JPH0641026B2 - Welding power output control method - Google Patents

Welding power output control method

Info

Publication number
JPH0641026B2
JPH0641026B2 JP58217287A JP21728783A JPH0641026B2 JP H0641026 B2 JPH0641026 B2 JP H0641026B2 JP 58217287 A JP58217287 A JP 58217287A JP 21728783 A JP21728783 A JP 21728783A JP H0641026 B2 JPH0641026 B2 JP H0641026B2
Authority
JP
Japan
Prior art keywords
welding
current
arc
constriction
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58217287A
Other languages
Japanese (ja)
Other versions
JPS60108174A (en
Inventor
隆明 小笠原
徳治 丸山
敬 斉藤
正晴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58217287A priority Critical patent/JPH0641026B2/en
Publication of JPS60108174A publication Critical patent/JPS60108174A/en
Publication of JPH0641026B2 publication Critical patent/JPH0641026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc

Description

【発明の詳細な説明】 技術分野 本発明は短絡とアーク発生とを繰り返す消耗電極式アー
ク溶接法における溶接電源の出力制御方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for controlling an output of a welding power source in a consumable electrode type arc welding method in which short circuit and arc generation are repeated.

従来技術 短絡とアーク発生とを繰り返す消耗電極式アーク溶接法
において、従来多く用いられている定電圧特性を有する
直流電源の溶接電流出力波形は第1図に示す様になって
いる。
2. Description of the Related Art In a consumable electrode type arc welding method in which short-circuiting and arc generation are repeated, a welding current output waveform of a DC power source having a constant voltage characteristic that is often used conventionally is as shown in FIG.

即ち、従来の定電圧直流電源においては、消耗電極(以
下、溶接ワイヤという)先端に形成された溶滴が溶融池
と接触し短絡した瞬間から、溶接電流はその電路のイン
ダクタンスや抵抗による固有の時定数によって定まる増
加率でアークが再発生するまで増加し続ける。また、ア
ーク再発生後は時定数によって定まる減少率で再び短絡
するまで溶接電流は減少する。
That is, in the conventional constant voltage DC power supply, from the moment when the droplet formed at the tip of the consumable electrode (hereinafter referred to as the welding wire) contacts the molten pool and short-circuits, the welding current is unique to the inductance and resistance of the electric path. It keeps increasing until the arc re-occurs at an increasing rate determined by the time constant. After the arc is regenerated, the welding current decreases at a decreasing rate determined by the time constant until the short circuit occurs again.

ところで、スパッタが発生するのは、溶滴が溶接ワイヤ
先端で大きく成長し、溶融池と短絡しようとする瞬間
や、その溶滴が電磁滴ピンチ力によって溶接ワイヤ先端
から切断分離される瞬間に多く観察されることが報告さ
れている。
By the way, spatter often occurs at the moment when the droplet grows large at the tip of the welding wire and tries to short-circuit with the molten pool, and at the moment when the droplet is cut and separated from the tip of the welding wire by the electromagnetic drop pinch force. It is reported to be observed.

特に後者の場合、従来の定電圧直流電源においては第1
図に見られるようにアーク再発生の瞬間に溶接電流が最
大となり、この時のエネルギーが溶接ワイヤ先端の溶滴
の一部を吹き飛ばしてスパッタを発生させているようで
ある。
Especially in the latter case, it is the first in the conventional constant voltage DC power supply.
As shown in the figure, the welding current reaches its maximum at the moment of arc re-occurrence, and the energy at this time seems to blow off some of the droplets at the tip of the welding wire to generate spatter.

この様に従来の定電圧直流電源ではスパッタの発生量が
多く、溶着効率の低下や溶接鋼板に飛散付着したスパッ
タの除去作業を必要とするなどの溶接作業の能率低下を
招くとともに、スパッタが溶接トーチシールドノズル内
部に付着堆積し、その結果、シールドガスの流れを阻害
し、溶着金属中に大気中の窒素が混入して溶接部の機械
的性能の劣化を引き起こしたり、或いはそれを防止しよ
うとノズル内のスパッタを除去するために度々溶接中断
を余儀なくされるなどの問題がある。
In this way, the conventional constant voltage DC power supply generates a large amount of spatter, which leads to a decrease in welding efficiency and a reduction in the efficiency of welding work such as the work to remove spatter scattered and adhered to the welded steel sheet. It adheres and accumulates inside the torch shield nozzle, which obstructs the flow of the shield gas, and causes nitrogen in the atmosphere to mix into the weld metal, causing deterioration of the mechanical performance of the weld, or attempts to prevent it. There is a problem that welding is often forced to be interrupted in order to remove spatter in the nozzle.

上述のスパッタ発生原因に鑑みてスパッタの発生量を減
少させるべく、第2図に示すような溶接電流出力制御が
試みられている。即ち、溶滴の溶融池への以降の瞬間
(アーク再発生直前)に溶接電流を短絡ピーク電流ISP
からアーク再発生電流IRAに下げ(図中時点)、溶滴
の移行完了時のエネルギをアーク再発生に要する最低限
としてスパッタの発生を抑制しようとするものである。
この制御方法は、従来の定電圧直流電源と比較してスパ
ッタを減少させることについてはある程度の効果はあっ
た。しかし、電流を供給する溶接電源から溶接個所まで
の電流経路である溶接ケーブルの状態によって、スパッ
タの減少率あるいは溶接そのものまでが不安定であっ
た。即ち、短絡ピーク電流ISPを出力して溶接終了の前
兆である溶滴のくびれを電圧の変化分ΔVとして検知
し、その信号に応答して溶接電流を減少させるのである
が、溶接ケーブルの状態によってその内部インダクタン
スが変動し、従って、電流減少率を変動する。イッダク
タンスが大きくて電流減少率が小さければ、電流は緩や
かに下降するためアーク再発生電流IRAは比較的高レベ
ルとなり、第1図の様な特性の電源を用いた場合ほどで
はないがスパッタは相当量発生する。逆にインダクタン
スが小さくて電流減少率が大きければ、電流は急激に下
降し、アーク再発生電流IRAは極端に定レベルとなって
溶滴のくびれが進行せず、溶接ワイヤの未溶融部分まで
が溶融池に入り込み、アーク再発生に至らなかったりす
る。特に、溶接電源より溶接部が遠くにあって延長ケー
ブルを使用する場合には、インダクタンスを適正に保つ
ことは不可能である。
Considering the above-mentioned cause of spatter generation, an attempt has been made to control the welding current output as shown in FIG. 2 in order to reduce the spatter generation amount. That is, short-circuit peak welding current at the moment of subsequent to the molten pool of droplet (arc recurrence just before) the current I SP
To reduce the arc regeneration current I RA (at the time point in the figure) to minimize the energy required to complete the transfer of droplets to suppress the generation of spatter.
This control method had some effect in reducing spatter as compared with the conventional constant voltage DC power supply. However, depending on the state of the welding cable, which is the current path from the welding power source that supplies the current to the welding location, the reduction rate of spatter or even the welding itself was unstable. That is, the short-circuit peak current I SP is output to detect the constriction of the droplet, which is a precursor of welding, as a voltage change ΔV, and the welding current is reduced in response to the signal, but the welding cable condition Causes its internal inductance to fluctuate, and thus the current reduction rate. If the iddactance is large and the current reduction rate is small, the current gradually drops and the arc re-generation current I RA becomes a relatively high level, which is not as great as when a power source having the characteristics shown in Fig. 1 is used. Is generated in a considerable amount. On the contrary, if the inductance is small and the current reduction rate is large, the current drops sharply, the arc re-generation current I RA becomes extremely constant level, the constriction of the droplet does not proceed, and it reaches the unmelted part of the welding wire. May enter the molten pool and arc may not be regenerated. In particular, when the extension cable is used because the welding part is far from the welding power source, it is impossible to maintain the inductance properly.

目的 本発明は上記事情に鑑みてなされたものであり、その目
的は、溶接ケーブルの内部インダクタンスの影響による
アーク再発生電流の変動を補正して、アーク再発生電流
を適正値に保持することによりスパッタの減少を図った
溶接電源の出力制御方法を提供することである。
Object The present invention has been made in view of the above circumstances, and an object thereof is to correct the fluctuation of the arc regenerating current due to the influence of the internal inductance of the welding cable and to hold the arc regenerating current at an appropriate value. An object of the present invention is to provide a welding power source output control method for reducing spatter.

概要 短絡とアーク発生とを交互に繰り返す消耗電極式アーク
溶接法において、短絡直後に溶接電流を下げ、その後溶
接電流を短絡ピーク電流に上昇させ、短絡終了(アーク
再発生)の前兆である溶滴のくびれを検知し、その信号
に呼応して溶接電流を下げ、それから、アーク再発生に
至らしめる溶接電源の出力制限方法であって、低レベル
にあるアーク再発生時の電流値IRAによって次期過程の
溶滴くびれを検知する信号レベルを決定する。
Outline In the consumable electrode arc welding method in which short circuit and arc generation are repeated alternately, the welding current is reduced immediately after the short circuit, and then the welding current is increased to the short circuit peak current, which is a precursor of the end of short circuit (reoccurrence of arc). constriction detects the lower the welding current in response to the signal, then, an output limiting method for a welding power source which allowed to reach arc recurrence, next by the current value I RA during arc recurrence in the low-level Determine the signal level to detect the process's drop waist.

実施例 以下、本発明の一実施例を説明する。Example One example of the present invention will be described below.

本実施例では、溶接ワイヤをノズルを介して所定送給速
度で母材に対して給送する一方、上記ノズルからシール
ドガスを噴射しつつ、溶接ワイヤと母材との間で発生す
るアーク部分を包囲して溶接を行なうとともに、溶接ワ
イヤと母材との間で短絡とアーク発生とを繰り返す消耗
電極式アーク溶接法において、上述の第2図に示す溶接
電流波形を出力するように溶接電源を制御する。
In the present embodiment, the welding wire is fed to the base metal through the nozzle at a predetermined feeding speed, while the shield gas is jetted from the nozzle while the arc portion is generated between the welding wire and the base metal. In a consumable electrode type arc welding method in which a short circuit and arc generation are repeated between the welding wire and the base metal while surrounding the welding, the welding power source is configured to output the welding current waveform shown in FIG. To control.

第3図は第2図に示す短絡からアーク発生に移行する際
の溶滴にくびれが生じてからアーク発生に至る過程にお
ける電流電圧波形を拡大して示したものである。
FIG. 3 is an enlarged view of the current-voltage waveform in the process from the constriction of the droplet when the short circuit shown in FIG. 2 is transferred to the arc generation to the arc generation.

溶滴のくびれを溶接電圧の変化により検知して、溶接電
流をアーク再発生時のスパッタの発生を抑制するのに最
適である電流値に低下させる。溶滴ケーブルによる内部
インダクタンスが適正であるときには、溶滴のくびれに
よる電圧の変化分ΔV0を検出した時刻t2において、溶接
電流を実線aで示すように適正なアーク再発生電流IRA0
まで低下させる。
The constriction of the droplet is detected by the change in the welding voltage, and the welding current is reduced to a current value that is optimal for suppressing the generation of spatter when the arc is regenerated. When the internal inductance of the droplet cable is appropriate, at time t 2 when the voltage change ΔV 0 due to the constriction of the droplet is detected, the welding current is appropriate arc regeneration current I RA0 as shown by the solid line a.
To lower.

溶接ケーブルの状態によって内部インダクタンスが変動
し、前述したように、電流減少率も変動する。内部イン
ダクタンスが大で電流減少率が小さければ、電流は破線
bで示すように緩やかに下降し、電流を時刻t2で低下さ
せるとアーク再発生時のレベルは適正値IRA0より高いレ
ベルであるIRA1になる。したがって、アークのエネルギ
ーが大となり、スパッタを発生させる。また、内部イン
ダクタンスが小で電流減少率が大きければ、電流は破線
cで示すように急激に下降し、電流を時刻t2で低下させ
るとアーク再発生時のレベルは適正値IRA0より低レベル
であるIRA2になる。したがって、アーク発生に至らない
場合が生じる。
The internal inductance fluctuates depending on the state of the welding cable, and as described above, the current reduction rate also fluctuates. If the internal inductance is large and the current reduction rate is small, the current gradually drops as shown by the broken line b, and if the current is decreased at time t 2 , the level at arc reoccurrence is higher than the proper value I RA0. Become I RA1 . Therefore, the energy of the arc becomes large and spatter is generated. If the internal inductance is small and the current reduction rate is large, the current drops sharply as shown by the broken line c, and if the current is decreased at time t 2 , the level at arc reoccurrence is lower than the proper value I RA0. It becomes I RA2 . Therefore, an arc may not occur.

そこで、本発明では、アーク再発生時の電流IRAを監視
して、破線bの状態、即ち、溶接ケーブルのインダクタ
ンスが大で、電圧の変化分ΔV0を検出したときに電流を
低下させるとアーク再発生時の電流だ適正値IRA0より高
レベルであるIRA1になるときには、溶滴のくびれ時の溶
接電圧の検知レベルをΔV0より低いΔV1にする。そし
て、次の溶滴にくびれが生じてアーク発生に至る過程に
おいて、電圧の変化分ΔV1を検出した時刻t1において溶
接電流を実線dで示すように低下させると、アーク再発
生時の電流は適正な電流値IRA0になる。一方、破線cの
状態、即ち、溶接ケーブルのインダクタンスが小で、電
圧の変化分ΔV0を検出したときに電流を低下させるとシ
ーク再発生時の電流が適正値IRA0より低レベルであるI
RA2になるときには、溶滴のくびれ時の溶接電圧の検知
レベルをΔV0より高いΔV2にする。そして、次の溶滴に
くびれが生じてアーク発生に至る過程において、電圧の
変化分ΔV2を検出した時刻t3において溶接電流を実線e
で示すように低下させると、アーク再発生時の電流は適
正な電流値IRA0になる。
Therefore, in the present invention, when the current I RA at the time of arc reoccurrence is monitored and the state of the broken line b, that is, the inductance of the welding cable is large and the voltage change ΔV 0 is detected, the current is reduced. When the current at the time of arc re-occurrence becomes I RA1 , which is higher than the appropriate value I RA0 , the detection level of the welding voltage when the droplet is constricted is set to ΔV 1 which is lower than ΔV 0 . Then, in the process of constriction in the next droplet and arc generation, when the welding current is decreased as indicated by the solid line d at time t 1 when the voltage change ΔV 1 is detected, the current at the time of arc reoccurrence Becomes the proper current value I RA0 . On the other hand, when the current is lowered when the state of the broken line c, that is, the inductance of the welding cable is small and the voltage change ΔV 0 is detected, the current at seek reoccurrence is at a level lower than the proper value I RA0.
When RA2 is reached, the detection level of the welding voltage when the droplet is constricted is set to ΔV 2 which is higher than ΔV 0 . Then, in the process in which the next droplet is constricted and the arc is generated, the welding current is changed to the solid line e at the time t 3 when the voltage change ΔV 2 is detected.
When the arc is regenerated, the current becomes a proper current value I RA0 when the arc is regenerated.

スパッタの発生を抑制し且つ溶接を安定して継続させる
ためのアーク再発生電流IRAとしては、30〜150A
が望ましく、溶滴のくびれを検知してからアーク再発生
に至るまでの時間は100〜500μsecであることを
知見しているところであり、従って、アーク再発生電流
IRAの電流値IRA0、溶滴のくびれの電圧検知レベルΔV0
は以上の点を考慮して適当に定められるものである。
The arc regenerated current I RA for suppressing the generation of spatter and for continuing the welding stably is 30 to 150 A.
However, it is found that the time from the detection of the constriction of the droplet to the arc re-generation is 100 to 500 μsec.
I RA current value I RA0 , droplet constriction voltage detection level ΔV 0
Is appropriately determined in consideration of the above points.

なお、第2図,第3図に示す電流電圧波形は模式的に表
わしたにすぎず、電流と電圧のレベル、及び時間のレベ
ルも割合を示すものではない。
The current-voltage waveforms shown in FIGS. 2 and 3 are merely schematic representations, and the current and voltage levels and the time level do not show ratios.

第4図は上述の制御を行なう制御装置の構成を示してお
り、電圧検出器1は溶接トーチ2を介して給送される溶
接ワイヤ3と溶接母材4との間の溶接電圧を検出する。
比較器5では電圧検出器1からの溶接電圧とくびれ検知
レベル設定器6からのくびれ検知レベルとを比較し、溶
接電圧がくびれ検知レベルより高くなると、電流切替回
路7に対して溶接電流をアーク再発生電流まで低下させ
るための信号を出力する。電流切替回路7の出力信号に
より、溶接電源10が制御され溶接電流が制御される。
電流検出器8溶接電流を検出し、最小値記憶器9は溶滴
にくびれが生じ続いて溶滴が破断してアーク発生に至る
過程における溶接電流の最小値すなわちこのときのアー
ク再発生電流を記憶する。
FIG. 4 shows the configuration of the control device for performing the above-mentioned control, and the voltage detector 1 detects the welding voltage between the welding wire 3 and the welding base metal 4 fed via the welding torch 2. .
The comparator 5 compares the welding voltage from the voltage detector 1 with the constriction detection level from the constriction detection level setting device 6, and when the welding voltage becomes higher than the constriction detection level, the welding current is arced to the current switching circuit 7. A signal for reducing the regenerated current is output. The welding power source 10 is controlled by the output signal of the current switching circuit 7, and the welding current is controlled.
The current detector 8 detects the welding current, and the minimum value memory 9 indicates the minimum value of the welding current in the process of constriction of the droplet and subsequent rupture of the droplet leading to arc generation, that is, the arc recurrent current at this time. Remember.

くびれ検知レベル設定器6では、最少値記憶器9からの
アーク再発生電流を表わす信号に応じて、くびれ検知レ
ベルの設定値が変更される。すなわち、最小値記憶器9
の出力信号が大きければ、溶接ケーブルの内部インダク
タンスが大で電流減少率が小であるので、くびれ検知レ
ベルの設定値を低くし、最小値記憶器9の出力信号が小
さければ、内部インダクタンスが小で電流減少率が大で
あるので、くびれ検知レベルの設定値を高くする。この
変更されたくびれ検知レベル設定値は比較器5に与えら
れ、比較器5ではこの変更されたくびれ検知レベル設定
値と溶接電圧とを比較する。この結果、磁界の溶滴にく
びれが生じてからアーク発生に至る過程においては溶接
電圧がこの変更されたくびれ検知レベル設定値になる
と、比較器5は信号を電流切替回路7に供給する。そし
て、溶接電流はアーク再発生時において適正なアーク再
発生電流IRA0になるように減少する。
In the squeezing detection level setting device 6, the setting value of the squeezing detection level is changed according to the signal representing the arc re-generated current from the minimum value storage 9. That is, the minimum value storage 9
If the output signal of is large, the internal inductance of the welding cable is large and the current reduction rate is small. Therefore, if the set value of the constriction detection level is low, and if the output signal of the minimum value storage unit 9 is small, the internal inductance is small. Since the current decrease rate is large, the constriction detection level setting value is increased. The changed neck detection level setting value is given to the comparator 5, and the comparator 5 compares the changed neck detection level setting value with the welding voltage. As a result, the comparator 5 supplies a signal to the current switching circuit 7 when the welding voltage reaches the changed necking detection level set value in the process from the necking of the droplet of the magnetic field to the arc generation. Then, the welding current is reduced so that the arc reoccurrence current I RA0 becomes appropriate at the time of arc reoccurrence.

上述の過程は、溶接が進行している間繰り返される。従
って、溶接ケーブルの状態によって内部インダクタンス
が変動しても、スパッタ発生が少ない安定した溶接が行
なえる。
The above process is repeated while welding is in progress. Therefore, even if the internal inductance changes depending on the condition of the welding cable, stable welding with less spatter can be performed.

なお、上記実施例では、溶滴のくびれを溶接電圧の変化
により検知したが、この溶滴のくびれ検知を溶接ワイヤ
と母材間の抵抗の変化など他の方法により行なうことも
でき、それに従って、くびれ検知レベルの設定値の種類
が異なることは言うまでもない。
In the above example, the constriction of the droplet was detected by the change of the welding voltage, but the constriction of the droplet can be detected by other methods such as the change of the resistance between the welding wire and the base metal, and according to it. Needless to say, the type of setting value of the waist detection level is different.

効果 以上説明したように、本発明においては、低レベルにあ
るアーク再発生時の溶接電流に応じて次期過程の溶滴く
びれを検知する基準値である信号レベルを決定するよう
にしたから、溶接ケーブルによる内部インダクタンスの
変動に対してアーク再発生時の溶接電流と適正値に保持
することができ、スパッタの発生量を少なくして作業性
の良好な溶接を行なうことができる。
Effect As described above, in the present invention, the signal level, which is the reference value for detecting the droplet constriction in the next process, is determined according to the welding current at the time of arc reoccurrence at the low level, so that the welding is performed. The welding current at the time of arc reoccurrence and an appropriate value can be maintained against variations in the internal inductance due to the cable, and the amount of spatter generated can be reduced and welding with good workability can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の溶接電源の溶接電流出力波形を示す波形
図、第2図は本発明を適用した溶接電源の溶接電流と溶
接電圧の出力波形を示す波形図、第3図は第2図の部分
拡大図、第4図は本発明を適用した溶接電源の制御装置
の一実施例を示すブロック図である。 1……電圧検出器、3……溶接ワイヤ、4……溶接母
材、5……比較器、6……くびれ検知レベル設定器、7
……電流切替回路、8……電流検出器、9……最小値記
憶器、10……溶接電源。
FIG. 1 is a waveform diagram showing a welding current output waveform of a conventional welding power source, FIG. 2 is a waveform diagram showing welding current and welding voltage output waveforms of a welding power source to which the present invention is applied, and FIG. FIG. 4 is a partial enlarged view of FIG. 4 and is a block diagram showing an embodiment of a control device for a welding power source to which the present invention is applied. 1 ... Voltage detector, 3 ... Welding wire, 4 ... Welding base metal, 5 ... Comparator, 6 ... Constriction detection level setting device, 7
... current switching circuit, 8 current detector, 9 minimum value memory, 10 welding power source.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】消耗電極を所定送給速度で母材に対して給
送する一方、ノズルからシールドガスを噴射しつつ、消
耗電極と母材との間で発生するアーク部分を包囲して溶
接を行なうとともに消耗電極と母材との間で短絡とアー
ク発生とを繰り返す消耗電極式アーク溶接法において、
短絡直後に溶接電流を下げ、その後、所定の短絡ピーク
電流に上昇させ、アーク再発生の前兆である溶滴のくび
れを検知し、その信号に呼応して溶接電流を低レベルの
値IRAに低下させ、それからアーク再発生に至らしめる
溶接電源の出力制御方法であって、その低レベルにある
アーク再発生時の溶接電流値IRAに応じて次期過程の溶
滴のくびれを検知する基準レベルを決定することを特徴
とする溶接電源の出力制御方法。
1. A welding electrode which feeds a consumable electrode to a base material at a predetermined feed rate, and at the same time, sprays a shield gas from a nozzle to surround an arc portion generated between the consumable electrode and the base material and weld the same. In the consumable electrode type arc welding method in which short circuit and arc generation are repeated between the consumable electrode and the base material,
Immediately after a short circuit, the welding current is reduced and then raised to a predetermined short-circuit peak current, the constriction of droplets that is a precursor of arc reoccurrence is detected, and the welding current is set to a low level value I RA in response to the signal. reduced, then the arc the output control method of a welding power source which allowed to reach recurrence, the reference level for detecting the constriction of a droplet of the next process in accordance with the welding current value I RA during arc recurrence at that low level A method for controlling the output of a welding power source, characterized in that
JP58217287A 1983-11-17 1983-11-17 Welding power output control method Expired - Lifetime JPH0641026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58217287A JPH0641026B2 (en) 1983-11-17 1983-11-17 Welding power output control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58217287A JPH0641026B2 (en) 1983-11-17 1983-11-17 Welding power output control method

Publications (2)

Publication Number Publication Date
JPS60108174A JPS60108174A (en) 1985-06-13
JPH0641026B2 true JPH0641026B2 (en) 1994-06-01

Family

ID=16701768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58217287A Expired - Lifetime JPH0641026B2 (en) 1983-11-17 1983-11-17 Welding power output control method

Country Status (1)

Country Link
JP (1) JPH0641026B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195774A (en) * 1984-10-17 1986-05-14 Kobe Steel Ltd Output control method of welding power source
JP4767508B2 (en) * 2004-07-21 2011-09-07 株式会社ダイヘン Constriction detection control method for consumable electrode arc welding
JP4620519B2 (en) * 2005-04-27 2011-01-26 株式会社ダイヘン Consumable electrode arc welding end control method
JP4875390B2 (en) * 2006-03-27 2012-02-15 株式会社ダイヘン Constriction detection control method for consumable electrode arc welding
JP5199910B2 (en) * 2009-02-12 2013-05-15 株式会社神戸製鋼所 Welding control apparatus for consumable electrode type pulse arc welding, arc length control method thereof, and welding system equipped with the welding control apparatus
JP5885976B2 (en) * 2011-09-16 2016-03-16 株式会社ダイヘン Power supply for welding
EP3187295B1 (en) 2012-10-01 2020-06-03 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
JP6421321B2 (en) * 2014-05-16 2018-11-14 パナソニックIpマネジメント株式会社 Arc welding control method and arc welding apparatus
US11370051B2 (en) * 2018-10-30 2022-06-28 Lincoln Global, Inc. Time-based short circuit response

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829575A (en) * 1981-08-13 1983-02-21 Murase Kogyo Kk Electric power source device for welding

Also Published As

Publication number Publication date
JPS60108174A (en) 1985-06-13

Similar Documents

Publication Publication Date Title
JP2005342789A (en) Pulse welding machine and its using method
JP2006247710A (en) Electric current control method in detecting constriction in consumable electrode arc welding
JP2007075827A (en) Method of detecting/controlling constriction in consumable electrode arc welding
JP3075263B2 (en) Pulse output control method and consumable electrode type pulse arc welding apparatus
JPH0641026B2 (en) Welding power output control method
JP5545996B2 (en) Constriction detection control method for consumable electrode arc welding
JP2000079479A (en) Method for controlling current waveform in consumable electrode gas shielded arc welding and its welding equipment
JP4767508B2 (en) Constriction detection control method for consumable electrode arc welding
JP4545483B2 (en) Welding power supply and welding equipment with current suddenly decreasing function when detecting constriction
JP7396779B2 (en) Arc welding control method
JP3736065B2 (en) Output control device for consumable electrode arc welding machine
JP2672172B2 (en) Welding power output control method
JP3195513B2 (en) Power control method of power supply for consumable electrode type gas shield pulse arc welding
JPS6064774A (en) Method for controlling current of welding accompanying short-circuit transfer
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP4661164B2 (en) Consumable electrode arc welding equipment
JP3147046B2 (en) Output control device of consumable electrode type pulse arc welding machine
JPS60223662A (en) Arc welding method
WO2020235620A1 (en) Arc welding method and arc welding device
JP2004268081A (en) Method for meeting and controlling magnetic arc blow in consumable-electrode pulse arc welding
JPH0328260B2 (en)
EP3388180B1 (en) Welding system and method with short circuit welding using self-shielded electrode
KR890002517B1 (en) Out put control of short circuit welding power source
JPS58224070A (en) Arc welding
JPH08118016A (en) Consumable electrode type pulse arc welding machine