forming a hollow wire 12 made of a hollow stranded wire having a hollow reflux passage 14 therein. Although not shown, the hollow stranded wire may have not only a single-layer structure but also a multilayer structure of two or more layers. When the wick material is constituted by such a hollow linear body 12, not only the minute gap 6 formed between the outer surface of the hollow linear body 12 and the closed containers 1 and 8, the hollow reflux passage 14, but also each wick material. Capillary force is also generated from the depressions 13a between the strands 13, and since the strands are stranded, there is no knot connecting the strands, the pressure loss of the working fluid is small, and a larger amount of the working fluid in the liquid phase is discharged from the radiator. The heat can be returned to the heating section, and the heat transport power can be increased.

【0011】[0011]

【実施例】(実施例1)図5に示すような、外径9.5
3mm、長さ250mmの銅パイプからなる管状の密閉
容器1の内壁面に、図4に示すような、14本の直径
0.16mmの細い銅製の中実の素線13を撚合せ、内
部に中空還流通路14を有する外径0.8mm、長さ2
00mmの中空撚線からなる20本の中空線状体12
を、図示しないが、スパイラルコア5(図1、2参照)
の外周上に撚合わせ、これを密閉容器1内に挿通して、
密閉容器内に、その長手方向に添って、そのスパイラル
コアのばね性を利用してウイック材15を設けた。この
場合、中空線状体12は、密閉容器1内に挿通し、その
一方の端末から30mm、また他方の端末から20mm
奥側に入ったところで、密閉容器1内に保持固定し、少
なくとも中空線状体12の外表面と密閉容器1の内壁面
との間に、液相の作動流体を加熱部へ帰還させる略くさ
び状の微小な隙間が形成されるようにした。また、密閉
容器1内には、作動流体である水を密閉容器の内容積の
15%入れて、両端を溶接により封止し、このようにし
てヒートパイプを試作した。このヒートパイプは、密閉
容器1の前記一方の端末から50mmの範囲にアルミブ
ロック16を取付けて加熱部Aとし、前記他方の端末か
ら100mmの範囲にアルミプレート(放熱フィン)1
7を取付けて放熱部Bとし、中間の100mmの範囲に
密閉容器の外周に断熱材18を被せて断熱部Cとし、大
略水平に固定した。
(Embodiment 1) An outer diameter of 9.5 as shown in FIG.
As shown in FIG. 4, 14 solid copper wires 13 having a diameter of 0.16 mm are stranded on the inner wall surface of a tubular sealed container 1 made of a copper pipe having a length of 3 mm and a length of 250 mm. 0.8 mm outside diameter, length 2 having hollow return passage 14
20 hollow linear bodies 12 each made of a 00 mm hollow stranded wire
Although not shown, the spiral core 5 (see FIGS. 1 and 2)
Twisted on the outer periphery of this, and this is inserted into the closed container 1,
A wick material 15 was provided in the closed container along the longitudinal direction by utilizing the spring property of the spiral core. In this case, the hollow linear body 12 is inserted into the closed container 1 and is 30 mm from one end and 20 mm from the other end.
When it enters the back side, it is held and fixed in the sealed container 1, and at least between the outer surface of the hollow linear body 12 and the inner wall surface of the sealed container 1, a substantially wedge for returning the liquid-phase working fluid to the heating unit. A minute gap in the shape of a circle was formed. Further, water as a working fluid was put into the closed container 1 at 15% of the inner volume of the closed container, and both ends were sealed by welding. Thus, a heat pipe was prototyped. The heat pipe is provided with an aluminum block 16 in a range of 50 mm from the one end of the sealed container 1 to form a heating section A, and an aluminum plate (radiation fin) 1 in a range of 100 mm from the other end.
7 was attached to form a heat radiating section B, and a heat insulating material 18 was placed on the outer periphery of the sealed container in an intermediate range of 100 mm to form a heat insulating section C, which was fixed substantially horizontally.

【0012】次に、このヒートパイプの加熱部Aを発熱
体(ヒータ)に接触させ、加熱部Aを加熱した。これに
より、発熱体からの熱がアルミブロック16を介してヒ
ートパイプ内に伝達され、ヒートパイプ内に封入された
作動流体である水(液相の作動流体)が蒸発し蒸気(気
相の作動流体)になる。この蒸気は蒸気送流通路7(図
1、2参照)を通して放熱部Bに移動し、凝縮して水
(液相の作動流体)に戻る。この凝縮水は少なくとも中
空線状体12の外表面と密閉容器1の内壁面との間に形
成される微小な隙間、中空還流通路14及び素線13間
のくぼみ13aによって生じる毛細管力を利用して再び
加熱部Aに帰還するので、従来のものよりも凝縮水の濡
れ縁長さが増大し、毛細管力がより大きくなり、その結
果、液相の作動流体である凝縮水の限界循環量が増加
し、ドライアウトが起こり難くなった。
Next, the heating section A of the heat pipe was brought into contact with a heating element (heater) to heat the heating section A. As a result, heat from the heating element is transmitted into the heat pipe via the aluminum block 16, and water (liquid-phase working fluid), which is a working fluid sealed in the heat pipe, evaporates and steam (gas-phase working fluid). Fluid). This vapor moves to the heat radiating section B through the vapor transmission passage 7 (see FIGS. 1 and 2), condenses, and returns to water (liquid-phase working fluid). This condensed water utilizes at least a minute gap formed between the outer surface of the hollow linear body 12 and the inner wall surface of the closed vessel 1, the capillary force generated by the hollow 13a between the hollow reflux passage 14 and the strand 13, and the like. And returns to the heating section A again, so that the wetted edge length of the condensed water is increased and the capillary force is increased as compared with the conventional one, and as a result, the critical circulation amount of the condensed water, which is the working fluid in the liquid phase, is increased. And dry out became difficult to occur.

【0013】(実施例2)図6(イ)(ロ)に示すよう
な、幅0.9mm、高さ2.2mmの矩形状の穴部20
が幅方向に24個並列して設けられた、幅60mm、長
さ400mm、厚さ1.9mmのアルミ押出し材からな
る板状の密閉容器19の各穴部20に、図7に示すよう
な、その穴部20の短径(0.9mm)に大略等しい外
径0.82mm、内径0.5mmの中空還流通路4を有
するアルミ製の中空単線からなる中空線状体3を1本ず
つ挿通してウイック材10を設け、中空線状体3の外表
面と穴部20の両短辺内壁面との間の4箇所に、液相の
作動流体を加熱部へ帰還させる略くさび状の微小な隙間
6が形成されるようにした。なお、11は加熱部で蒸発
された気相の作動流体を放熱部へ移動させる蒸気送流通
路である。また、密閉容器19の長さ方向の両端末から
各穴部間の隔壁部分を奥側に約5mm除去して中空還流
通路4及び蒸気送流通路11を両端で連通させるヘッダ
ー(連通部)21を設けた。さらに、密閉容器19内に
は作動流体である代替フロンHCFC123を密閉容器
19の内容積の40%入れ、両端に封止キャップ22を
取付けて溶接により封止し、このようにしてヒートパイ
プを試作した。このヒートパイプは、密閉容器19の前
記一方の端末から100mmの範囲にアルミブロック
(図示省略)を取付けて加熱部Aとし、前記他方の端末
から150mmの範囲にアルミプレート(図示省略)を
取付けて放熱部Bとし、中間の150mmの範囲に密閉
容器の外周に断熱材(図示省略)を被せて断熱部Cと
し、幅方向には水平で、且つ長手方向には放熱部Bに対
して加熱部Aが上向きに5度傾斜するように傾けて固定
した。
(Embodiment 2) A rectangular hole 20 having a width of 0.9 mm and a height of 2.2 mm as shown in FIGS.
As shown in FIG. 7, in each of the holes 20 of a plate-shaped closed container 19 made of an extruded aluminum material having a width of 60 mm, a length of 400 mm, and a thickness of 1.9 mm, provided in parallel in a width direction of 24 pieces. The hollow linear bodies 3 each made of a single aluminum hollow wire having a hollow recirculation passage 4 having an outer diameter of 0.82 mm and an inner diameter of 0.5 mm substantially equal to the short diameter (0.9 mm) of the hole 20 are inserted one by one. A wick material 10 is provided, and a substantially wedge-shaped minute liquid for returning the liquid-phase working fluid to the heating unit is provided at four places between the outer surface of the hollow wire 3 and the inner wall surfaces on both short sides of the hole 20. A simple gap 6 is formed. In addition, reference numeral 11 denotes a vapor transmission passage for moving the gas-phase working fluid evaporated in the heating unit to the heat radiation unit. Also, a header (communication portion) 21 that removes about 5 mm of the partition wall portion between the holes from both ends in the longitudinal direction of the sealed container 19 to the back side to allow the hollow reflux passage 4 and the steam flow passage 11 to communicate at both ends. Was provided. Further, 40% of the inner volume of the alternative Freon HCFC123, which is a working fluid, is placed in the sealed container 19, and sealing caps 22 are attached to both ends and sealed by welding. Thus, a prototype heat pipe is manufactured. did. This heat pipe is formed by attaching an aluminum block (not shown) within a range of 100 mm from the one end of the closed vessel 19 to form a heating section A, and attaching an aluminum plate (not shown) within a range of 150 mm from the other end. A heat radiating portion B is formed, and a heat insulating material (not shown) is placed on the outer periphery of the closed container in a middle 150 mm range to form a heat insulating portion C. A was tilted and fixed such that A was tilted 5 degrees upward.

【0014】次に、このヒートパイプの加熱部Aを発熱
体(ヒータ)に接触させ、加熱部Aを加熱した。これに
より、発熱体からの熱がヒートパイプ内に伝達され、ヒ
ートパイプ内に封入された作動流体である前記代替フロ
ン(液相の作動流体)が蒸発し蒸気(気相の作動流体)
になる。該蒸気は蒸気送流通路11を通して放熱部Bに
移動し、凝縮して代替フロン(液相の作動流体)に戻
る。この凝縮液は中空線状体3の外表面と穴部20の両
短辺内壁面との間の微小な隙間6及び中空還流通路4に
よって生じる毛細管力を利用して再び加熱部Aに帰還す
るので、従来のものよりも凝縮液の濡れ縁長さが増大
し、毛細管力がより大きくなり、その結果、液相の作動
流体である凝縮水の限界循環量が増加し、ドライアウト
が起こり難くなった。
Next, the heating section A of the heat pipe was brought into contact with a heating element (heater) to heat the heating section A. As a result, heat from the heating element is transmitted into the heat pipe, and the alternative Freon (liquid-phase working fluid), which is a working fluid sealed in the heat pipe, evaporates and vapor (gas-phase working fluid)
become. The vapor moves to the heat radiating section B through the vapor flow passage 11, condenses, and returns to alternative Freon (liquid-phase working fluid). The condensed liquid returns to the heating section A again by utilizing the minute gap 6 between the outer surface of the hollow wire 3 and the inner wall surfaces of both short sides of the hole 20 and the capillary force generated by the hollow reflux passage 4. As a result, the wetted edge length of the condensate is longer than that of the conventional one, and the capillary force is larger. As a result, the limit circulation amount of the condensed water, which is the working fluid in the liquid phase, is increased, and dryout is less likely to occur. Was.

【0015】(実施例3)図8(イ)(ロ)に示すよう
な、幅2.2mm、高さ1mmの長円形状の穴部24が
幅方向に12個並列して設けられた、幅30mm、長さ
160mm、厚さ1.5mmのアルミ押出し材からなる
板状の密閉容器23の1つ置きの6個の穴部24Aに、
図4に示すような、14本の直径0.16mmの細い銅
製の中実の素線13を撚合せて、内部に中空還流通路1
4を有する外径0.8mm、長さ150mmの中空撚線
からなる中空線状体12を2本、図9に示すように、並
行して挿通し、長手方向に添ってウイック材25を設
け、中空線状体12の外表面と穴部24Aの内壁面との
間に液相の作動流体を加熱部へ帰還させる略くさび状の
微小な隙間6が形成されるようにした。なお、他の6個
の穴部24Bは、加熱部で蒸発された気相の作動流体を
放熱部へ移動させる蒸気送流通路26として利用され
る。また、密閉容器23の長さ方向の両端末から各穴部
間の隔壁部分を奥側に約5mm除去して中空還流通路1
4及び蒸気送流通路26を両端で連通させるヘッダー
(図示省略)21を設けた。さらに、密閉容器1内には
作動流体であるアセトンを密閉容器23の内容積の25
%入れ、両端を溶接により封止し、このようにしてヒー
トパイプを試作した。このヒートパイプは、密閉容器2
3の前記一方の端末から30mmの範囲にアルミブロッ
ク(図示省略)を取付けて加熱部Aとし、前記他方の端
末から50mmの範囲にアルミプレート(図示省略)を
取付けて放熱部Bとし、中間の80mmの範囲に密閉容
器の外周に断熱材(図示省略)を被せて断熱部Cとし、
幅方向には水平で、且つ長手方向には放熱部Bに対して
加熱部Aが下向きに20度傾斜するように傾けて固定し
た。
(Embodiment 3) As shown in FIGS. 8 (a) and 8 (b), twelve elliptical holes 24 having a width of 2.2 mm and a height of 1 mm are provided in parallel in the width direction. In every other six holes 24A of a plate-shaped closed container 23 made of an extruded aluminum material having a width of 30 mm, a length of 160 mm, and a thickness of 1.5 mm,
As shown in FIG. 4, 14 solid copper wires 13 having a diameter of 0.16 mm are twisted to form a hollow reflux passage 1 therein.
As shown in FIG. 9, two hollow linear bodies 12 each formed of a hollow stranded wire having an outer diameter of 0.8 mm and a length of 150 mm each having a No. 4 are inserted in parallel, and a wick material 25 is provided along the longitudinal direction. An approximately wedge-shaped minute gap 6 for returning the liquid-phase working fluid to the heating section is formed between the outer surface of the hollow linear body 12 and the inner wall surface of the hole 24A. The other six holes 24 </ b> B are used as vapor transmission passages 26 for moving the gas-phase working fluid evaporated in the heating unit to the heat radiation unit. In addition, about 5 mm of the partition between the holes was removed from both ends in the longitudinal direction of the closed container 23 to the back side, and the hollow reflux passage 1 was removed.
4 and a header (not shown) 21 for communicating the steam flow passage 26 at both ends. Further, acetone, which is a working fluid, is filled in the closed container 1 to 25% of the inner volume of the closed container 23.
%, And both ends were sealed by welding. Thus, a heat pipe was prototyped. This heat pipe is a closed vessel 2
3, an aluminum block (not shown) is attached within a range of 30 mm from the one terminal to form a heating section A, and an aluminum plate (not shown) is attached to a 50 mm range from the other terminal to form a heat radiating section B. A heat insulating material (not shown) is put on the outer periphery of the closed container in a range of 80 mm to form a heat insulating portion C
The heating unit A was fixed so as to be horizontal in the width direction and inclined so that the heating unit A was inclined downward by 20 degrees with respect to the heat radiation unit B in the longitudinal direction.

【0016】次に、このヒートパイプの加熱部Aを発熱
体(ヒータ)に接触させ、加熱部Aを加熱した。これに
より、発熱体からの熱がヒートパイプ内に伝達され、ヒ
ートパイプ内に封入された作動流体である前記アセトン
(液相の作動流体)が蒸発し蒸気(気相の作動流体)に
なる。該蒸気は蒸気送流通路26を通して放熱部Bに移
動し、凝縮してアセトン(液相の作動流体)に戻る。こ
の凝縮液は中空線状体12の外表面と穴部24Aの両短
辺内壁面との間に生じる微小な隙間6と中空還流通路1
4によって生じる毛細管力を利用して再び加熱部Aに帰
還するので、従来のものよりも凝縮液の濡れ縁長さが増
大し、毛細管力がより大きくなり、その結果、液相の作
動流体である凝縮水の限界循環量が増加し、ドライアウ
トが起こり難くなった。
Next, the heating section A of the heat pipe was brought into contact with a heating element (heater) to heat the heating section A. Thereby, heat from the heating element is transmitted into the heat pipe, and the acetone (liquid-phase working fluid), which is a working fluid sealed in the heat pipe, evaporates to vapor (gas-phase working fluid). The vapor moves to the heat radiating section B through the vapor flow passage 26, condenses, and returns to acetone (liquid-phase working fluid). This condensed liquid forms a minute gap 6 between the outer surface of the hollow linear body 12 and the inner wall surfaces on both short sides of the hole 24A and the hollow reflux passage 1.
Since it returns to the heating section A again by utilizing the capillary force generated by 4, the wetted edge length of the condensate is increased and the capillary force is increased as compared with the conventional one, and as a result, the working fluid is in the liquid phase. The critical circulation amount of condensed water increased, and dry-out hardly occurred.

【0017】本発明の上記実施の形態及び実施例では、
密閉容器として管状、板状のものについて説明したが、
直管、平板状ばかりでなく、一部に曲げ加工やスエージ
ング加工を施したものでも良いし、管も円形だけでなく
楕円、四角形等の角形でも良いし、板状も平板状だけに
限定されない。また容器材質も銅、アルミだけでなく、
その合金材やステンレスその他の材料で構成しても良
い。また中空線状体の材質も適合性に問題なければ密閉
容器と同材質のものである必要性はない。中空線状体の
中空還流通路となる内径も作動流体の物性によって適宜
変更することができる。また通常のヒートパイプは水平
で、且つ、加熱部(蒸発部)を下部にして設置するが、
垂直、斜めに設置しても良いし、毛細管力が大きく、凝
縮液(液相の作動流体)を加熱部へ容易に帰還させるこ
とができるので、ヒートパイプとしての機能を維持する
ことが可能であり、従って、加熱部を上部(トップヒー
トモード)にして設置しても良い。さらに中空線状体を
中空撚線で形成した場合、その撚線を構成する素線の直
径及び撚線ピッチを作動流体や密閉容器のサイズにより
適宜選定することができる。
In the above embodiments and examples of the present invention,
As a closed container, a tubular, plate-shaped one was described,
Not only straight pipes and flat pipes, but also bent or swaged parts may be used.Tubes may be not only circular but also rectangular such as ellipses and squares. Not done. The container material is not only copper and aluminum,
It may be made of the alloy material, stainless steel or other materials. Also, the material of the hollow linear body does not need to be the same as that of the closed container if there is no problem in compatibility. The inner diameter of the hollow wire which becomes the hollow reflux passage can be appropriately changed depending on the physical properties of the working fluid. In addition, the normal heat pipe is installed horizontally with the heating part (evaporation part) at the bottom,
It can be installed vertically or diagonally, has a large capillary force, and can easily return the condensate (liquid-phase working fluid) to the heating unit, so it can maintain its function as a heat pipe. Yes, and therefore, the heater may be installed with the heating section at the top (top heat mode). Further, when the hollow wire is formed of a hollow stranded wire, the diameter and the stranded pitch of the wires constituting the stranded wire can be appropriately selected depending on the working fluid and the size of the closed container.

【0018】[0018]

【発明の効果】以上のように、本発明は、密閉容器内に
その長手方向に添ってウイック材を設けると共に作動流
体を封入してなるヒートパイプにおいて、前記ウイック
材は、放熱部で凝縮した液相の作動流体を加熱部へ帰還
させる中空還流通路を有する中空線状体を備え、少なく
とも中空線状体の外表面と密閉容器内壁面との間に液相
の作動流体を加熱部へ帰還させる微小な隙間が形成され
るように設けてなるものであるから、少なくとも中空線
状体3の外表面と密閉容器1の内壁面との間に形成され
る前記微小な隙間及び中空線状体3に形成される中空還
流通路の両方から毛細管力が生じることになり、毛細管
力が大きくなって、従来のものよりも多くの液相の作動
流体を放熱部から加熱部へ帰還させることができる。こ
のため、熱輸送力を増加させ、比較的長距離の区間や比
較的高低差のある場所においても、ドライアウト現象を
生じることなく容易に熱輸送することができる。
As described above, according to the present invention, in a heat pipe in which a wick material is provided along a longitudinal direction in a closed vessel and a working fluid is sealed, the wick material is condensed in a heat radiating portion. A hollow linear body having a hollow recirculation passage for returning the liquid-phase working fluid to the heating unit is provided, and the liquid-phase working fluid is returned to the heating unit at least between the outer surface of the hollow linear body and the inner wall surface of the closed vessel. The minute gap and the hollow linear body formed at least between the outer surface of the hollow linear body 3 and the inner wall surface of the closed container 1 are formed so as to form a minute gap to be formed. Capillary force is generated from both of the hollow reflux passages formed in 3, and the capillary force is increased, so that a larger amount of liquid-phase working fluid can be returned from the heat radiating section to the heating section than conventional ones. . Therefore, the heat transport force can be increased, and the heat can be easily transported without causing a dry-out phenomenon even in a section having a relatively long distance or a place having a relatively high level difference.

【0019】また、前記中空線状体が中空還流通路を有
する中空撚線で構成されていると、中空線状体の外表面
と密閉容器との間に形成される前記微小な隙間と中空還
流通路14ばかりでなく、中空撚線の各素線間のくぼみ
からも毛細管力が生じるので、液相の作動流体をより多
く放熱部から加熱部に帰還させることができ、熱輸送力
を高めることができる。
Further, when the hollow linear body is formed of a hollow stranded wire having a hollow reflux passage, the minute gap formed between the outer surface of the hollow linear body and the closed vessel and the hollow reflux are formed. Capillary force is generated not only from the passage 14 but also from the hollow between the strands of the hollow stranded wire, so that a larger amount of liquid-phase working fluid can be returned from the heat radiating section to the heating section, thereby increasing the heat transport force. Can be.

【0020】さらに、前記密閉容器は複数個の矩形状又
は長円形状の穴部が設けられた板状容器からなり、前記
穴部に挿通される中空線状体は前記穴部の短径に大略等
しい外径を有し、前記中空線状体の外表面と前記穴部の
両短辺内壁面との間に、液相の作動流体を加熱部へ帰還
させる微小な隙間が形成されるように構成されている
と、従来のような金属メッシュや多孔質焼結金属による
ウイック材を前記穴部の内壁面に密着固定させる困難な
作業が不要となるほか、ワイヤ束を使用するものと比較
しても、前記微小な隙間と中空還流通路の両方から毛細
管力を生じさせることができ、ウイック材を装着しにく
い板状のヒートパイプでも、多くの液相の作動流体を加
熱部へ効率よく帰還させ、熱輸送力を高めることができ
る。
Further, the closed container is composed of a plate-like container provided with a plurality of rectangular or oval holes, and the hollow wire inserted into the hole has a diameter smaller than that of the hole. It has a substantially equal outer diameter, and a minute gap for returning the liquid-phase working fluid to the heating unit is formed between the outer surface of the hollow linear body and the inner wall surfaces on both short sides of the hole. In addition to the conventional structure, it is not necessary to perform a difficult work of tightly fixing a wick material made of a metal mesh or a porous sintered metal to the inner wall surface of the hole, as compared with a conventional method using a wire bundle. Even when a plate-like heat pipe in which it is difficult to attach a wick material can generate a capillary force from both the minute gap and the hollow reflux passage, a large amount of liquid-phase working fluid can be efficiently supplied to the heating unit. It can be returned to increase the heat transport power.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るヒートパイプの一実施の形態を示
す図であり、(イ)は横断面図、(ロ)は一部分縦断面
図である。
FIG. 1 is a view showing one embodiment of a heat pipe according to the present invention, in which (A) is a transverse sectional view and (B) is a partial longitudinal sectional view.

【図2】図1(イ)の一部を拡大して示す部分拡大断面
図である。
FIG. 2 is a partially enlarged cross-sectional view showing a part of FIG.

【図3】本発明に係るヒートパイプの他の実施の形態を
示す一部分側面図である。
FIG. 3 is a partial side view showing another embodiment of the heat pipe according to the present invention.

【図4】ウイック材を構成する中空線状体が中空撚線で
形成される場合の拡大横断面図である。
FIG. 4 is an enlarged cross-sectional view in the case where a hollow wire forming a wick material is formed of a hollow stranded wire.

【図5】本発明を管状のヒートパイプに適用した場合を
示す一部省略概要図である。
FIG. 5 is a partially omitted schematic diagram showing a case where the present invention is applied to a tubular heat pipe.

【図6】本発明を板状のヒートパイプに適用した場合を
示す図であり、(イ)は一部省略縦断面平面図、(ロ)
は図6(イ)のX−X線横断面図である。
6A and 6B are diagrams showing a case where the present invention is applied to a plate-like heat pipe, wherein FIG.
FIG. 7 is a cross-sectional view taken along line XX of FIG.

【図7】図6(ロ)の一部を拡大して示す部分拡大横断
面図である。
FIG. 7 is a partially enlarged transverse sectional view showing a part of FIG.

【図8】本発明を別の板状のヒートパイプに適用した場
合の図であり、(イ)は概略平面線図、(ロ)は図8
(イ)のY−Y線拡大横断面図である。
8A and 8B are diagrams showing a case where the present invention is applied to another plate-shaped heat pipe, wherein FIG. 8A is a schematic plan view, and FIG.
FIG. 3A is an enlarged cross-sectional view taken along line YY of FIG.

【図9】図8(ロ)の一部を拡大して示す部分拡大横断
面図である。
FIG. 9 is a partially enlarged cross-sectional view showing a part of FIG.

【符号の説明】[Explanation of symbols]

1、8、19、23 密閉容器 2、10、15、25 ウイック材 3、12 中空線状体 4、14 中空還流通路 5 スパイラルコア 6 微小な隙間 7、11、26 蒸気送流通路 9、20、24、24A、24B 穴部 13 素線 13a くぼみ 16 アルミブロック 17 アルミプレート 18 断熱材 21 ヘッダー 22 封止キャップ A 加熱部 B 放熱部 C 断熱部 1, 8, 19, 23 Closed container 2, 10, 15, 25 Wick material 3, 12 Hollow linear body 4, 14 Hollow recirculation passage 5 Spiral core 6 Minute gap 7, 11, 26 Steam transmission passage 9, 20 , 24, 24A, 24B hole 13 element wire 13a depression 16 aluminum block 17 aluminum plate 18 heat insulating material 21 header 22 sealing cap A heating part B heat radiation part C heat insulation part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内にその長手方向に添ってウイ
ック材を設けると共に作動流体を封入してなるヒートパ
イプにおいて、前記ウイック材は、放熱部で凝縮した液
相の作動流体を加熱部へ帰還させる中空還流通路を有す
る中空線状体を備え、少なくとも中空線状体の外表面と
密閉容器内壁面との間に液相の作動流体を加熱部へ帰還
させる微小な隙間が形成されるように設けてなることを
特徴とするヒートパイプ。
1. A heat pipe in which a wick material is provided along a longitudinal direction in a closed container and a working fluid is sealed, wherein the wick material transfers a liquid-phase working fluid condensed in a heat radiating portion to a heating portion. A hollow linear body having a hollow reflux path for returning is provided, and a minute gap for returning the working fluid in the liquid phase to the heating section is formed at least between the outer surface of the hollow linear body and the inner wall surface of the closed vessel. A heat pipe characterized by being provided in a heat pipe.
【請求項2】 前記中空線状体は中空還流通路を有する
中空撚線で構成されることを特徴とする請求項1記載の
ヒートパイプ。
2. The heat pipe according to claim 1, wherein the hollow wire is formed of a hollow stranded wire having a hollow reflux passage.
【請求項3】 前記密閉容器は矩形状又は長円形状の穴
部が設けられた板状容器からなり、前記穴部に挿通され
る中空線状体は前記穴部の短径に大略等しい外径を有
し、前記中空線状体の外表面と前記穴部の両短辺内壁面
との間に液相の作動流体を加熱部へ帰還させる微小な隙
間が形成されるようにしたことを特徴とする請求項1又
は2記載のヒートパイプ。
3. The closed container is a plate-shaped container provided with a rectangular or oval hole, and a hollow linear body inserted through the hole is substantially equal to a minor diameter of the hole. Having a diameter, between the outer surface of the hollow linear body and the inner wall surfaces on both short sides of the hole, a minute gap for returning the working fluid in the liquid phase to the heating unit is formed. The heat pipe according to claim 1 or 2, wherein
JP28843499A 1999-10-08 1999-10-08 Heat pipe Pending JP2001108384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28843499A JP2001108384A (en) 1999-10-08 1999-10-08 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28843499A JP2001108384A (en) 1999-10-08 1999-10-08 Heat pipe

Publications (1)

Publication Number Publication Date
JP2001108384A true JP2001108384A (en) 2001-04-20

Family

ID=17730173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28843499A Pending JP2001108384A (en) 1999-10-08 1999-10-08 Heat pipe

Country Status (1)

Country Link
JP (1) JP2001108384A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585358B (en) * 2012-08-23 2017-06-01 鴻準精密工業股份有限公司 Heat pipe and method for manufacturing the same
JP6442594B1 (en) * 2017-12-25 2018-12-19 株式会社フジクラ Heat dissipation module
US10458720B2 (en) 2015-07-22 2019-10-29 Furukawa Electric Co., Ltd. Heat transfer device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585358B (en) * 2012-08-23 2017-06-01 鴻準精密工業股份有限公司 Heat pipe and method for manufacturing the same
US10458720B2 (en) 2015-07-22 2019-10-29 Furukawa Electric Co., Ltd. Heat transfer device
JP6442594B1 (en) * 2017-12-25 2018-12-19 株式会社フジクラ Heat dissipation module
WO2019131589A1 (en) * 2017-12-25 2019-07-04 株式会社フジクラ Heatsink module
JP2019113270A (en) * 2017-12-25 2019-07-11 株式会社フジクラ Heat radiation module
TWI678508B (en) * 2017-12-25 2019-12-01 日商藤倉股份有限公司 Heat dissipation module

Similar Documents

Publication Publication Date Title
US4020898A (en) Heat pipe and method and apparatus for fabricating same
US6938680B2 (en) Tower heat sink with sintered grooved wick
TWI426859B (en) Heat dissipation module, flat heat column thereof and manufacturing method for flat heat column
KR20040012593A (en) Heat pipe unit and heat pipe type heat exchanger
JP5778302B2 (en) Heat transport equipment
WO2017013761A1 (en) Heat transfer device
US20150041103A1 (en) Vapor chamber with improved wicking structure
TWM521170U (en) Heat pipe with fiber capillary structure
JP2001108384A (en) Heat pipe
KR20010062646A (en) Heat pipe having a sintered wick structure and method for manufacturing the same
US20140151007A1 (en) Tubing Element With Fins for a Heat Exchanger
TWM564696U (en) Flat heat pipe with composite capillary material
EP2941610B1 (en) Tubing element for a heat exchanger means
JP2000230789A (en) Zinc plated oval heat pipe with carbon steel fin
JP2000035292A (en) Plate type heat pipe
JP2005233597A (en) Heat storage heat exchanger
JPS60232496A (en) Heat exchanger
KR20050121128A (en) A heat pipe
CN218781673U (en) Flat ultra-thin heat pipe
CN217541600U (en) Heat exchange device with heat pipe for uniform temperature plate
JPH0612369Y2 (en) Double pipe heat exchanger heat pipe
CN216282942U (en) Temperature equalizing plate
JPS60259861A (en) Heat pipe type solar heat collector
JP4632273B2 (en) Heat sink and manufacturing method thereof
WO2022207058A1 (en) A heat spreader for transferring heat from an electronic heat source to a heat sink