JP2007075827A - Method of detecting/controlling constriction in consumable electrode arc welding - Google Patents

Method of detecting/controlling constriction in consumable electrode arc welding Download PDF

Info

Publication number
JP2007075827A
JP2007075827A JP2005263140A JP2005263140A JP2007075827A JP 2007075827 A JP2007075827 A JP 2007075827A JP 2005263140 A JP2005263140 A JP 2005263140A JP 2005263140 A JP2005263140 A JP 2005263140A JP 2007075827 A JP2007075827 A JP 2007075827A
Authority
JP
Japan
Prior art keywords
constriction
welding
value
current
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005263140A
Other languages
Japanese (ja)
Other versions
JP4739874B2 (en
Inventor
Futoshi Nishisaka
太志 西坂
Hongjun Tong
紅軍 仝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2005263140A priority Critical patent/JP4739874B2/en
Priority to CN2006101281690A priority patent/CN1931499B/en
Publication of JP2007075827A publication Critical patent/JP2007075827A/en
Application granted granted Critical
Publication of JP4739874B2 publication Critical patent/JP4739874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve accuracy of detecting constriction of a droplet in a method of detecting and controlling constriction, a method in which spatters are reduced by detecting the constriction and rapidly decreasing a welding current Iw immediately before regeneration of arc. <P>SOLUTION: In the method of detecting/controlling constriction in consumable electrode arc welding, the constriction of a droplet as a symptom of regeneration of arc from a short circuit state Ts is detected by a change Δr in a resistance value between a consumable electrode and a base material reaching a predetermined reference value rt for the detection of the constriction. In the method, when this constriction phenomenon is detected (Nd=High), a welding current Iw flowing to a short-circuit load is rapidly reduced, with the output controlled so that the arc is regenerated in the state of a low current value. The method is characterized in that the derivation of the welding current Iw in the short-circuit state Ts is computed and that the constriction is detected by the reference computed value rtc for the detection of the constriction, i.e., a value obtained by deducting this current derivation dIw/dt from the reference value rt for the detection of the constriction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、短絡期間中の溶滴のくびれ現象を検出して溶接電流を急減させて溶接品質を向上させるための消耗電極アーク溶接のくびれ検出制御方法に関するものである。   The present invention relates to a constriction detection control method of consumable electrode arc welding for detecting a constriction phenomenon of a droplet during a short-circuiting period and rapidly reducing a welding current to improve welding quality.

図4は、短絡期間Tsとアーク期間Taとを繰り返す消耗電極アーク溶接におけるくびれ検出制御方法を示す波形図である。同図(A)は溶滴のくびれ検出信号Ndの、同図(B)は溶接電圧Vwの、同図(C)は溶接電流Iwの、同図(D)は溶滴部の抵抗値の変化率Δr=dr/dtの時間変化を示し、同図(E1)〜(E3)は溶滴の移行状態を示す。同図はサイリスタ位相制御溶接電源を使用した場合であり、同図(B)及び(C)に示すように、溶接電圧Vw及び溶接電流Iwには全波整流制御の場合商用周波数(50Hz又は60Hz)の6倍の周波数を有する大きなリップルが重畳する。以下、同図を参照して説明する。   FIG. 4 is a waveform diagram showing a constriction detection control method in consumable electrode arc welding in which the short-circuit period Ts and the arc period Ta are repeated. (A) of the droplet shows the constriction detection signal Nd, (B) shows the welding voltage Vw, (C) shows the welding current Iw, and (D) shows the resistance of the droplet. The change rate [Delta] r = dr / dt shows the time change, and FIGS. (E1) to (E3) show the transition state of the droplets. This figure shows a case where a thyristor phase control welding power source is used. As shown in FIGS. 5B and 5C, the welding voltage Vw and the welding current Iw are commercial frequencies (50 Hz or 60 Hz) in the case of full-wave rectification control. A large ripple having a frequency six times that of) is superimposed. Hereinafter, a description will be given with reference to FIG.

時刻t1〜t2のアーク期間Ta中は、同図(B)に示すように、溶接電圧Vwは数十Vのアーク電圧値となり、同図(C)に示すように、溶接電流Iwはワイヤ送給速度に対応した平均電流値となる。   During the arc period Ta between times t1 and t2, the welding voltage Vw becomes an arc voltage value of several tens of volts as shown in FIG. 5B, and as shown in FIG. The average current value corresponds to the feed speed.

時刻t2において、同図(E1)に示すように、アーク期間Ta中に溶接ワイヤ1の先端に形成された溶滴1aが母材2と接触すると短絡期間Tsが開始する。短絡期間Tsが開始すると、同図(B)に示すように、溶接電圧Vwは数Vの短絡電圧値となり、同図(C)に示すように、溶接電流Iwは時間経過に伴い増加する。この電流通電による電磁的ピンチ力が溶滴1aに作用して、同図(E2)に示すように、溶滴1aにくびれ部1bが発生する。このくびれ1bが進行して、同図(E3)に示すように、溶滴1aは溶融池2aへと移行し、時刻t3にアーク3が再発生する。したがって、くびれ1bの発生はアーク再発生の前兆現象であり、くびれ1b発生から数百μs後にアークが再発生することが多い。   At time t2, as shown in FIG. 5E1, when the droplet 1a formed at the tip of the welding wire 1 contacts the base material 2 during the arc period Ta, the short circuit period Ts starts. When the short-circuit period Ts starts, the welding voltage Vw becomes a short-circuit voltage value of several V as shown in FIG. 5B, and the welding current Iw increases with time as shown in FIG. The electromagnetic pinch force due to this current application acts on the droplet 1a, and a constricted portion 1b is generated in the droplet 1a as shown in FIG. As this constriction 1b advances, as shown in FIG. 3E3, the droplet 1a moves to the molten pool 2a, and the arc 3 is regenerated at time t3. Therefore, the occurrence of the constriction 1b is a precursor of the arc reoccurrence, and the arc often reoccurs several hundred μs after the occurrence of the constriction 1b.

上述したように、くびれ1bが発生すると、溶接電流Iwの通電路がくびれ部分1bで狭くなるために、通電路の抵抗値rが大きくなる。この抵抗値rはくびれ1bの進行に伴い急速に大きくなる。同図(D)は、この抵抗値rの変化率Δr=dr/dt=d(Vw/Iw)/dtの波形を示す。くびれ1bの進行に伴って抵抗値変化率Δrが急上昇する。この値Δrが予め定めたくびれ検出基準値rtを超えたことを時刻t21に判別すると、同図(A)に示すように、くびれ検出信号NdがHighレベルになる。これに応動して、同図(C)に示すように、溶接電流値Iwを急減させる。この急減のための特別な回路については図5で後述する。そして、時刻t3においてアークが発生した時点における溶接電流値Iwは低い値であるために、スパッタの発生が大幅に減少する。これは、スパッタのほとんどはアーク再発生時に発生し、その発生量はアーク再発生時の電流値の大きさに比例するためである。したがって、消耗電極アーク溶接のくびれ検出制御方法とは、短絡期間中の抵抗値変化率Δrによってくびれ1bの進行を検出し、溶接電流Iwを急減させてアーク再発生時の電流値を低い値にして、スパッタ発生を大幅に減少させるものである。上記のくびれ検出信号Ndは、時刻t21のくびれ検出時点から時刻t3のアーク再発生時点までのくびれ検出時間Tnの間Highレベルになる。   As described above, when the constriction 1b occurs, the energization path of the welding current Iw becomes narrow at the constricted portion 1b, and thus the resistance value r of the energization path increases. This resistance value r rapidly increases as the constriction 1b progresses. FIG. 4D shows the waveform of the rate of change Δr = dr / dt = d (Vw / Iw) / dt of the resistance value r. As the constriction 1b progresses, the resistance value change rate Δr rapidly increases. When it is determined at time t21 that this value Δr has exceeded a predetermined squeezing detection reference value rt, the squeezing detection signal Nd becomes High level as shown in FIG. In response to this, the welding current value Iw is rapidly reduced as shown in FIG. A special circuit for this sudden decrease will be described later with reference to FIG. Since the welding current value Iw at the time when the arc is generated at time t3 is a low value, the occurrence of spatter is greatly reduced. This is because most of the spatter occurs when the arc is regenerated, and the amount generated is proportional to the magnitude of the current value when the arc is regenerated. Therefore, the constriction detection control method for consumable electrode arc welding is to detect the progress of the constriction 1b based on the resistance value change rate Δr during the short-circuit period, to rapidly reduce the welding current Iw, and to reduce the current value when the arc is regenerated. This significantly reduces the generation of spatter. The squeezing detection signal Nd is at a high level during the squeezing detection time Tn from the squeezing detection time at time t21 to the arc re-occurrence time at time t3.

図5は、上述したくびれ検出制御方法を採用した溶接装置のブロック図である。溶接電源PSは、一般的な消耗電極アーク溶接用のサイリスタ位相制御溶接電源である。トランジスタTRは出力に直列に挿入され、並列に抵抗器Rが接続されている。この抵抗器Rの抵抗値は短絡期間の負荷抵抗値数十mΩの10倍以上の値に設定する。トランジスタTRは、上記した図4(A)においてくびれ検出信号NdがHighレベルの期間(くびれ検出時間Tn)のみオフ状態となり、電流通電経路に抵抗器Rが挿入される。くびれ検出時間Tn中は溶接電源の出力が停止された上で抵抗器Rが挿入されると、通電経路の抵抗値が10倍以上に大きくなるために、電源内部の大きなリアクトルに蓄積されたエネルギーが急放電されて溶接電流Iwが急減する。   FIG. 5 is a block diagram of a welding apparatus that employs the above-described constriction detection control method. The welding power source PS is a general thyristor phase control welding power source for consumable electrode arc welding. The transistor TR is inserted in series with the output, and a resistor R is connected in parallel. The resistance value of the resistor R is set to a value that is 10 times or more the load resistance value of several tens of mΩ during the short-circuit period. The transistor TR is turned off only during a period in which the squeezing detection signal Nd is at a high level (squeezing detection time Tn) in FIG. 4A described above, and the resistor R is inserted in the current conduction path. During the squeezing detection time Tn, when the resistor R is inserted after the output of the welding power source is stopped, the resistance value of the energization path becomes more than 10 times larger, so the energy stored in the large reactor inside the power source Is suddenly discharged and the welding current Iw decreases rapidly.

電圧検出回路VDは、溶接電圧Vwを検出して、電圧検出信号Vdを出力する。電流検出回路IDは、溶接電流Iwを検出して、電流検出信号Idを出力する。抵抗値変化率算出回路ΔRは、これら電圧検出信号Vd及び電流検出信号Idを入力として、抵抗値変化率信号Δr=d(Vd/Id)/dtを算出する。くびれ検出回路NDは、この抵抗値変化率信号Δrと予め定めたくびれ検出基準値rtとを比較して、Δr>rtのときにHighレベルとなるくびれ検出信号Ndを出力する。駆動回路DRは、このくびれ検出信号Ndを入力として、くびれ検出信号NdがLowレベルのときに上記のトランジスタTRをオン状態にする駆動信号Drを出力する。トランジスタTRがオン状態のときは抵抗器Rは短絡されるので溶接電源PSだけの通常の動作となる。   The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The current detection circuit ID detects the welding current Iw and outputs a current detection signal Id. The resistance value change rate calculation circuit ΔR receives the voltage detection signal Vd and the current detection signal Id and calculates the resistance value change rate signal Δr = d (Vd / Id) / dt. The squeezing detection circuit ND compares the resistance value change rate signal Δr with a predetermined squeezing detection reference value rt, and outputs a squeezing detection signal Nd that becomes a high level when Δr> rt. The drive circuit DR receives the squeezing detection signal Nd as an input, and outputs a drive signal Dr that turns on the transistor TR when the squeezing detection signal Nd is at a low level. When the transistor TR is in the on state, the resistor R is short-circuited, so that the normal operation of only the welding power source PS is performed.

上述したくびれ検出制御方法において、くびれの発生を正確に検出することが重要である。このくびれ検出の精度を決める重要な要因の1つが、上記のくびれ検出基準値rtが適正値設定されているかにある。くびれ検出基準値rtの適正値は、溶接法、溶接ワイヤの種類、ワイヤ送給速度等の溶接条件に応じて変化する。このために、種々の溶接条件ごとに予め溶接試験を行いその適正値を求めておく必要がある。このくびれ検出基準値rtの設定を自動的に行う方法が従来から提案されている。この従来技術では、図4(A)で上述したくびれ検出時間Tnが所定値になるようにくびれ検出基準値rtを変化させて自動設定する。くびれ検出時間Tnが短くなりすぎると溶接電流Iwが低い値まで下がりきらない内にアークが再発生してスパッタ削減効果が小さくなる。逆に、くびれ検出時間Tnが長くなりすぎるとくびれ検出の誤検出の可能性が高くなり、この状態で電流を急減させると却って溶接状態が不安定になる。したがって、くびれ検出時間Tnが適正値(数百μs)になることは、くびれ検出の誤検出もなくアーク再発生時の電流値も低くなるので、スパッタが大幅に減少する。上述した従来技術については、特許文献1〜2を参照のこと。   In the above-described constriction detection control method, it is important to accurately detect the occurrence of constriction. One of the important factors that determine the accuracy of the squeezing detection is whether the squeezing detection reference value rt is set to an appropriate value. The appropriate value of the squeezing detection reference value rt varies depending on welding conditions such as the welding method, the type of welding wire, and the wire feed speed. For this reason, it is necessary to perform a welding test in advance for each of various welding conditions to obtain an appropriate value. Conventionally, a method for automatically setting the squeezing detection reference value rt has been proposed. In this prior art, the squeezing detection reference value rt is automatically set so that the squeezing detection time Tn described above with reference to FIG. If the squeezing detection time Tn is too short, the arc is regenerated before the welding current Iw can be lowered to a low value, and the spatter reduction effect is reduced. Conversely, if the squeezing detection time Tn becomes too long, the possibility of false detection of squeezing detection increases, and if the current is rapidly reduced in this state, the welding state becomes unstable. Therefore, when the squeezing detection time Tn becomes an appropriate value (several hundreds of μs), there is no false detection of squeezing detection, and the current value at the time of arc re-generation becomes low, so that sputtering is greatly reduced. See Patent Documents 1 and 2 for the related art described above.

特開昭59−206159号公報JP 59-206159 A 特開平1−205875号公報JP-A-1-205875

上述した図4(D)に示すように、時刻t21にくびれ検出信号NdがHighレベルになる直前の抵抗値変化率Δrの上昇曲線P1は、同図(C)に示す溶接電流Iwの変化曲線P2によって大きく影響される。これは、上昇曲線P1はくびれの進行に伴い上昇し、くびれは通電電流値によって進行速度が大きく影響されるためである。電流変化曲線P2の増加率が大きいほどくびれの進行速度は速くなり、上昇曲線P1は急上昇する。逆に、電流変化曲線P2の増加率がマイナス(減少)になると、くびれの進行速度が遅くなり、上昇曲線P1は緩やかに上昇する。従来技術によってくびれ検出時間Tnが適正値になるようにくびれ検出基準値rtを設定しても、くびれ発生時の溶接電流Iwの変化に影響されてくびれ検出時間Tnがバラツクことになる。これは、従来技術では前回の短絡期間におけるくびれ検出時間Tnによってくびれ検出基準値rtを決定するが、今回の短絡期間中の電流変化に影響されてくびれ検出時間Tnが変化するためである。この短絡期間中の溶接電流の変化は、インバータ制御溶接電源でも生じるが、特にリップルの大きいサイリスタ位相制御溶接電源では大きくなる。したがって、サイリスタ位相制御溶接電源では特に、くびれ検出時間Tnのバラツキが大きくなり、スパッタ削減効果が小さくなるという問題があった。   As shown in FIG. 4D, the rising curve P1 of the resistance value change rate Δr immediately before the squeezing detection signal Nd becomes high level at time t21 is a change curve of the welding current Iw shown in FIG. It is greatly influenced by P2. This is because the ascending curve P1 rises as the constriction progresses, and the constriction speed is greatly affected by the current value. The larger the rate of increase of the current change curve P2, the faster the constriction speed, and the ascending curve P1 rises rapidly. On the contrary, when the increase rate of the current change curve P2 becomes minus (decrease), the speed of constriction progresses and the ascending curve P1 rises gently. Even if the squeezing detection reference value rt is set so that the squeezing detection time Tn becomes an appropriate value according to the conventional technique, the squeezing detection time Tn varies due to a change in the welding current Iw when the squeezing occurs. This is because, in the prior art, the squeezing detection reference value rt is determined by the squeezing detection time Tn in the previous short-circuit period, but the squeezing detection time Tn changes due to the current change during the short-circuit period. This change in the welding current during the short-circuit period also occurs in the inverter-controlled welding power source, but becomes large particularly in a thyristor phase-controlled welding power source having a large ripple. Therefore, the thyristor phase control welding power source has a problem that the variation in the squeezing detection time Tn becomes large and the effect of reducing the spatter becomes small.

図6は、上述した溶接電流の変化に伴うくびれ検出時間Tnのバラツキを示す波形図である。同図は上述した図4と対応している。同図(C)に示すように、くびれ発生時の電流変化曲線P4の増加率が大きいために、同図(D)に示すように、抵抗値変化率Δrの上昇曲線P3の増加率が速くなる。このために、抵抗値変化率Δrがくびれ検出基準値rtに達した直後にアークが再発生する。この結果、同図(C)に示すように、溶接電流Iwを急減させる時間がなくスパッタを減少させることができない。逆に、くびれ発生時の電流変化が減少状態にあるときは、くびれ検出時間Tnが長くなりすぎて溶接状態が不安定になる場合が生じる。   FIG. 6 is a waveform diagram showing variation in the squeezing detection time Tn accompanying the above-described change in the welding current. This figure corresponds to FIG. 4 described above. As shown in FIG. 10C, the rate of increase in the current change curve P4 at the occurrence of constriction is large. Therefore, as shown in FIG. Become. For this reason, the arc is regenerated immediately after the resistance value change rate Δr reaches the squeezing detection reference value rt. As a result, as shown in FIG. 5C, there is no time for rapidly reducing the welding current Iw, and it is not possible to reduce spatter. On the contrary, when the current change at the time of occurrence of the constriction is in a decreasing state, the constriction detection time Tn becomes too long and the welding state may become unstable.

そこで、本発明は、くびれ発生時の電流変化に影響されることなく正確なくびれ検出を行うことができる消耗電極アーク溶接のくびれ検出制御方法を提供する。   Therefore, the present invention provides a constriction detection control method for consumable electrode arc welding that can accurately detect constriction without being affected by a change in current when the constriction occurs.

上述した課題を解決するために、第1の発明は、消耗電極と母材との間でアーク発生状態と短絡状態とを繰り返す消耗電極アーク溶接にあって、短絡状態からアークが再発生する前兆現象である溶滴のくびれ現象を消耗電極・母材間の抵抗値の変化が予め定めたくびれ検出基準値に達したことによって検出し、このくびれ現象を検出すると短絡負荷に通電する溶接電流を急減させて低電流値の状態てアークが再発生するように出力制御する消耗電極アーク溶接のくびれ検出制御方法において、
前記短絡状態中の前記溶接電流の変化率に応じて前記くびれ検出基準値を修正する、ことを特徴とする消耗電極アーク溶接のくびれ検出制御方法である。
In order to solve the above-described problems, a first invention is a consumable electrode arc welding in which an arc generation state and a short circuit state are repeated between a consumable electrode and a base material, and a sign that an arc is regenerated from the short circuit state. The phenomenon of droplet constriction, which is a phenomenon, is detected when the change in the resistance value between the consumable electrode and the base material reaches a predetermined squeezing detection reference value. In the constriction detection control method for consumable electrode arc welding, the output is controlled so that the arc is regenerated in a state where the current is rapidly reduced and the current is low.
The constriction detection control method for consumable electrode arc welding, wherein the constriction detection reference value is corrected in accordance with a rate of change of the welding current during the short circuit state.

また、第2の発明は、第1の発明記載のくびれ検出基準値の修正は、前記溶接電流を微分して電流微分値を算出し、前記くびれ検出基準値からこの電流微分値を減算する修正である、ことを特徴とする消耗電極アーク溶接のくびれ検出制御方法である。   In the second invention, the squeezing detection reference value described in the first invention is corrected by differentiating the welding current to calculate a current differential value and subtracting the current differential value from the squeezing detection reference value. This is a constriction detection control method for consumable electrode arc welding.

上記の本発明によれば、くびれを検出するためのくびれ検出基準値を溶接電流の変化率に応じて修正することによって、くびれ発生時の溶接電流の変化に起因するくびれ検出精度の低下を補償して高精度なくびれ検出を実現することができる。このために、溶接電流の変化(リップル)の大きなサイリスタ位相制御電源に適用する場合、特に大きなくびれ検出精度の向上を図ることができる。くびれ検出精度が向上すると、アーク再発生時の電流値を確実に低い値にすることができるので、スパッタ発生が大幅に減少して溶接品質が大きく向上する。   According to the present invention described above, the squeezing detection reference value for detecting the squeezing is corrected according to the change rate of the welding current, thereby compensating for a decrease in squeezing detection accuracy caused by a change in the welding current when the squeezing occurs. As a result, it is possible to realize a highly accurate necking detection. For this reason, when applied to a thyristor phase control power supply with a large change (ripple) in the welding current, it is possible to improve the accuracy of detecting a particularly large neck. When the accuracy of detecting the neck is improved, the current value at the time of arc re-occurrence can be surely lowered, so that the occurrence of spatter is greatly reduced and the welding quality is greatly improved.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態に係る消耗電極アーク溶接のくびれ検出制御方法を示す波形図である。同図(A)はくびれ検出信号Ndの、同図(B)は溶接電圧Vwの、同図(C)は溶接電流Iwの、同図(D)は抵抗値変化率Δr及びくびれ検出基準算出値rtcの時間変化を示す。同図において上述した図4と異なる点について説明する。   FIG. 1 is a waveform diagram showing a constriction detection control method for consumable electrode arc welding according to an embodiment of the present invention. (A) of the figure shows the squeezing detection signal Nd, (B) shows the welding voltage Vw, (C) shows the welding current Iw, (D) shows the resistance value change rate Δr and squeezing detection reference calculation. The time change of the value rtc is shown. Differences from FIG. 4 will be described.

同図(D)に示すくびれ検出基準算出値rtcは、rtc=rt−G・(dIw/dt)によって算出される。ここで、rtは予め定めたくびれ検出基準値であり、dIw/dtは溶接電流Iwの微分値であり、Gは正の増幅率である。同図(D)に示すように、くびれが発生すると抵抗値変化率Δrは上昇する。このとき、同図(C)に示すように、溶接電流Iwの変化が増加方向であるために、電流微分値G・(dIw/dt)>0となり、くびれ検出基準算出値rtc<rtとなる。すなわち、くびれ検出レベルが低くなる。この結果、時刻t21において、同図(A)に示すように、くびれ検出信号NdがHighレベルになる。これに応動して、同図(C)に示すように、溶接電流Iwが急減し、アーク再発生時の電流値は低くなる。同図は上述した図6のときと同様にくびれ発生時の溶接電流Iwが大きく増加している場合であるが、本実施の形態では正確にくびれ検出を行うことができている。   The squeezing detection reference calculation value rtc shown in FIG. 4D is calculated by rtc = rt−G · (dIw / dt). Here, rt is a predetermined squeezing detection reference value, dIw / dt is a differential value of the welding current Iw, and G is a positive amplification factor. As shown in FIG. 4D, when the constriction occurs, the resistance value change rate Δr increases. At this time, as shown in FIG. 6C, since the change in the welding current Iw is in the increasing direction, the current differential value G · (dIw / dt)> 0 and the squeezing detection reference calculated value rtc <rt. . That is, the constriction detection level is lowered. As a result, at time t21, as shown in FIG. 9A, the squeezing detection signal Nd becomes High level. In response to this, the welding current Iw decreases rapidly as shown in FIG. This figure shows the case where the welding current Iw at the time of occurrence of the constriction increases as in the case of FIG. 6 described above, but the constriction detection can be accurately performed in this embodiment.

図2は、上述した図1とは異なりくびれ発生時の電流変化が減少状態にあるときの波形図である。同図(C)に示すように、くびれ発生時の溶接電流Iwの変化は、図1とは異なり減少方向にある。このために、電流微分値G・(dIw/dt)<0となり、同図(D)に示すように、くびれ検出基準算出値rtc>rtとなる。上述したように、溶接電流Iwの変化が減少方向にあるときは、くびれの進行速度も遅くなる。このために、くびれ検出基準算出値rtcをくびれ検出基準値rtよりも高くすることで、くびれ検出タイミングを遅らせてくびれ検出時間Tnがほぼ適正値になるようにしている。   FIG. 2 is a waveform diagram when the current change at the time of occurrence of the constriction is in a decreasing state, unlike FIG. 1 described above. As shown in FIG. 1C, the change in the welding current Iw when constriction occurs is in a decreasing direction unlike FIG. For this reason, the current differential value G · (dIw / dt) <0, and the squeezing detection reference calculated value rtc> rt as shown in FIG. As described above, when the change in the welding current Iw is in the decreasing direction, the progress speed of the constriction also becomes slow. For this reason, by setting the squeezing detection reference calculated value rtc higher than the squeezing detection reference value rt, the squeezing detection timing is delayed so that the squeezing detection time Tn becomes substantially an appropriate value.

図1及び図2で上述したように、くびれ発生時の溶接電流Iwの変化率に応じてくびれ検出基準算出値rtcを修正することによって、溶接電流Iwの変化の影響を受けることなく常に正確なくびれ検出を行うことができる。これは、図1及び図2のくびれ検出時間Tnが、電流変化が異なるにも係わらず略一定値であることから明らかである。この結果、スパッタ発生を大幅に減少させて高品質な溶接が可能となる。   As described above with reference to FIGS. 1 and 2, by correcting the squeezing detection reference calculation value rtc in accordance with the rate of change of the welding current Iw when squeezing occurs, it is always accurate without being affected by the change in the welding current Iw. Constriction detection can be performed. This is apparent from the fact that the squeezing detection time Tn in FIGS. 1 and 2 is a substantially constant value even though the current change is different. As a result, spatter generation is greatly reduced, and high-quality welding is possible.

図3は、上述した消耗電極アーク溶接のくびれ検出制御方法を実施するための溶接装置のブロック図である。同図において上述した図5と同一ブロックには同一符号を付してそれらの説明は省略する。以下、図5とは異なる点線で示すブロックについて説明する。   FIG. 3 is a block diagram of a welding apparatus for implementing the above-described constriction detection control method for consumable electrode arc welding. In the figure, the same blocks as those in FIG. 5 described above are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, blocks indicated by dotted lines different from those in FIG. 5 will be described.

電流微分回路BIは、電流検出信号Idを微分して、電流微分信号Bi=G・(dIw/dt)を出力する。ここで、Gは予め定めた正の増幅率である。くびれ検出基準算出回路RTCは、予め定めたくびれ検出基準値rtからこの電流微分信号Biを減算して、くびれ検出基準算出値信号rtc=rt−Biを出力する。このくびれ検出基準算出値信号rtcをしきい値としてくびれ検出を行う。   The current differentiating circuit BI differentiates the current detection signal Id and outputs a current differential signal Bi = G · (dIw / dt). Here, G is a predetermined positive amplification factor. The squeezing detection reference calculation circuit RTC subtracts the current differential signal Bi from a predetermined squeezing detection reference value rt, and outputs a squeezing detection reference calculation value signal rtc = rt−Bi. Constriction detection is performed using the squeezing detection reference calculated value signal rtc as a threshold value.

上記においては、くびれ発生時の電流変化率によってくびれ検出基準算出値を修正する方法として、電流微分信号を減算する方法を例示した。これ以外にも、電流変化率をその値に応じて数段階に分け、この数段階に対応させたくびれ検出基準算出値を予め定めておく方法でも良い。   In the above, the method of subtracting the current differential signal is exemplified as a method of correcting the squeezing detection reference calculation value based on the current change rate at the time of occurrence of squeezing. In addition to this, the current change rate may be divided into several stages according to the value, and a squeezing detection reference calculation value corresponding to the several stages may be determined in advance.

本発明の実施の形態に係る消耗電極アーク溶接のくびれ検出制御方法を示す波形図である。It is a wave form diagram which shows the constriction detection control method of the consumable electrode arc welding which concerns on embodiment of this invention. 本発明の実施の形態に係る消耗電極アーク溶接のくびれ検出制御方法を示す図1とは異なる波形図である。It is a wave form diagram different from FIG. 1 which shows the constriction detection control method of the consumable electrode arc welding which concerns on embodiment of this invention. 本発明の実施の形態に係る消耗電極アーク溶接のくびれ検出制御方法を実施するための溶接装置のブロック図である。It is a block diagram of the welding apparatus for implementing the constriction detection control method of the consumable electrode arc welding which concerns on embodiment of this invention. 従来技術の消耗電極アーク溶接のくびれ検出制御方法を示す波形図である。It is a wave form diagram which shows the constriction detection control method of the consumable electrode arc welding of a prior art. 従来技術の消耗電極アーク溶接のくびれ検出制御方法を実施するための溶接装置のブロック図である。It is a block diagram of the welding apparatus for implementing the constriction detection control method of consumable electrode arc welding of a prior art. 従来技術の課題を示す波形図である。It is a wave form diagram which shows the subject of a prior art.

符号の説明Explanation of symbols

1 溶接ワイヤ
1a 溶滴
1b くびれ
2 母材
2a 溶融池
3 アーク
BI 電流微分回路
Bi 電流微分信号
DR 駆動回路
Dr 駆動信号
G 増幅率
ID 電流検出回路
Id 電流検出信号
Iw 溶接電流
ND くびれ検出回路
Nd くびれ検出信号
P1、P3 上昇曲線
P2、P4 電流変化曲線
PS 溶接電源
R 抵抗器
r 消耗電極・母材間の抵抗値
rt くびれ検出基準値
RTC くびれ検出基準算出回路
rtc くびれ検出基準算出値(信号)
Ta アーク期間
Tn くびれ検出時間
TR トランジスタ
Ts 短絡期間
VD 電圧検出回路
Vd 電圧検出信号
Vw 溶接電圧
ΔR 抵抗値変化率算出回路
Δr 抵抗値変化率(信号)

1 welding wire 1a droplet 1b constriction 2 base material 2a molten pool 3 arc BI current differentiation circuit Bi current differentiation signal DR drive circuit Dr drive signal G gain ID current detection circuit Id current detection signal Iw welding current ND constriction detection circuit Nd Detection signal P1, P3 Ascending curve P2, P4 Current change curve PS Welding power supply R Resistor r Resistance value between consumable electrode and base material rt Constriction detection reference value RTC Constriction detection standard calculation circuit rtc Constriction detection standard calculation value (signal)
Ta Arc period Tn Constriction detection time TR Transistor Ts Short circuit period VD Voltage detection circuit Vd Voltage detection signal Vw Welding voltage ΔR Resistance value change rate calculation circuit Δr Resistance value change rate (signal)

Claims (2)

消耗電極と母材との間でアーク発生状態と短絡状態とを繰り返す消耗電極アーク溶接にあって、短絡状態からアークが再発生する前兆現象である溶滴のくびれ現象を消耗電極・母材間の抵抗値の変化が予め定めたくびれ検出基準値に達したことによって検出し、このくびれ現象を検出すると短絡負荷に通電する溶接電流を急減させて低電流値の状態てアークが再発生するように出力制御する消耗電極アーク溶接のくびれ検出制御方法において、
前記短絡状態中の前記溶接電流の変化率に応じて前記くびれ検出基準値を修正する、ことを特徴とする消耗電極アーク溶接のくびれ検出制御方法。
In consumable electrode arc welding where the arc generation state and short circuit state are repeated between the consumable electrode and the base material, the constriction phenomenon of droplets, which is a precursor to the arc re-occurring from the short circuit state, is observed between the consumable electrode and the base material. This is detected when the resistance value of the coil reaches a predetermined squeezing detection reference value, and when this squeezing phenomenon is detected, the welding current applied to the short-circuit load is rapidly reduced so that the arc is regenerated with a low current value. In the constriction detection control method of consumable electrode arc welding that controls the output to
A constriction detection control method for consumable electrode arc welding, wherein the constriction detection reference value is corrected in accordance with a rate of change of the welding current during the short circuit state.
請求項1記載のくびれ検出基準値の修正は、前記溶接電流を微分して電流微分値を算出し、前記くびれ検出基準値からこの電流微分値を減算する修正である、ことを特徴とする消耗電極アーク溶接のくびれ検出制御方法。

The squeezing detection reference value correction according to claim 1, wherein the squeezing detection reference value is a correction for differentiating the welding current to calculate a current differential value and subtracting the current differential value from the squeezing detection reference value. Neck detection control method for electrode arc welding.

JP2005263140A 2005-09-12 2005-09-12 Constriction detection control method for consumable electrode arc welding Active JP4739874B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005263140A JP4739874B2 (en) 2005-09-12 2005-09-12 Constriction detection control method for consumable electrode arc welding
CN2006101281690A CN1931499B (en) 2005-09-12 2006-09-06 Necking detection control method for melting electrode arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263140A JP4739874B2 (en) 2005-09-12 2005-09-12 Constriction detection control method for consumable electrode arc welding

Publications (2)

Publication Number Publication Date
JP2007075827A true JP2007075827A (en) 2007-03-29
JP4739874B2 JP4739874B2 (en) 2011-08-03

Family

ID=37877596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263140A Active JP4739874B2 (en) 2005-09-12 2005-09-12 Constriction detection control method for consumable electrode arc welding

Country Status (2)

Country Link
JP (1) JP4739874B2 (en)
CN (1) CN1931499B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148819A (en) * 2007-11-26 2009-07-09 Daihen Corp Method for detecting/controlling constriction in consumable electrode arc welding
KR20140141458A (en) * 2013-05-30 2014-12-10 가부시키가이샤 다이헨 Constriction detection control method of welding power supply
US10821535B2 (en) 2017-03-16 2020-11-03 Lincoln Global, Inc. Short circuit welding using self-shielded electrode

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214399A (en) * 2009-03-16 2010-09-30 Daihen Corp Arc welding method
JP2010253530A (en) * 2009-04-28 2010-11-11 Daihen Corp Method of detecting/controlling constriction in consumable electrode arc welding
CN102233470B (en) * 2010-04-26 2014-12-31 株式会社大亨 Necking detection and control method of melting electrode and electric arc welding
JP5851798B2 (en) * 2011-10-28 2016-02-03 株式会社ダイヘン Current control method for constriction detection in consumable electrode arc welding
CN102601492B (en) * 2012-03-02 2015-05-27 深圳麦格米特电气股份有限公司 Arc-welding molten drop necking formation detection method and control method after necking formation
US9616514B2 (en) 2012-11-09 2017-04-11 Lincoln Global, Inc. System and method to detect droplet detachment
JP6134601B2 (en) * 2013-07-23 2017-05-24 株式会社ダイヘン Necking detection control method for welding power source
CN106124567B (en) * 2016-07-14 2019-06-11 成都信息工程大学 Resistance pluridifferentiation method necking down detection method in arc welding
CN113063162B (en) * 2021-04-08 2022-05-10 安徽汉先智能科技有限公司 Electronic ignition control system for ball welding type bonding machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202170A (en) * 1983-04-28 1984-11-15 Shinko Electric Co Ltd Controlling method of welding power source
JPH01205875A (en) * 1988-02-10 1989-08-18 Kobe Steel Ltd Method and device for controlling consumable electrode arc welding
JPH02179360A (en) * 1988-12-29 1990-07-12 Matsushita Electric Ind Co Ltd Consumable electrode arc welding equipment
JPH02187270A (en) * 1989-01-17 1990-07-23 Matsushita Electric Ind Co Ltd Consumable electrode arc welding output controller
JPH03281063A (en) * 1990-03-28 1991-12-11 Kobe Steel Ltd Method for controlling output of welding power source
JPH03281064A (en) * 1990-03-28 1991-12-11 Kobe Steel Ltd Method for controlling output of welding power source
JPH06142924A (en) * 1992-11-02 1994-05-24 Daihen Corp Short circuiting transfer type arc welding power unit
JP2004268095A (en) * 2003-03-10 2004-09-30 Yaskawa Electric Corp Control method for arc welding machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459919A (en) * 1966-04-19 1969-08-05 Union Carbide Corp Multiarc torch energizing method and apparatus
US4954691A (en) * 1986-12-10 1990-09-04 The Lincoln Electric Company Method and device for controlling a short circuiting type welding system
CN1063120C (en) * 1997-07-05 2001-03-14 天津大学 Method for detecting formation of necking down during molten drop short-circuit transfer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202170A (en) * 1983-04-28 1984-11-15 Shinko Electric Co Ltd Controlling method of welding power source
JPH01205875A (en) * 1988-02-10 1989-08-18 Kobe Steel Ltd Method and device for controlling consumable electrode arc welding
JPH02179360A (en) * 1988-12-29 1990-07-12 Matsushita Electric Ind Co Ltd Consumable electrode arc welding equipment
JPH02187270A (en) * 1989-01-17 1990-07-23 Matsushita Electric Ind Co Ltd Consumable electrode arc welding output controller
JPH03281063A (en) * 1990-03-28 1991-12-11 Kobe Steel Ltd Method for controlling output of welding power source
JPH03281064A (en) * 1990-03-28 1991-12-11 Kobe Steel Ltd Method for controlling output of welding power source
JPH06142924A (en) * 1992-11-02 1994-05-24 Daihen Corp Short circuiting transfer type arc welding power unit
JP2004268095A (en) * 2003-03-10 2004-09-30 Yaskawa Electric Corp Control method for arc welding machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148819A (en) * 2007-11-26 2009-07-09 Daihen Corp Method for detecting/controlling constriction in consumable electrode arc welding
KR20140141458A (en) * 2013-05-30 2014-12-10 가부시키가이샤 다이헨 Constriction detection control method of welding power supply
KR102105720B1 (en) * 2013-05-30 2020-04-28 가부시키가이샤 다이헨 Constriction detection control method of welding power supply
US10821535B2 (en) 2017-03-16 2020-11-03 Lincoln Global, Inc. Short circuit welding using self-shielded electrode

Also Published As

Publication number Publication date
JP4739874B2 (en) 2011-08-03
CN1931499A (en) 2007-03-21
CN1931499B (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4739874B2 (en) Constriction detection control method for consumable electrode arc welding
JP4875390B2 (en) Constriction detection control method for consumable electrode arc welding
JP4875311B2 (en) Current control method for constriction detection in consumable electrode arc welding
US8809736B2 (en) Arc welding method and arc welding apparatus
JP4857163B2 (en) Consumable electrode type gas shielded arc welding control apparatus and welding control method
JP2006263757A (en) Method for controlling arc length in pulse arc welding
JP4907892B2 (en) Constriction detection control method for consumable electrode arc welding
WO2006129388A1 (en) Pulse arc welding control method and pulse arc welding device
JP4965311B2 (en) Constriction detection control method for consumable electrode AC arc welding
JPWO2017169899A1 (en) Arc welding control method
JP5808947B2 (en) Constriction detection control method for consumable electrode arc welding
JP2009125760A (en) Arc welding method and arc welding equipment
JP2000000669A (en) Pulse output control method, and consumable electrode type pulse arc welding equipment
JP2006305584A (en) Method for controlling completion of consumable electrode arc welding
US20220055136A1 (en) Arc welding method and arc welding device
JP7499433B2 (en) Arc welding method and arc welding device
JP2006026718A (en) Method for detecting/controlling constriction in consumable electrode arc welding
JP2015217409A (en) Arc-welding control method, and arc welding apparatus
JP2008105095A (en) Output control method for pulsed arc welding
JP4545483B2 (en) Welding power supply and welding equipment with current suddenly decreasing function when detecting constriction
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP3736065B2 (en) Output control device for consumable electrode arc welding machine
JPH08267239A (en) Output control method of power source for consumable electrode type gas shielded pulsed arc welding
JP4847082B2 (en) Welding power supply with current suddenly decreasing function when detecting constriction
JP4663309B2 (en) Arc length control method for pulse arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Ref document number: 4739874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250