JP4767508B2 - Constriction detection control method for consumable electrode arc welding - Google Patents

Constriction detection control method for consumable electrode arc welding Download PDF

Info

Publication number
JP4767508B2
JP4767508B2 JP2004212435A JP2004212435A JP4767508B2 JP 4767508 B2 JP4767508 B2 JP 4767508B2 JP 2004212435 A JP2004212435 A JP 2004212435A JP 2004212435 A JP2004212435 A JP 2004212435A JP 4767508 B2 JP4767508 B2 JP 4767508B2
Authority
JP
Japan
Prior art keywords
welding
value
arc
squeezing
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004212435A
Other languages
Japanese (ja)
Other versions
JP2006026718A (en
Inventor
哲生 恵良
裕康 水取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2004212435A priority Critical patent/JP4767508B2/en
Publication of JP2006026718A publication Critical patent/JP2006026718A/en
Application granted granted Critical
Publication of JP4767508B2 publication Critical patent/JP4767508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、短絡期間中の溶滴のくびれ現象を検出して溶接電流を急減させて溶接品質を向上させるための消耗電極アーク溶接のくびれ検出制御方法に関するものである。   The present invention relates to a constriction detection control method of consumable electrode arc welding for detecting a constriction phenomenon of a droplet during a short-circuiting period and rapidly reducing a welding current to improve welding quality.

図5は、短絡期間Tsとアーク期間Taとを繰り返す消耗電極アーク溶接(以下、短絡移行溶接ともいう)における電流・電圧波形及び溶滴移行を示す図である。同図(A)は消耗電極(以下、溶接ワイヤ1という)を通電する溶接電流Iwの時間変化を示し、同図(B)は溶接ワイヤ1・母材2間に印加する溶接電圧Vwの時間変化を示し、同図(C)〜(E)は溶滴1aの移行の様子を示す。以下、同図を参照して説明する。   FIG. 5 is a diagram showing current / voltage waveforms and droplet transfer in consumable electrode arc welding (hereinafter also referred to as short-circuit transfer welding) in which the short-circuit period Ts and the arc period Ta are repeated. FIG. 4A shows the change over time in the welding current Iw for energizing the consumable electrode (hereinafter referred to as welding wire 1), and FIG. 4B shows the time of the welding voltage Vw applied between the welding wire 1 and the base material 2. FIG. FIGS. 3C to 3E show the transition of the droplet 1a. Hereinafter, a description will be given with reference to FIG.

時刻t1〜t3の短絡期間Ts中は溶接ワイヤ1先端の溶滴1aが母材2と短絡した状態にあり、同図(A)に示すように、溶接電流Iwは次第に増加し、同図(B)に示すように、溶接電圧Vwは短絡状態にあるために数V程度の低い値となる。同図(C)に示すように、時刻t1において溶滴1aが母材2と接触して短絡状態に入る。その後、同図(D)に示すように、溶滴1aを通電する溶接電流Iwによる電磁的ピンチ力によって溶滴1a上部にくびれ1bが発生する。そしてこのくびれ1bが急速に進行して、時刻t3において同図(E)に示すように、溶滴1aは溶接ワイヤ1から溶融池2aへと離脱しアーク3が再発生する。   During the short-circuit period Ts from time t1 to t3, the droplet 1a at the tip of the welding wire 1 is short-circuited with the base material 2, and as shown in FIG. As shown in B), since the welding voltage Vw is in a short circuit state, the welding voltage Vw becomes a low value of about several volts. As shown in FIG. 5C, the droplet 1a comes into contact with the base material 2 at a time t1 to enter a short circuit state. Thereafter, as shown in FIG. 4D, a constriction 1b is generated at the upper part of the droplet 1a by an electromagnetic pinch force generated by a welding current Iw for energizing the droplet 1a. And this constriction 1b progresses rapidly, and as shown to the same figure (E) at the time t3, the droplet 1a will detach | leave from the welding wire 1 to the molten pool 2a, and the arc 3 will generate | occur | produce again.

上記のくびれ現象が発生すると、数百μs程度の極短時間後に短絡が開放されてアーク3が再発生する。すなわち、このくびれ現象は短絡開放の前兆現象となる。くびれ1bが発生すると、溶接電流Iwの通路がくびれ部分で狭くなるために、くびれ部分の抵抗値が増大する。この抵抗値の増大は、くびれが進行してくびれ部分がより狭くなるほど大きくなる。したがって、短絡期間Ts中において溶接ワイヤ1・母材2間の抵抗値の変化を検出することでくびれ現象の発生を検出することができる。この抵抗値の変化は、溶接電圧Vw/溶接電流Iwによって算出することができる。また、上述したように、くびれ発生期間は極短時間であるために、同図(A)に示すように、この期間中の溶接電流Iwの変化は小さい。このために、抵抗値の変化に代えて溶接電圧Vwの変化によってもくびれ現象の発生を検出することができる。具体的なくびれ検出方法としては、短絡期間Ts中の抵抗値又は溶接電圧値Vwの変化率(微分値)を算出し、この変化率が予め定めたくびれ検出基準値に達したことを判別することによってくびれ検出を行う。また、第2の方法としては、同図(B)に示すように、短絡期間Ts中のくびれ発生前の安定した短絡電圧値Vsからの電圧上昇値ΔVを算出し、時刻t2においてこの電圧上昇値ΔVが予め定めたくびれ検出基準値Vtnに達したことを判別することによってくびれ検出を行う。以下の説明では、くびれ検出方法が上記第2の方法の場合について説明するが、第1の方法、その他の方法であっても良い。時刻t3のアーク再発生の検出は、溶接電圧Vwが短絡/アーク判別値Vta以上になったことを判別して簡単に行うことができる。ちなみに、Vw<Vtaのの期間が短絡期間Tsとなり、Vw≧Vtaの期間がアーク期間Taとなる。時刻t2〜t3のくびれ発生を検出してからアーク再発生までの期間を、以下くびれ検出期間Tnと呼ぶことにする。   When the above-mentioned constriction phenomenon occurs, the short circuit is released after an extremely short time of about several hundred μs, and the arc 3 is regenerated. That is, this constriction phenomenon is a precursor of short circuit opening. When the constriction 1b occurs, the path of the welding current Iw becomes narrow at the constricted portion, and the resistance value of the constricted portion increases. The increase in the resistance value increases as the constriction progresses and the constricted portion becomes narrower. Therefore, the occurrence of the constriction phenomenon can be detected by detecting the change in the resistance value between the welding wire 1 and the base material 2 during the short-circuit period Ts. This change in resistance value can be calculated by welding voltage Vw / welding current Iw. Further, as described above, since the constriction occurrence period is extremely short, the change in the welding current Iw during this period is small as shown in FIG. For this reason, the occurrence of the constriction phenomenon can be detected by the change of the welding voltage Vw instead of the change of the resistance value. As a specific necking detection method, the rate of change (differential value) of the resistance value or welding voltage value Vw during the short circuit period Ts is calculated, and it is determined that this rate of change has reached a predetermined necking detection reference value. Constriction detection is performed. As a second method, as shown in FIG. 5B, a voltage rise value ΔV from a stable short-circuit voltage value Vs before the occurrence of constriction during the short-circuit period Ts is calculated, and this voltage rise at time t2. Necking is detected by determining that the value ΔV has reached a predetermined squeezing detection reference value Vtn. In the following description, the case where the constriction detection method is the second method will be described. However, the first method and other methods may be used. Detection of arc reoccurrence at time t3 can be easily performed by determining that the welding voltage Vw has become equal to or greater than the short circuit / arc determination value Vta. Incidentally, the period of Vw <Vta is the short circuit period Ts, and the period of Vw ≧ Vta is the arc period Ta. A period from detection of the occurrence of squeezing at times t2 to t3 to reoccurrence of the arc is hereinafter referred to as a squeezing detection period Tn.

短絡移行溶接では、時刻t3においてアーク3が再発生したときの電流値(以下、アーク再発生時溶接電流値Iaという)が大電流値であると、アーク3から溶融池2aへの圧力(アーク力)が非常に大きくなり、大量のスパッタが発生する。すなわち、アーク再発生時溶接電流値Iaの値に略比例してスパッタ発生量が増加する。したがって、スパッタの発生を抑制するためには、上記のアーク再発生時溶接電流値Iaを小さくする必要がある。このための方法として、上記のくびれ現象の発生を検出して溶接電流Iwを急減させてアーク再発生時溶接電流値Iaを小さくするくびれ検出時電流急減制御を付加した溶接電源が従来から種々提案されている。以下、これら従来技術について説明する。   In short-circuit transfer welding, if the current value when arc 3 is regenerated at time t3 (hereinafter referred to as welding current value Ia when arc is regenerated) is a large current value, the pressure (arc) from arc 3 to molten pool 2a Force) becomes very large and a large amount of spatter is generated. That is, the amount of spatter generated increases substantially in proportion to the value of the welding current value Ia when the arc is regenerated. Therefore, in order to suppress the occurrence of spatter, it is necessary to reduce the welding current value Ia when the arc is regenerated. As a method for this purpose, various welding power sources have been proposed in which a current reduction control at the time of squeezing detection is added to detect the occurrence of the above-mentioned squeezing phenomenon and reduce the welding current Iw rapidly to reduce the welding current value Ia when the arc reoccurs. Has been. Hereinafter, these conventional techniques will be described.

[従来技術1(特許文献1)]
図6は、特許文献1に記載するくびれ検出時電流急減機能付溶接電源のブロック図である。溶接電源PSは、一般的な消耗電極アーク溶接用の溶接電源である。トランジスタTRは出力に直列に挿入され、それと並列に抵抗器Rが接続されている。くびれ検出制御回路NDは、+端子と−端子間の溶接電圧Vwを入力として短絡期間中に溶滴にくびれが発生したことを電圧の上昇によって検出するとHighレベルとなるくびれ検出信号Ndを出力する。駆動回路DRは、このくびれ検出信号NdがLowレベルのときは上記のトランジスタTRをオン状態にする駆動信号Drを出力する。したがって、上記のトランジスタTRは、上記のくびれ検出信号NdがHighレベル(くびれ検出期間Tn中)のときはオフ状態になる。
[Prior Art 1 (Patent Document 1)]
FIG. 6 is a block diagram of a welding power source with a current suddenly decreasing function at the time of detection of squeezing described in Patent Document 1. The welding power source PS is a general welding power source for consumable electrode arc welding. The transistor TR is inserted in series with the output, and a resistor R is connected in parallel therewith. The squeezing detection control circuit ND outputs a squeezing detection signal Nd that becomes a high level when detecting that the squeezing of the droplet has occurred during the short-circuiting period by receiving the welding voltage Vw between the + terminal and the − terminal as an input. . The drive circuit DR outputs a drive signal Dr that turns on the transistor TR when the squeezing detection signal Nd is at a low level. Therefore, the transistor TR is turned off when the squeezing detection signal Nd is at a high level (during the squeezing detection period Tn).

図7は、上記の溶接電源の各信号のタイミングチャートである。同図(A)は溶接電流Iwの、同図(B)は溶接電圧Vwの、同図(C)はくびれ検出信号Ndの、同図(D)は駆動信号Drの時間変化を示す。以下、同図を参照して説明する。   FIG. 7 is a timing chart of each signal of the welding power source. 4A shows the welding current Iw, FIG. 2B shows the welding voltage Vw, FIG. 3C shows the squeezing detection signal Nd, and FIG. 4D shows the time change of the drive signal Dr. Hereinafter, a description will be given with reference to FIG.

同図において、時刻t2〜t3のくびれ検出期間Tn1以外の期間は、同図(C)に示すように、くびれ検出信号NdはLowレベルであるので、同図(D)に示すように、駆動信号DrはHighレベルになる。この結果、トランジスタTRはオン状態になるので、通常の消耗電極アーク溶接用の溶接電源と同一となる。   In the figure, during a period other than the squeezing detection period Tn1 from time t2 to t3, as shown in FIG. 10C, the squeezing detection signal Nd is at the low level, so that the driving is performed as shown in FIG. The signal Dr becomes a high level. As a result, the transistor TR is turned on, which is the same as the welding power source for normal consumable electrode arc welding.

時刻t2において、同図(B)に示すように、短絡期間Ts中に溶接電圧Vwが上昇して電圧上昇値ΔVが予め定めたくびれ検出基準値Vtn以上になったことを検出して溶滴にくびれが発生したと判別すると、同図(C)に示すように、くびれ検出信号NdがHighレベルになる。これに応動して、同図(D)に示すように、駆動信号DrはLowレベルになるので、トランジスタTRはオフ状態になる。同時に、溶接電源PSの出力を停止する。この結果、抵抗器Rが溶接電流Iwの通電路に挿入される。この抵抗器Rの値は短絡負荷(数十mΩ)の10倍以上大きな値に設定されるために、同図(A)に示すように、溶接電源内の直流リアクトル及びケーブルのリアクトルに蓄積されたエネルギーが急放電されて溶接電流Iwは急激に減少する。時刻t3において、短絡が開放してアークが再発生すると、同図(B)に示すように、溶接電圧Vwが予め定めた短絡/アーク判別値Vta以上になる。これを検出して、同図(C)に示すように、くびれ検出信号NdはLowレベルになり、同図(D)に示すように、駆動信号DrはHighレベルになる。同時に溶接電源PSの出力を開始して通常の消耗電極アーク溶接の制御に復帰する。この動作によって、アーク再発生時(時刻t3)のアーク再発生時溶接電流値Ia1を小さくすることができ、スパッタの発生を抑制することができる。   At time t2, as shown in FIG. 5B, it is detected that the welding voltage Vw has increased during the short-circuit period Ts and the voltage increase value ΔV has become equal to or greater than a predetermined squeezing detection reference value Vtn. If it is determined that constriction has occurred, the constriction detection signal Nd becomes High level as shown in FIG. In response to this, as shown in FIG. 4D, the drive signal Dr goes to a low level, so that the transistor TR is turned off. At the same time, the output of the welding power source PS is stopped. As a result, the resistor R is inserted into the energization path of the welding current Iw. Since the value of this resistor R is set to a value that is at least 10 times larger than the short-circuit load (several tens of mΩ), it is accumulated in the DC reactor in the welding power source and the cable reactor as shown in FIG. As a result, the welding current Iw decreases rapidly. At time t3, when the short circuit is opened and the arc is regenerated, the welding voltage Vw becomes equal to or higher than a predetermined short circuit / arc discrimination value Vta as shown in FIG. By detecting this, the squeezing detection signal Nd becomes the Low level as shown in FIG. 5C, and the drive signal Dr becomes the High level as shown in FIG. At the same time, the output of the welding power source PS is started to return to normal consumable electrode arc welding control. By this operation, the welding current value Ia1 at the time of arc re-generation at the time of arc re-generation (time t3) can be reduced, and the occurrence of spatter can be suppressed.

[従来技術2(特願2004−146108)]
図8は、従来技術2のくびれ検出時電流急減機能付溶接電源のブロック図である。以下、同図を参照して各回路ブロックについて説明する。
[Prior Art 2 (Japanese Patent Application No. 2004-146108)]
FIG. 8 is a block diagram of a welding power source with a current suddenly decreasing function at the time of detection of squeezing in Prior Art 2. Hereinafter, each circuit block will be described with reference to FIG.

溶接電源PSは、一般的な消耗電極アーク溶接用の溶接電源である。溶接電源PSの+端子と−端子間にコンデンサC及び放電用スイッチング素子TRDの直列回路から成る放電回路が接続される。この放電回路からの放電電流Idはくびれ検出期間中に溶接電流Iwとは逆方向に通電する。上記のコンデンサCの容量は、アーク再発生時に放電電流Idが略ピーク値となる値に設定する。上記のコンデンサCに並列に充電電源E及び充電用スイッチング素子TRCの直列回路から成る充電回路が接続される。   The welding power source PS is a general welding power source for consumable electrode arc welding. A discharge circuit composed of a series circuit of a capacitor C and a discharge switching element TRD is connected between the + terminal and the − terminal of the welding power source PS. The discharge current Id from this discharge circuit is energized in the direction opposite to the welding current Iw during the squeezing detection period. The capacity of the capacitor C is set to a value at which the discharge current Id has a substantially peak value when the arc is regenerated. A charging circuit including a series circuit of a charging power source E and a charging switching element TRC is connected in parallel with the capacitor C.

くびれ検出制御回路NDは、溶接電圧Vwを入力として溶滴のくびれ発生を電圧の上昇によって検出してHighレベルとなるくびれ検出信号Ndを出力する。充放電駆動回路DRAは、上記のくびれ検出信号Ndを入力として、くびれ検出信号NdがHighレベルになると上記の充電用スイッチング素子TRCをオフにし、Lowレベルになった時点又はそれから所定時間経過した時点で上記の充電用スイッチング素子TRCをオンにする充電駆動信号Drcを出力する。同時に、上記の充放電駆動回路DRAは、上記のくびれ検出信号Ndを入力として、くびれ検出信号NdがHighレベルになると上記の放電用スイッチング素子TRDをオンにし、Lowレベルになった時点又はそれから所定時間経過した時点で上記の放電用スイッチング素子TRDをオフにする放電駆動信号Drdを出力する。   The squeezing detection control circuit ND receives the welding voltage Vw as an input, detects the occurrence of squeezing of the droplets as the voltage rises, and outputs a squeezing detection signal Nd that assumes a high level. The charge / discharge drive circuit DRA receives the squeezing detection signal Nd as an input, and turns off the charging switching element TRC when the squeezing detection signal Nd becomes a high level, or when a predetermined time has elapsed since then. Then, the charging drive signal Drc for turning on the charging switching element TRC is output. At the same time, the charge / discharge drive circuit DRA receives the squeezing detection signal Nd as an input, and turns on the discharge switching element TRD when the squeezing detection signal Nd becomes a high level, or at a time when the squeezing detection signal Nd becomes a low level or after that. When the time has elapsed, a discharge drive signal Drd for turning off the discharge switching element TRD is output.

図9は、上記のくびれ検出時電流急減機能付溶接電源の各信号のタイミングチャートである。同図(A)は溶接電流Iwの、同図(B)は溶接電圧Vwの、同図(C)はくびれ検出信号Ndの、同図(D)は充電駆動信号Drcの、同図(E)は放電駆動信号Drdの、同図(F)は放電電流Idの、同図(G)はコンデンサの両端電圧Vcの時間変化を示す。以下、同図を参照して説明する。   FIG. 9 is a timing chart of each signal of the welding power supply with a current sudden decrease function at the time of detecting the squeezing. (A) is the welding current Iw, (B) is the welding voltage Vw, (C) is the squeezing detection signal Nd, (D) is the charge drive signal Drc (E) ) Shows the discharge drive signal Drd, (F) shows the discharge current Id, and (G) shows the time change of the voltage Vc across the capacitor. Hereinafter, a description will be given with reference to FIG.

同図において、時刻t2〜t3のくびれ検出期間Tn1以外の期間は、同図(C)に示すように、くびれ検出信号NdはLowレベルであるので、同図(E)に示すように、放電駆動信号DrdはLowレベルになる。この結果、放電用スイッチング素子TRDはオフ状態になるので、同図(A)に示すように、溶接電流Iwは通常の消耗電極アーク溶接用の溶接電源と同一となる。   In the figure, during a period other than the squeezing detection period Tn1 at times t2 to t3, the squeezing detection signal Nd is at a low level as shown in FIG. The drive signal Drd is at a low level. As a result, the discharge switching element TRD is turned off, so that the welding current Iw is the same as the welding power source for normal consumable electrode arc welding, as shown in FIG.

時刻t2において、同図(B)に示すように、短絡期間Ts中に溶接電圧Vwが上昇して電圧上昇値ΔVがくびれ検出基準値Vtn以上になったことを検出して溶滴にくびれが発生したと判別すると、同図(C)に示すように、くびれ検出信号NdがHighレベルになる。これに応動して、同図(D)に示すように、充電駆動信号DrcはLowレベルになるので、充電用スイッチング素子TRCはオフ状態になる。同時に、同図(E)に示すように、放電駆動信号DrdはHighレベルになるので、放電用スイッチング素子TRDはオン状態になる。このために、同図(F)に示すように、コンデンサCから放電電流Idが同図(A)に示す溶接電流Iwとは逆方向に通電する。同図(A)の時刻t2〜t3の点線で示すように、出力電流Ioは溶接電源PS内の大きなインダクタンス値の直流リアクトルの作用によって短時間では少ししか減少しない。この出力電流Ioから放電電流Idが減算された値が溶接電流Iwとなるので、溶接電流Iwは急減する。時刻t3において、短絡が開放してアークが再発生すると、同図(B)に示すように、溶接電圧Vwが短絡/アーク判別値Vta以上になる。これを検出して、同図(C)に示すように、くびれ検出信号NdはLowレベルになり、同図(D)に示すように、充電駆動信号DrcはHighレベルになる。このために、同図(G)に示すように、コンデンサの両端電圧Vcは充電電源Eによって充電されて次第に大きくなる。同時に、同図(E)に示すように、放電駆動信号DrdはLowレベルになるので、放電用スイッチング素子TRDはオフ状態になる。このために、同図(F)に示すように、放電電流Idが遮断されるので、同図(A)に示すように、溶接電流Iwは出力電流Ioと同一になり、溶接電流Iwは増加する。この動作によって、アーク再発生時(時刻t3)のアーク再発生時溶接電流値Ia1を小さくすることができ、スパッタの発生を抑制することができる。   At time t2, as shown in FIG. 5B, it is detected that the welding voltage Vw has increased during the short-circuit period Ts and the voltage increase value ΔV has become equal to or greater than the squeezing detection reference value Vtn, and the squeezing of the droplets has occurred. If it is determined that it has occurred, the squeezing detection signal Nd becomes High level as shown in FIG. In response to this, as shown in FIG. 4D, the charging drive signal Drc is at the low level, so that the charging switching element TRC is turned off. At the same time, as shown in FIG. 5E, the discharge drive signal Drd is at a high level, so that the discharge switching element TRD is turned on. Therefore, as shown in FIG. 5F, the discharge current Id is supplied from the capacitor C in the opposite direction to the welding current Iw shown in FIG. As shown by the dotted lines at times t2 to t3 in FIG. 5A, the output current Io is reduced only slightly in a short time by the action of a DC inductor having a large inductance value in the welding power source PS. Since the value obtained by subtracting the discharge current Id from the output current Io becomes the welding current Iw, the welding current Iw rapidly decreases. When the short circuit is opened and the arc is regenerated at time t3, the welding voltage Vw becomes equal to or higher than the short circuit / arc discrimination value Vta as shown in FIG. By detecting this, the squeezing detection signal Nd becomes the Low level as shown in FIG. 5C, and the charging drive signal Drc becomes the High level as shown in FIG. For this reason, as shown in FIG. 5G, the voltage Vc across the capacitor is charged by the charging power source E and gradually increases. At the same time, as shown in FIG. 5E, the discharge drive signal Drd is at the low level, so that the discharge switching element TRD is turned off. For this reason, the discharge current Id is cut off as shown in FIG. 5F, so that the welding current Iw becomes the same as the output current Io and the welding current Iw increases as shown in FIG. To do. By this operation, the welding current value Ia1 at the time of arc re-generation at the time of arc re-generation (time t3) can be reduced, and the occurrence of spatter can be suppressed.

[従来技術3(特許文献2)]
図10は、上述した図7及び図9においてくびれ発生期間中の電圧上場特性Xが変化したときの溶接電流Iw及び溶接電圧Vwの時間変化図である。電圧上昇特性Xは、溶滴のくびれの進行状態によって大きく影響を受ける。例えば、溶接ワイヤの材質、直径、溶接継手、溶接姿勢、溶接速度、ワイヤ突出し長さ等の溶接条件が変化すると、電圧上昇特性Xが変化する。この場合にくびれ検出基準値Vtnが一定値であると、同図(B)に示すように、時刻t2のくびれ検出タイミングがずれることになる。この結果、くびれ検出期間がTn1からTn2に短くなる場合も生じ、同図(A)に示すように、溶接電源IwがIa1まで減少しないでIa2の状態でアークが再発生することになる。上述したように、アーク再発生時溶接電流値がIa2にIa1よりも大きくなると、それだけスパッタ低減効果が小さくなる。
[Prior Art 3 (Patent Document 2)]
FIG. 10 is a time change diagram of the welding current Iw and the welding voltage Vw when the voltage listing characteristic X during the constriction generation period in FIGS. 7 and 9 is changed. The voltage rise characteristic X is greatly influenced by the progress state of the constriction of the droplet. For example, when the welding conditions such as the material, diameter, welding joint, welding posture, welding speed, wire protrusion length, etc. of the welding wire change, the voltage rise characteristic X changes. In this case, if the squeezing detection reference value Vtn is a constant value, the squeezing detection timing at time t2 is shifted as shown in FIG. As a result, the constriction detection period may be shortened from Tn1 to Tn2, and the arc is regenerated in the state of Ia2 without reducing the welding power source Iw to Ia1 as shown in FIG. As described above, if the welding current value at the time of arc re-occurrence becomes larger than Ia1 in Ia2, the effect of reducing spatter is reduced accordingly.

また逆に、電圧上昇特性Xが変化してくびれ検出期間が長くなり過ぎると、溶接電流Iwが零まで減少する場合も生じる。この場合には、くびれが進行して溶滴移行が終了してもアークが再発生しない場合も発生する。このような問題を解決するために、従来技術3では、くびれ検出期間Tnの時間長さを検出し、このくびれ検出期間Tnが所定値となるようにくびれ検出基準値Vtnを変化させる。これによって、溶接条件が変化して電圧上昇特性Xが変化してもそれに応じてくびれ検出基準値Vtnが変化してくびれ検出期間Tnは略一定値となる。このために、アーク再発生時溶接電流値Iaは低電流値の略一定値になるので、スパッタ低減効果は大きいままである。   Conversely, if the voltage rise characteristic X changes and the squeezing detection period becomes too long, the welding current Iw may decrease to zero. In this case, even if the constriction progresses and the droplet transfer is completed, the arc may not be regenerated. In order to solve such a problem, in the conventional technique 3, the time length of the squeezing detection period Tn is detected, and the squeezing detection reference value Vtn is changed so that the squeezing detection period Tn becomes a predetermined value. As a result, even if the welding conditions change and the voltage rise characteristic X changes, the squeezing detection reference value Vtn changes accordingly, and the squeezing detection period Tn becomes a substantially constant value. For this reason, since the welding current value Ia at the time of arc re-generation becomes a substantially constant value of a low current value, the effect of reducing the spatter remains large.

特開昭59−206159号公報JP 59-206159 A 特開平1−205875号公報JP-A-1-205875

図11は、ケーブルのインダクタンス値が大きくなったときの上述した図10に対応する溶接電流Iw及び溶接電圧Vwの時間変化図である。同図は、従来技術3のくびれ検出期間Tnを一定化する制御を行っている場合である。ケーブルのインダクタンス値とは、溶接電源と溶接トーチ又は母材とを結ぶ溶接ケーブルが長くなり、そのケーブルの引き回し方によって生じるインダクタンス値のことである。溶接電源に内蔵された直流リアクトルの大きなインダクタンス値は50〜100μH程度である。他方、ケーブルのインダクタンス値は大きいときは50μHにもなり、小さいときには5μH程度となる。このようにケーブルのインダクタンス値の影響は大きい。   FIG. 11 is a time change diagram of the welding current Iw and the welding voltage Vw corresponding to FIG. 10 described above when the inductance value of the cable increases. This figure shows a case where the control for making the squeezing detection period Tn of the prior art 3 constant is performed. The inductance value of the cable is an inductance value that is generated when a welding cable connecting the welding power source and the welding torch or the base material becomes long and the cable is routed. The large inductance value of the DC reactor built in the welding power source is about 50 to 100 μH. On the other hand, the inductance value of the cable is as high as 50 μH when it is large, and about 5 μH when it is small. Thus, the influence of the inductance value of the cable is large.

同図において、図10で上述したように、溶接条件が変化して電圧上昇特性Xが変化してもくびれ検出期間Tnは所定値となる。しかし、このときにケーブルのインダクタンス値が大きな値に変化すると、同図(A)に示すように、溶接電流Iwの減少特性Yが緩やかになるために、アーク再発生時溶接電流値がIa3と大きな値になる。この結果、スパッタ低減効果が小さくなる。また逆に、ケーブルのインダクタンス値が小さくなると、電流減少特性Yは速くなり溶接電流Iwが零になる場合も生じる。この結果、アークの再発生に失敗する場合も生じる。さらに、ケーブルのインダクタンス値が大きい場合でもアーク再発生時溶接電流値を小さくするために、くびれ検出期間の目標値を長くした場合、すべての溶接条件にわたってくびれ検出基準値を低くしてくびれ検出感度を高くすることになる。このために、溶接条件によってはくびれ検出感度が不必要に高くなりすぎてくびれ現象を誤検出する場合も発生する。   In FIG. 10, as described above with reference to FIG. 10, the squeezing detection period Tn becomes a predetermined value even if the welding condition changes and the voltage rise characteristic X changes. However, if the inductance value of the cable changes to a large value at this time, the decrease characteristic Y of the welding current Iw becomes gentle as shown in FIG. Great value. As a result, the spatter reduction effect is reduced. On the other hand, when the inductance value of the cable becomes small, the current reduction characteristic Y becomes faster and the welding current Iw may become zero. As a result, there may be a case where the re-generation of the arc fails. Furthermore, even if the inductance value of the cable is large, if the target value of the squeezing detection period is lengthened in order to reduce the welding current value at the time of arc re-occurrence, the squeezing detection reference value should be lowered over all welding conditions. Will be higher. For this reason, the squeezing detection sensitivity may become unnecessarily high depending on the welding conditions, and the squeezing phenomenon may be erroneously detected.

そこで、本発明では、上述した溶接条件及びケーブルのインダクタンス値が変化しても正確にくびれ現象を検出することができ、アーク再発生時溶接電流値を常に低い値に維持してスパッタ発生を大幅に抑制することができる消耗電極アーク溶接のくびれ検出制御方法を提供する。   Therefore, in the present invention, even when the welding conditions and the inductance value of the cable described above change, it is possible to accurately detect the constriction phenomenon, and the welding current value at the time of arc re-generation is always maintained at a low value, thereby greatly increasing the occurrence of spatter. The present invention provides a constriction detection control method for consumable electrode arc welding that can be suppressed.

上述した課題を解決するために、第1の発明は、消耗電極と母材との間でアーク発生状態と短絡状態とを繰り返す消耗電極アーク溶接にあって、短絡状態からアークが再発生する前兆現象である溶滴のくびれ現象を消耗電極・母材間の電圧値又は抵抗値の変化がくびれ検出基準値に達したことによって検出し、このくびれ現象を検出すると短絡負荷に通電する溶接電流を急減させて低電流値の状態でアークが再発生するように出力制御する消耗電極アーク溶接のくびれ検出制御方法において、
テスト溶接モード又は実溶接モードを選択する選択部を溶接電源に有し、
オペレータによって前記テスト溶接モードが選択されているときは、溶接条件及びケーブルのインダクタンス値が定まった実際の溶接ラインで、前記アーク再発生時の溶接電流値を検出し、このアーク再発生時溶接電流値が予め定めたアーク再発生時電流設定値と略等しくなるように前記くびれ検出基準値をフィードバック制御によって変化させて適正値を算出し、
オペレータによって前記実溶接モードが選択されているときは、前記くびれ検出基準値を前記テスト溶接モードで算出された適正値に自動的に固定してくびれ検出制御を行う、
ことを特徴とする消耗電極アーク溶接のくびれ検出制御方法である。

In order to solve the above-described problems, a first invention is a consumable electrode arc welding in which an arc generation state and a short circuit state are repeated between a consumable electrode and a base material, and a sign that an arc is regenerated from the short circuit state. The phenomenon of droplet constriction, which is a phenomenon, is detected when the change in the voltage value or resistance value between the consumable electrode and the base material reaches the squeezing detection reference value. In the constriction detection control method of consumable electrode arc welding that controls the output so that the arc is regenerated in a state of a low current value that is rapidly reduced,
The welding power source has a selection part for selecting the test welding mode or the actual welding mode,
When the test welding mode is selected by the operator, the welding current value at the time of the arc regeneration is detected on the actual welding line in which the welding conditions and the inductance value of the cable are determined, and the welding current at the time of the arc regeneration is detected. An appropriate value is calculated by changing the squeezing detection reference value by feedback control so that the value is substantially equal to a predetermined current value at the time of arc regeneration,
When the actual welding mode is selected by an operator, the necking detection reference value is automatically fixed to an appropriate value calculated in the test welding mode, and necking detection control is performed.
This is a constriction detection control method for consumable electrode arc welding.

また、第2の発明は、複数の溶接個所毎に前記テスト溶接モードによって前記溶接個所毎の前記くびれ検出基準値の適正値を算出し、前記実溶接モードが選択されたときは前記くびれ検出基準値を前記溶接個所毎に算出された適正値に固定する、In addition, the second invention calculates an appropriate value of the squeezing detection reference value for each welding point by the test welding mode for each of a plurality of welding points, and when the actual welding mode is selected, the squeezing detection reference is calculated. The value is fixed to an appropriate value calculated for each welding point.
ことを特徴とする第1の発明記載の消耗電極アーク溶接のくびれ検出制御方法である。A constriction detection control method for consumable electrode arc welding according to the first aspect of the present invention.

上記第1の発明によれば、テスト溶接モードによってくびれ検出基準値を適正化し、実溶接モードが選択されたときはくびれ検出基準値をテスト溶接モードで算出した適正値に固定化することによって、実施工中に外乱によってくびれ検出基準値が安定制御範囲外に変化することがないので、より安定した低スパッタ溶接を行うことができる。 According to the first invention , the necking detection reference value is optimized by the test welding mode , and when the actual welding mode is selected, the necking detection reference value is fixed to the appropriate value calculated in the test welding mode, Since the squeezing detection reference value does not change out of the stable control range due to disturbance during the work, more stable low spatter welding can be performed.

上記第2の発明によれば、複数の溶接個所を溶接する場合において、溶接個所毎にくびれ検出基準値を適正化して固定化することによって、上記第1の発明の効果を奏することができる。 According to the second aspect of the invention , when welding a plurality of welding locations, the effect of the first aspect of the invention can be achieved by optimizing and fixing the necking detection reference value for each welding location.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
本発明の実施の形態1は、本発明を説明するための参考となる実施の形態であり、くびれ検出制御において、アーク再発生時溶接電流値Iaを検出し、このアーク再発生時溶接電流値Iaが予め定めたアーク再発生時電流設定値Iarと略等しくなるようにくびれ検出基準値Vtnを変化させる消耗電極アーク溶接のくびれ検出制御方法である。

[Embodiment 1]
The first embodiment of the present invention is a reference embodiment for explaining the present invention. In the constriction detection control, a welding current value Ia at the time of arc regeneration is detected, and this welding current value at the time of arc regeneration is detected. This is a constriction detection control method for consumable electrode arc welding in which the constriction detection reference value Vtn is changed so that Ia is substantially equal to a predetermined arc re-occurrence current set value Iar.

すなわち、短絡開放毎のアーク再発生時溶接電流値Iaを検出して、予め定めた目標値であるアーク再発生時電流設定値Iarとの誤差増幅値ΔEを下式で算出する。
ΔE=Gain・(Iar−Ia) (1)式
ここで、Gainは予め定めた正の増幅率である。
次に、第n−1回目の短絡期間のくびれ検出基準値をVtn(n-1)とすると、第n回目の短絡期間のくびれ検出基準値Vtn(n)は下式で算出される。
Vtn(n)=Vtn(n-1)+ΔE=Vtn0+∫ΔE・dt (2)式
ここで、Vtn0は予め定めたくびれ検出基準値の初期値であり、積分は溶接中継続する。
上述したように、溶接条件の変化に伴う電圧上昇特性Xの変化及びケーブルのインダクタンス値の変化に伴う電流減少特性Yの変化に影響されることなく、実施の形態1ではアーク再発生時溶接電流値Iaを常に低電流値のアーク再発生時電流設定値Iarに維持することができる。このために、常にスパッタ低減効果を最大限に発揮させることができる。
That is, the welding current value Ia at the time of arc regeneration at each short-circuit opening is detected, and an error amplification value ΔE from the preset current value Iar at the time of arc regeneration is calculated by the following equation.
ΔE = Gain · (Iar−Ia) (1) where Gain is a predetermined positive amplification factor.
Next, when the squeezing detection reference value for the (n-1) th short-circuit period is Vtn (n-1), the squeezing detection reference value Vtn (n) for the n-th short-circuiting period is calculated by the following equation.
Vtn (n) = Vtn (n-1) + ΔE = Vtn0 + ∫ΔE · dt (2) where Vtn0 is an initial value of a predetermined squeezing detection reference value, and integration continues during welding.
As described above, in the first embodiment, the welding current at the time of arc re-generation is not affected by the change of the voltage increase characteristic X accompanying the change of the welding conditions and the change of the current decreasing characteristic Y accompanying the change of the inductance value of the cable. The value Ia can always be maintained at the low current value arc current setting value Iar. For this reason, the spatter reduction effect can always be maximized.

上記(1)式では、アーク再発生時溶接電流値Iaの検出値と目標値であるアーク再発生時電流設定値Iarとの誤差のみから誤差増幅値ΔEを算出する。これに加えて、誤差の微分値を加算しても良い。アーク再発生時溶接電流値のフィードバック制御において、いわるゆP制御、PI制御又はPID制御を行っても同様である。上記において、溶接条件及びケーブルのインダクタンス値が定まれば、上記の制御によってくびれ検出基準値Vtnはその溶接個所にとっての適正値に収束する。収束後のくびれ検出基準値Vtnは略一定値となる。   In the above equation (1), the error amplification value ΔE is calculated from only the error between the detected value of the welding current value Ia at the time of arc regeneration and the current setting value Iar at the time of arc regeneration that is the target value. In addition to this, a differential value of the error may be added. The same applies to the so-called P control, PI control or PID control in the feedback control of the welding current value when the arc is regenerated. In the above, if the welding conditions and the inductance value of the cable are determined, the above-described control causes the squeezing detection reference value Vtn to converge to an appropriate value for the welding location. The constriction detection reference value Vtn after convergence becomes a substantially constant value.

図1は、図11で上述したケーブルのインダクタンス値が大きくなったときの溶接電流Iw及び溶接電圧Vwの時間変化図である。同図において時刻t2〜t3以外の期間の動作は図5で上述した通常の消耗電極アーク溶接と同様であるのでそれらの説明は省略する。以下、同図を参照して説明する。   FIG. 1 is a time change diagram of the welding current Iw and the welding voltage Vw when the inductance value of the cable described above in FIG. 11 increases. In the figure, the operation during the period other than the times t2 to t3 is the same as the normal consumable electrode arc welding described above with reference to FIG. Hereinafter, a description will be given with reference to FIG.

同図において、ケーブルのインダクタンス値が大きくなると、電流減少特性Yが緩やかになる。しかし、時刻t3のアーク再発生時溶接電流値Iaがアーク再発生時電流設定値Iarに略等しくなるようにくびれ検出基準値Vtnが変化して適正値に収束するので、くびれ検出期間はTn3に長くなる。このために、電流減少特性Yが緩やかになっても、アーク再発生時溶接電流値Iaは低電流値のアーク再発生時電流設定値Iarと略等しくなる。   In the figure, as the inductance value of the cable increases, the current decrease characteristic Y becomes gentle. However, since the squeezing detection reference value Vtn changes and converges to an appropriate value so that the welding current value Ia at the time of arc re-occurrence at time t3 becomes substantially equal to the current setting value Iar at the time of arc re-occurrence, the squeezing detection period reaches Tn3. become longer. For this reason, even if the current reduction characteristic Y becomes gentle, the welding current value Ia at the time of arc regeneration is substantially equal to the current setting value Iar at the time of arc regeneration at a low current value.

同様に、溶接条件が変化して電圧上昇特性Xが変化した場合も、これに応じてアーク再発生時溶接電流値Iaがアーク再発生時電流設定値Iarに略等しくなるようにくびれ検出基準値Vtnが適正値に収束する。   Similarly, even when the welding condition changes and the voltage rise characteristic X changes, the squeezing detection reference value is set so that the welding current value Ia at the time of arc reoccurrence becomes substantially equal to the current setting value Iar at the time of arc reoccurrence accordingly. Vtn converges to an appropriate value.

実施の形態1では、アーク再発生時溶接電流値Iaがアーク再発生時電流設定値Iarと略等しくなる状態でのくびれ検出基準値Vtnの最大値が収束値となる。したがって、ケーブルのインダクタンス値が通常範囲内にあるときには、くびれ検出基準値Vtnが大きな値となる。ケーブルのインダクタンス値が大きくなるとくびれ検出基準値Vtnは小さな値となる。くびれ検出基準値Vtnの値が大きいほどくびれ検出感度は低くなる。したがって、ケーブルのインダクタンス値が通常範囲内にあるときは、くびれ検出感度は適正範囲において低くなり、くびれ検出感度が不必要に高すぎることによるくびれ現象の誤検出の確率は低くなる。   In the first embodiment, the maximum value of the squeezing detection reference value Vtn in a state in which the welding current value Ia at the time of arc regeneration is substantially equal to the current setting value Iar at the time of arc regeneration is the convergence value. Therefore, when the inductance value of the cable is within the normal range, the squeezing detection reference value Vtn becomes a large value. As the inductance value of the cable increases, the squeezing detection reference value Vtn decreases. The larger the value of the squeezing detection reference value Vtn, the lower the squeezing detection sensitivity. Therefore, when the inductance value of the cable is within the normal range, the squeezing detection sensitivity is low in the appropriate range, and the probability of false detection of the squeezing phenomenon due to the squeezing detection sensitivity being unnecessarily high is reduced.

上述した実施の形態1を実施するための溶接電源のブロック図は、図6又は図8においてくびれ検出制御回路NDを下記図2に示す回路に置換したものである。したがって、図2は、実施の形態1に係るくびれ検出制御回路NDのブロック図である。以下、同図を参照して説明する。   The block diagram of the welding power source for carrying out the first embodiment described above is obtained by replacing the squeezing detection control circuit ND with the circuit shown in FIG. Therefore, FIG. 2 is a block diagram of the squeezing detection control circuit ND according to the first embodiment. Hereinafter, a description will be given with reference to FIG.

同図では、溶接電流Iw及び溶接電圧Vwを入力とし、くびれ検出基準値を適正化してくびれ現象を正確に検出して、くびれ検出信号Ndを出力する。アーク再発生時溶接電流値検出回路IADは、溶接電流Iwを入力としてアーク再発生時溶接電流値を検出して、アーク再発生時溶接電流値検出信号Iadを出力する。アーク再発生時電流設定回路IARは、予め定めたアーク再発生時電流設定信号Iarを出力する。誤差増幅回路EAは、上記(1)式に示すように、上記のアーク再発生時電流設定信号Iarと上記のアーク再発生時溶接電流値検出信号Iadとの誤差を増幅して、誤差増幅信号ΔEを出力する。くびれ検出基準値算出回路VTNは、初期値Vtn0及び上記の誤差増幅信号ΔEを入力として上記(2)式によってくびれ検出基準値信号Vtnを出力する。この誤差増幅回路EA及びくびれ検出基準値算出回路VTNによって、アーク再発生時溶接電流値検出信号Iadがアーク再発生時電流設定信号Iarと略等しくなるようにくびれ検出基準値信号Vtnを適正化する。   In this figure, the welding current Iw and the welding voltage Vw are input, the necking detection reference value is optimized, the necking phenomenon is accurately detected, and the necking detection signal Nd is output. The arc re-generation welding current value detection circuit IAD receives the welding current Iw, detects the arc re-generation welding current value, and outputs an arc re-generation welding current value detection signal Iad. The arc regeneration current setting circuit IAR outputs a predetermined arc regeneration current setting signal Iar. The error amplification circuit EA amplifies an error between the arc regeneration current setting signal Iar and the arc regeneration welding current value detection signal Iad, as shown in the equation (1), and an error amplification signal. ΔE is output. The squeezing detection reference value calculation circuit VTN receives the initial value Vtn0 and the error amplification signal ΔE, and outputs a squeezing detection reference value signal Vtn according to the above equation (2). The error amplification circuit EA and the squeezing detection reference value calculation circuit VTN optimize the squeezing detection reference value signal Vtn so that the welding current value detection signal Iad at the time of arc re-occurrence becomes substantially equal to the current setting signal Iar at the time of arc re-occurrence. .

溶接電圧検出回路VDは、溶接電圧Vwを検出して溶接電圧検出信号Vdを出力する。電圧上昇値検出回路DVは、図5で上述したように、溶接電圧検出信号Vdを入力として短絡期間中の短絡電圧からの電圧上昇値を検出し、電圧上昇値検出信号ΔVを出力する。くびれ比較回路CMNは、この電圧上昇値検出信号ΔVと上記のくびれ検出基準値信号Vtnとを比較して、ΔV≧VtnのときにHighレベルとなるセット信号Stを出力する。再アーク比較回路CMAは、上記の溶接電圧検出信号Vdと予め定めた短絡/アーク判別値Vtaとを比較して、Vd≧VtaのときにHighレベルとなるリセット信号Rtを出力する。フリップフロップ回路FFは、上記のセット信号StがHighレベルに変化するとHighレベルにセットされ、上記のリセット信号RtがHighレベルに変化するとLowレベルにリセットされるくびれ検出信号Ndを出力する。   The welding voltage detection circuit VD detects the welding voltage Vw and outputs a welding voltage detection signal Vd. As described above with reference to FIG. 5, the voltage increase value detection circuit DV receives the welding voltage detection signal Vd as an input, detects a voltage increase value from the short circuit voltage during the short circuit period, and outputs a voltage increase value detection signal ΔV. The squeezing comparison circuit CMN compares the voltage rise value detection signal ΔV with the squeezing detection reference value signal Vtn, and outputs a set signal St that becomes a high level when ΔV ≧ Vtn. The re-arc comparison circuit CMA compares the welding voltage detection signal Vd with a predetermined short-circuit / arc discrimination value Vta, and outputs a reset signal Rt that becomes a high level when Vd ≧ Vta. The flip-flop circuit FF outputs a squeezing detection signal Nd that is set to High level when the set signal St changes to High level, and is reset to Low level when the reset signal Rt changes to High level.

上記においては、くびれ検出方法として電圧上昇値ΔVを使用する場合について説明したが、上述したように、短絡期間中の抵抗値又は溶接電圧値の変化率を使用しても同様である。また、くびれ検出信号NdがHighレベルになったときの電流急減方法については、図6及び図8で上述した方法以外の従来から種々提案されている方法を使用することもできる。   In the above description, the case where the voltage increase value ΔV is used as the squeezing detection method has been described. However, as described above, the same applies even when the rate of change of the resistance value or the welding voltage value during the short circuit period is used. In addition, as a method of suddenly decreasing the current when the squeezing detection signal Nd becomes a high level, various conventionally proposed methods other than the methods described above with reference to FIGS. 6 and 8 can be used.

[実施の形態2]
本発明の実施の形態2は、実施の形態1の消耗電極アーク溶接のくびれ検出制御方法によるテスト溶接を行いくびれ検出基準値Vtnの適正値を算出し、実際の溶接に際してはこのくびれ検出基準値Vtnをテスト溶接で算出された適正値に固定してくびれ検出制御を行う消耗電極アーク溶接のくびれ検出制御である。
[Embodiment 2]
In the second embodiment of the present invention, test welding is performed by the constriction detection control method for consumable electrode arc welding according to the first embodiment, and an appropriate value of the constriction detection reference value Vtn is calculated. In actual welding, this constriction detection reference value is calculated. This is constriction detection control for consumable electrode arc welding in which Vtn is fixed to an appropriate value calculated by test welding and constriction detection control is performed.

すなわち、溶接条件及びケーブルのインダクタンス値が定まった実際の溶接ラインにおいて、実施の形態1で上述したくびれ検出制御方法によってテスト溶接を行う。このテスト溶接の結果として、くびれ検出基準値Vtnはこの溶接個所に対して適正値に収束する。実施工に際しては、くびれ検出基準値Vtnを上記の適正値に固定して溶接を行う。溶接ラインの条件及びワークの溶接個所が定まれば、溶接条件及びケーブルのインダクタンス値は定まる。したがって、テスト溶接を行いくびれ検出基準値Vtnを一度適正化すれば、常に良好なくびれ検出制御を行うことができる。   That is, in the actual welding line in which the welding conditions and the inductance value of the cable are determined, test welding is performed by the squeezing detection control method described in the first embodiment. As a result of this test welding, the squeezing detection reference value Vtn converges to an appropriate value for this welding point. In carrying out the work, welding is performed with the squeezing detection reference value Vtn fixed to the above-mentioned appropriate value. If the welding line conditions and the welding location of the workpiece are determined, the welding conditions and the inductance value of the cable are determined. Therefore, once test welding is performed and the squeezing detection reference value Vtn is optimized once, good squeezing detection control can always be performed.

この実施の形態2では、実施工時にはくびれ検出基準値Vtnが適正値に固定されているので、外乱によってくびれ検出基準値が安定制御範囲外に設定されて溶接品質が悪くなるトラブルが生じる可能性が低くなる。   In the second embodiment, since the squeezing detection reference value Vtn is fixed to an appropriate value at the time of construction, there is a possibility that the squeezing detection reference value is set out of the stable control range due to disturbance and trouble that the welding quality deteriorates may occur. Becomes lower.

図3は、実施の形態2に係るくびれ検出制御回路NDのブロック図である。同図は、図2のくびれ検出制御回路NDに置換して使用される。同図において、図2と同一のブロックには同一符号を付してそれらの説明は省略する。以下、図2とは異なる点線で示すブロックについて説明する。   FIG. 3 is a block diagram of the squeezing detection control circuit ND according to the second embodiment. This figure is used in place of the constriction detection control circuit ND of FIG. In the figure, the same blocks as those in FIG. Hereinafter, blocks indicated by dotted lines different from those in FIG. 2 will be described.

溶接モード選択回路TMは、テスト溶接モード又は実溶接モードから選択された溶接モードに対応する溶接モード選択信号Tmを出力する。第2くびれ検出基準値算出回路VTN2は、上記の溶接モード選択信号Tmがテスト溶接モードのときには上記(2)式によって算出されたくびれ検出基準値信号Vtnを出力し、実溶接モードのときにはテスト溶接時の収束値(適正値)のくびれ検出基準値信号Vtnを出力する。   The welding mode selection circuit TM outputs a welding mode selection signal Tm corresponding to the welding mode selected from the test welding mode or the actual welding mode. The second squeezing detection reference value calculation circuit VTN2 outputs the squeezing detection reference value signal Vtn calculated by the above equation (2) when the welding mode selection signal Tm is the test welding mode, and test welding when the welding mode selection signal Tm is the actual welding mode. A squeezing detection reference value signal Vtn having a convergence value (appropriate value) at the time is output.

くびれ検出基準値の適正値を、テスト溶接時の短絡毎に算出されるくびれ検出基準値の平均値として算出しても良い。   An appropriate value of the squeezing detection reference value may be calculated as an average value of the squeezing detection reference values calculated for each short circuit during test welding.

[実施の形態3]
本発明の実施の形態3は、実施の形態2記載の消耗電極アーク溶接のくびれ検出制御方法において、複数の溶接個所毎にテスト溶接を行い、溶接個所毎のくびれ検出基準値Vtnの適正値を算出し、実際の溶接に際してはくびれ検出基準値Vtnを溶接個所毎に算出された適正値に固定する消耗電極アーク溶接のくびれ検出制御方法である。
[Embodiment 3]
Embodiment 3 of the present invention is a constriction detection control method for consumable electrode arc welding described in Embodiment 2, in which test welding is performed for each of a plurality of welding locations, and an appropriate value of the necking detection reference value Vtn for each welding location is determined. This is a constriction detection control method for consumable electrode arc welding in which the constriction detection reference value Vtn is calculated and fixed to an appropriate value calculated for each welding point in actual welding.

すなわち、1個のワークに複数個の溶接個所がある場合又は複数種類のワークがあり複数個の溶接個所がある場合には、溶接個所毎にテスト溶接を行い溶接個所毎のくびれ検出基準値Vtnの収束値(適正値)を算出して記憶する。実施工時は、くびれ検出基準値Vtnを上記のテスト溶接で算出された溶接個所毎の適正値を呼び出してその値に固定する。   That is, when there are a plurality of welding locations in one workpiece, or when there are a plurality of types of workpieces and a plurality of welding locations, test welding is performed at each welding location and the necking detection reference value Vtn at each welding location. The convergence value (appropriate value) is calculated and stored. At the time of execution, the squeezing detection reference value Vtn is called and fixed to the appropriate value for each welding point calculated by the above test welding.

この実施の形態3では、上述した実施の形態2を複数の溶接個所を有する溶接ラインに適用することができる。   In the third embodiment, the above-described second embodiment can be applied to a welding line having a plurality of welding points.

図4は、実施の形態3に係るくびれ検出制御回路NDのブロック図である。同図は、図3のくびれ検出制御回路NDに置換して使用される。同図において、図3と同一のブロックには同一符号を付してそれらの説明は省略する。以下、図3とは異なる点線で示すブロックについて説明する。   FIG. 4 is a block diagram of the squeezing detection control circuit ND according to the third embodiment. This figure is used in place of the constriction detection control circuit ND of FIG. In the figure, the same blocks as those in FIG. Hereinafter, blocks indicated by dotted lines different from those in FIG. 3 will be described.

溶接個所通知回路WPは、溶接個所毎に割り付けられた溶接個所番号を通知するための溶接個所通知信号Wpを出力する。第3くびれ検出基準値算出回路VTN3は、溶接モード選択信号Tmがテスト溶接モードのときには上記(2)式によって算出されたくびれ検出基準値信号Vtnを出力すると共に上記の溶接個所通知信号Wpに対応させて上記のくびれ検出基準値信号Vtnの収束値を記憶し、実溶接モードのときには上記の溶接個所通知信号Wpに対応したテスト溶接時の収束値(適正値)のくびれ検出基準値信号Vtnを出力する。   The welding location notification circuit WP outputs a welding location notification signal Wp for notifying the welding location number assigned to each welding location. The third squeezing detection reference value calculation circuit VTN3 outputs the squeezing detection reference value signal Vtn calculated by the above equation (2) when the welding mode selection signal Tm is in the test welding mode, and corresponds to the welding location notification signal Wp. The convergence value of the squeezing detection reference value signal Vtn is stored, and in the actual welding mode, the squeezing detection reference value signal Vtn of the convergence value (proper value) at the time of test welding corresponding to the welding location notification signal Wp is stored. Output.

くびれ検出基準値の適正値を、溶接個所毎におけるテスト溶接時の短絡毎に算出されたくびれ検出基準値の平均値として算出しても良い。   An appropriate value of the squeezing detection reference value may be calculated as an average value of the squeezing detection reference values calculated for each short circuit during test welding at each welding point.

本発明の実施の形態1に係る消耗電極アーク溶接のくびれ検出制御方法を示す溶接電流Iw及び溶接電圧Vwの時間変化図である。It is a time change figure of welding current Iw and welding voltage Vw which shows the constriction detection control method of consumable electrode arc welding concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係るくびれ検出制御回路NDのブロック図である。2 is a block diagram of a squeezing detection control circuit ND according to Embodiment 1 of the present invention. FIG. 本発明の実施の形態2に係るくびれ検出制御回路NDのブロック図である。It is a block diagram of the constriction detection control circuit ND which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るくびれ検出制御回路NDのブロック図である。It is a block diagram of the constriction detection control circuit ND which concerns on Embodiment 3 of this invention. 消耗電極アーク溶接の溶接電流Iw及び溶接電圧Vwの時間変化図である。It is a time change figure of welding current Iw and welding voltage Vw of consumable electrode arc welding. 従来技術1におけるくびれ検出時電流急減機能付溶接電源のブロック図である。It is a block diagram of the welding power supply with an electric current rapid decrease function at the time of a constriction detection in the prior art 1. FIG. 図6の溶接電源における各信号のタイミングチャートである。It is a timing chart of each signal in the welding power supply of FIG. 従来技術2におけるくびれ検出時電流急減機能付溶接電源のブロック図である。It is a block diagram of the welding power supply with an electric current rapid decrease function at the time of a constriction detection in the prior art 2. 図8の溶接電源における各信号のタイミングチャートである。It is a timing chart of each signal in the welding power supply of FIG. 従来技術3における溶接電流Iw及び溶接電圧Vwの時間変化図である。It is a time change figure of welding current Iw in conventional technology 3, and welding voltage Vw. 課題を説明するための図10に対応する溶接電流Iw及び溶接電圧Vwの時間変化図である。It is a time change figure of welding current Iw and welding voltage Vw corresponding to Drawing 10 for explaining a subject.

符号の説明Explanation of symbols

1 溶接ワイヤ
1a 溶滴
2 母材
2a 溶融池
3 アーク
C コンデンサ
CMA 再アーク比較回路
CMN くびれ検出比較回路
DR 駆動回路
Dr 駆動信号
DRA 充放電駆動回路
Drc 充電駆動信号
Drd 放電駆動信号
DV 電圧上昇値検出回路
E 充電電源
EA 誤差増幅回路
FF フリップフロップ回路
Ia アーク再発生時溶接電流値
IAD アーク再発生時溶接電流値検出回路
Iad アーク再発生時溶接電流値検出信号
IAR アーク再発生時電流設定回路
Iar アーク再発生時電流設定(値/信号)
Id 放電電流
Io 出力電流
Iw 溶接電流
ND くびれ検出制御回路
Nd くびれ検出信号
PS 溶接電源
R 抵抗器
Rt リセット信号
St セット信号
Ta アーク期間
TM 溶接モード選択回路
Tm 溶接モード選択信号
Tn 検出期間
TR トランジスタ
TRC 充電用スイッチング素子
TRD 放電用スイッチング素子
Ts 短絡期間
Vc コンデンサ両端電圧
VD 溶接電圧検出回路
Vd 溶接電圧検出信号
Vs 短絡電圧値
Vta 短絡/アーク判別値
VTN くびれ検出基準値算出回路
Vtn くびれ検出基準値(信号)
Vtn0 初期値
VTN2 第2くびれ検出基準値算出回路
VTN3 第3くびれ検出基準値算出回路
Vw 溶接電圧
WP 溶接個所通知回路
Wp 溶接個所通知信号
X 電圧上昇特性
Y 電流減少特性
ΔE 誤差増幅(値/信号)
ΔV 電圧上昇値(検出信号)

DESCRIPTION OF SYMBOLS 1 Welding wire 1a Droplet 2 Base material 2a Molten pool 3 Arc C Capacitor CMA Re-arc comparison circuit CMN Constriction detection comparison circuit DR Drive circuit Dr Drive signal DRA Charge / discharge drive circuit Drc Charge drive signal Drd Discharge drive signal DV Voltage rise value detection Circuit E Charging power supply EA Error amplification circuit FF Flip-flop circuit Ia Arc regenerating welding current value IAD Arc regenerating welding current value detection circuit Iad Arc regenerating welding current value detection signal IAR Arc regenerating current setting circuit Iar Arc Current setting at re-generation (value / signal)
Id Discharge current Io Output current Iw Welding current ND Constriction detection control circuit Nd Constriction detection signal PS Welding power supply R Resistor Rt Reset signal St Set signal Ta Arc period TM Welding mode selection circuit Tm Welding mode selection signal Tn Detection period TR Transistor TRC Charging Switching element TRD Discharging switching element Ts Short-circuit period Vc Capacitor voltage VD Welding voltage detection circuit Vd Welding voltage detection signal Vs Short-circuit voltage value Vta Short-circuit / arc discrimination value VTN Constriction detection reference value calculation circuit Vtn Constriction detection reference value (signal)
Vtn0 Initial value VTN2 Second squeezing detection reference value calculation circuit VTN3 Third squeezing detection reference value calculation circuit Vw Welding voltage WP Welding location notification circuit Wp Welding location notification signal X Voltage increase characteristic Y Current decrease characteristic ΔE Error amplification (value / signal)
ΔV Voltage rise value (detection signal)

Claims (2)

消耗電極と母材との間でアーク発生状態と短絡状態とを繰り返す消耗電極アーク溶接にあって、短絡状態からアークが再発生する前兆現象である溶滴のくびれ現象を消耗電極・母材間の電圧値又は抵抗値の変化がくびれ検出基準値に達したことによって検出し、このくびれ現象を検出すると短絡負荷に通電する溶接電流を急減させて低電流値の状態でアークが再発生するように出力制御する消耗電極アーク溶接のくびれ検出制御方法において、
テスト溶接モード又は実溶接モードを選択する選択部を溶接電源に有し、
オペレータによって前記テスト溶接モードが選択されているときは、溶接条件及びケーブルのインダクタンス値が定まった実際の溶接ラインで、前記アーク再発生時の溶接電流値を検出し、このアーク再発生時溶接電流値が予め定めたアーク再発生時電流設定値と略等しくなるように前記くびれ検出基準値をフィードバック制御によって変化させて適正値を算出し、
オペレータによって前記実溶接モードが選択されているときは、前記くびれ検出基準値を前記テスト溶接モードで算出された適正値に自動的に固定してくびれ検出制御を行う、
ことを特徴とする消耗電極アーク溶接のくびれ検出制御方法。
In consumable electrode arc welding where the arc generation state and short circuit state are repeated between the consumable electrode and the base material, the constriction phenomenon of droplets, which is a precursor to the arc re-occurring from the short circuit state, is observed between the consumable electrode and the base material. This is detected when the change in voltage value or resistance value reaches the squeezing detection reference value, and when this squeezing phenomenon is detected, the welding current applied to the short-circuit load is suddenly reduced so that the arc is regenerated at a low current value. In the constriction detection control method of consumable electrode arc welding that controls the output to
The welding power source has a selection part for selecting the test welding mode or the actual welding mode,
When the test welding mode is selected by the operator, the welding current value at the time of the arc regeneration is detected on the actual welding line in which the welding conditions and the inductance value of the cable are determined, and the welding current at the time of the arc regeneration is detected. An appropriate value is calculated by changing the squeezing detection reference value by feedback control so that the value is substantially equal to a predetermined current value at the time of arc regeneration,
When the actual welding mode is selected by an operator, the necking detection reference value is automatically fixed to an appropriate value calculated in the test welding mode, and necking detection control is performed.
A constriction detection control method for consumable electrode arc welding.
複数の溶接個所毎に前記テスト溶接モードによって前記溶接個所毎の前記くびれ検出基準値の適正値を算出し、前記実溶接モードが選択されたときは前記くびれ検出基準値を前記溶接個所毎に算出された適正値に固定する、Calculate an appropriate value for the squeezing detection reference value for each of the welding locations for each of the welding locations, and calculate the squeezing detection reference value for each of the welding locations when the actual welding mode is selected. Fixed to the appropriate value,
ことを特徴とする請求項1記載の消耗電極アーク溶接のくびれ検出制御方法。The constriction detection control method of consumable electrode arc welding according to claim 1.
JP2004212435A 2004-07-21 2004-07-21 Constriction detection control method for consumable electrode arc welding Active JP4767508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212435A JP4767508B2 (en) 2004-07-21 2004-07-21 Constriction detection control method for consumable electrode arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212435A JP4767508B2 (en) 2004-07-21 2004-07-21 Constriction detection control method for consumable electrode arc welding

Publications (2)

Publication Number Publication Date
JP2006026718A JP2006026718A (en) 2006-02-02
JP4767508B2 true JP4767508B2 (en) 2011-09-07

Family

ID=35893668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212435A Active JP4767508B2 (en) 2004-07-21 2004-07-21 Constriction detection control method for consumable electrode arc welding

Country Status (1)

Country Link
JP (1) JP4767508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444868B (en) * 2007-11-26 2013-01-02 株式会社大亨 Neckdown detection control method for arc welding of consumable electrode

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875390B2 (en) * 2006-03-27 2012-02-15 株式会社ダイヘン Constriction detection control method for consumable electrode arc welding
JP5802048B2 (en) * 2011-04-28 2015-10-28 株式会社ダイヘン Welding current control method during short circuit period
JP5840921B2 (en) * 2011-11-04 2016-01-06 株式会社ダイヘン Constriction detection control method for consumable electrode arc welding
US20130264323A1 (en) * 2012-04-05 2013-10-10 Lincoln Global, Inc. Process for surface tension transfer short ciruit welding
JP6421321B2 (en) * 2014-05-16 2018-11-14 パナソニックIpマネジメント株式会社 Arc welding control method and arc welding apparatus
JP7365544B2 (en) * 2019-09-04 2023-10-20 パナソニックIpマネジメント株式会社 Welding machine and welding system equipped with it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641026B2 (en) * 1983-11-17 1994-06-01 株式会社神戸製鋼所 Welding power output control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444868B (en) * 2007-11-26 2013-01-02 株式会社大亨 Neckdown detection control method for arc welding of consumable electrode

Also Published As

Publication number Publication date
JP2006026718A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP4875311B2 (en) Current control method for constriction detection in consumable electrode arc welding
JP4875390B2 (en) Constriction detection control method for consumable electrode arc welding
JP4907892B2 (en) Constriction detection control method for consumable electrode arc welding
KR900003877B1 (en) Method and device for controlling welding power supply to avoid sputtering of the weld material
CN100450690C (en) Arc welding device control method and arc welding device
JP4739874B2 (en) Constriction detection control method for consumable electrode arc welding
JP5038206B2 (en) Constriction detection control method for consumable electrode arc welding
JP4767508B2 (en) Constriction detection control method for consumable electrode arc welding
JP5808947B2 (en) Constriction detection control method for consumable electrode arc welding
JP5545996B2 (en) Constriction detection control method for consumable electrode arc welding
JP4545483B2 (en) Welding power supply and welding equipment with current suddenly decreasing function when detecting constriction
JP2006305584A (en) Method for controlling completion of consumable electrode arc welding
JPH0641026B2 (en) Welding power output control method
JPS5829575A (en) Electric power source device for welding
JP4847082B2 (en) Welding power supply with current suddenly decreasing function when detecting constriction
JP2509546B2 (en) Welding power supply
JP7396779B2 (en) Arc welding control method
JP2013094792A (en) Current control method in detecting constriction in consumable electrode arc welding
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP7053121B2 (en) Arc welding control method
JP7039413B2 (en) Arc welding control method
JP2022099368A (en) Pulse arc welding power supply
JP3156032B2 (en) Consumable electrode pulse arc welding machine
JP2022185998A (en) Arc-welding power source
US20220055136A1 (en) Arc welding method and arc welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Ref document number: 4767508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250