JP2004268095A - Control method for arc welding machine - Google Patents

Control method for arc welding machine Download PDF

Info

Publication number
JP2004268095A
JP2004268095A JP2003063006A JP2003063006A JP2004268095A JP 2004268095 A JP2004268095 A JP 2004268095A JP 2003063006 A JP2003063006 A JP 2003063006A JP 2003063006 A JP2003063006 A JP 2003063006A JP 2004268095 A JP2004268095 A JP 2004268095A
Authority
JP
Japan
Prior art keywords
welding
voltage
arc
current
welding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003063006A
Other languages
Japanese (ja)
Other versions
JP4725762B2 (en
JP2004268095A5 (en
Inventor
Seigo Nishikawa
清吾 西川
Seiichiro Fukushima
誠一郎 福島
Takahide Hirayama
卓秀 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003063006A priority Critical patent/JP4725762B2/en
Publication of JP2004268095A publication Critical patent/JP2004268095A/en
Publication of JP2004268095A5 publication Critical patent/JP2004268095A5/ja
Application granted granted Critical
Publication of JP4725762B2 publication Critical patent/JP4725762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method to realize a stable short-circuit type welding even by using a welding machine with a small DC reactor. <P>SOLUTION: In the control method of the arc welding machine which is equipped with a current detector to detect an output current and a voltage detector to detect an output voltage, and performs welding based on the preset welding voltage value, a current change rate is calculated (S2) based on the output current value(S1) detected by the current detector during an arcking period. A welding voltage command value is corrected based on the current change rate so that the current change rate becomes small(S4, S5) and then the arc welding machine is controlled according to the welding voltage command value. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、交流電流を整流して直流とし、その出力をインバータ回路により高周波交流とし変圧器により適宜変圧した後に整流回路にて直流とする方式のアーク溶接機の改良に関する。
【0002】
【従来の技術】
従来のアーク溶接機の出力制御では、検出された溶接電圧値と所定の電圧値である溶接電圧設定値を誤差増幅し、その出力信号により溶接出力を制御しており、以下、図5を用いて説明する。
図5は従来のアーク溶接機の構成を示す図で、電源6に第1整流部7の入力側を接続し、この第1整流部7の整流出力側にスイッチング部8の入力側を接続している。そして、スイッチング部8の出力側と主変圧器9の一次側を接続し、主変圧器9の二次側は第2整流部10の入力側に接続し、この第2整流部10の出力側の一方に直流リアクタ11の一端を接続し、この直流リアクタ11の他端と第2整流部10の出力側の他方の間に溶接電圧検出部5を並列接続している。
この直流リアクタ11の他端と第2整流部10の出力側の他方は溶接出力として出力され、直流リアクタ11の他端からワイヤ送給装置13とトーチ14を介してワイヤ15へ通電し、第2整流部10の出力側の他方は母材12に接続し、このワイヤ15と母材12間でアーク溶接を行うようにしていた。なお、溶接電圧検出部5からの信号を平滑すること無く、制限部1に取り込み、加算部2で溶接電圧司令部4からのデータと加算し、スイッチング部8に出力している(例えば、特許文献1)。
【0003】
【特許文献1】
特開2002−248573号公報
【0004】
【発明が解決しようとする課題】
従来の制御方式は、溶接電流、及び、溶接電圧をゆるやかに変化させる大きな直流リアクトル11が回路にあることを前提にした制御方式であり、例えば、回路の直流リアクトルが20μHのような小さな場合は、正常な制御を行うことができない問題点があった。
また、従来の短絡型のアーク溶接機では、溶接電流、及び、溶接電圧をゆるやかに変化させる大きな直流リアクトル11、例えば、30μH以上の直流リアクトル11が付いていることが前提となっている。
しかしながら、大きな直流リアクトル11が付くと、アークスタート時の電流変化も阻害されてアークスタート不良となりやすく、また、急峻な電流変化を要求するパルス溶接も行うことができない。また、通常の短絡溶接においても、大きな直流リアクトル11が付くと短絡からアークに切り換わる瞬間に直流リアクトルに蓄えられた大きな電流が流れるため、例えば極薄板のように、大きな電流を嫌うワークの溶接は、不可能であるという問題があった。
【0005】
そこで、本発明はこのような問題点に鑑みてなされたものであり、20μH以下の小さな直流リアクトルを有する溶接機でも安定した短絡型溶接を実現する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記問題を解決するため、本発明は、次のように制御したのである。
本発明の請求項1記載のアーク溶接機の制御方法は、出力電流を検出する電流検出器と出力電圧を検出する電圧検出器とを備え、予め設定された溶接電圧値に基づいて溶接を行うアーク溶接機の制御方法において、アーク期間中に前記電流検出器で検出した出力電流値に基づいて電流変化率を計算し、前記電流変化率に基づいて前記電流変化率が小さくなるように溶接電圧指令値を補正し、前記溶接電圧指令値に基づいてアーク溶接機を制御することを特徴とするものである。
本発明の請求項2記載のアーク溶接機の制御方法は、短絡解放後の所定の時間は前記電流変化率に基づいて前記溶接電圧指令値の補正を行はないことを特徴とするものである。
本発明の請求項3記載のアーク溶接機の制御方法は、出力電流を検出する電流検出器と出力電圧を検出する電圧検出器とを備え、予め設定された溶接電圧値に基づいて溶接を行うアーク溶接機の制御方法において、アーク期間中の出力電圧を設定する溶接電圧指令値として、指数関数カーブで変化する溶接電圧指令値を作成し、前記溶接電圧指令値に基づいて溶接を行うことを特徴とするものである。
本発明の請求項4記載のアーク溶接機の制御方法は、アーク発生前の短絡期間の長さ、溶接材料、ワークの種類、板厚、シールドガスの種類に応じて、前記指数関数カーブの定数を変化させることを特徴とするものである。
本発明の請求項5記載のアーク溶接機の制御方法は、アーク期間中の出力電圧を逐次PID制御でフィードバック制御することを特徴とするものである。
本発明の請求項6記載のアーク溶接機の制御方法は、前記PID制御は、出力電圧を増大させる時の制御速度を速く、出力電圧を減少させる時の制御速度を遅くすることを特徴とするものである。
本発明の請求項7記載のアーク溶接機の制御方法は、前記指数関数カーブの定数と前記出力電圧とに基づいて短絡またはアークの期間を判定することを特徴とするものである。
【0007】
【発明の実施の形態】
以下、本発明の具体的実施例を図に基づいて説明する。
(第1実施例)
第2図及び第3図に本発明のブロック図を示す。図2は、アーク溶接機の構成図であり、図3は、本発明の構成図の電流制御回路17の説明図である。図2に基づいて、構成を説明する。交流電源6から入力された交流電流は、整流回路7にて直流電流に整流される。直流電流をインバータ回路8で高周波交流に変換し、トランス9は、これをアーク溶接に適した電圧に変換する。次に図3に基づいて、電流制御回路17の構成を説明する。アーク時の出力の電流値は、電流検出器16で検出され、デジタルシグナルプロセッサ18に読み込まれる。デジタルシグナルプロセッサ18では、アナログ入力された溶接電流値をA/D変換器20を介して、デジタル値に変換する。通常、溶接電流値は、ホール素子やシャントにより、一定割合のアナログ値に変換される。たとえば、1000Aは、10Vというアナログ電圧に変換され、A/D変換器20に入力される。A/D変換器20は、デジタルシグナルプロセッサ18に予め設定されたプログラムによって、一定周期の割り込み処理により、A/D変換器20の出力をバッファリングする。
【0008】
このように、デジタル値に変換された電流値は、メモリ22内に格納される。こうして、変換された電流値は、デジタルシグナルプロセッサ18のタイマ機能により、時系列的に処理することが可能となる。ここで、変換された電流値Inとt時間前に検出した電流値I(n−t)より、時間当たりの電流値変化α=(In−I(n−t))/tを求める。この電流値の変化αを小さくするために、αが正に大の場合は、負の電圧を、αが負に大の場合は、正の電圧を、溶接指令電圧に加える。
つまり、溶接指令電圧=指令電圧−a*αとなる。
aは、実験的に求められる定数であり、電流値変化を緩やかにする場合は、大きな定数を設定する。アーク時の指令電圧に(−a*α)電圧を加えると電流値は穏やかな変化となるが、アーク時に短絡が発生し、この短絡が開放した直後から、(−a*α)電圧を加えると短絡が開放した瞬間の高い電流から通常のアーク時の電流に戻るまでの時間がかかり、動作が発振的になるため、所定の時間(数百マイクロ秒)は、この−a*α電圧は加えない。
以上で説明した処理をフローチャートで図1に示す。
図1のS1では、出力電流を入力する。S2では、S1で入力された出力電流の時系列データから、電流変化率を求める。S3では、変化率の大小を比較する。S4では、電流変化率が正の場合には、負の電圧を加算する。S5では、電流変化率が負の場合には、正の電圧を加算する。
【0009】
(第2実施例)
デジタルシグナルプロセッサ18では、アーク期間中の指令電圧として、指数関数を用いたカーブで指令を行う。
指数関数は、Y(指令電圧値)=a・b+c 0<a<1 で表すことができる。指数関数で表される指令電圧は、電流変化を小さくする前記−a*αと重畳されて、溶接指令電圧となる。指数関数で表される指令電圧は、アーク発生前の短絡期間の長さ、溶接材料、シールドガスの種類により、a、b、cは、異なる値が設定される。
例えば、アーク発生前の短絡期間が長い場合は、熱量不足であるため、入熱を大きくするために、a、b、cに大きな値を設定する。しかし、単純にアーク発生前の短絡期間に比例してa、b、cを変化させると、アーク長が常に変動して不安定となるため、同一溶接区間中では、a、cは、ほとんど固定し、bをアーク発生前の短絡期間に強い相関を持たせて変化させている。溶接材料として、ステンレスを適用した場合、ステンレスは凸型ビードに生り易い為、短絡からアークになった直後に熱を入れて、できるだけフラットなビードを形成する必要がある。このように短絡からアークの瞬時に熱を入れるためには、aを小さくし、bを大きくして、短絡からアークになった直後の電圧だけ大きくして、後は急激に小さくなるようにする。
【0010】
また、極薄板を対象に溶接を行う場合は、アーク熱をできるだけ入れ無く、かつ、短絡回数を多くして溶接を安定させる必要があるため、aを大きく、bを小さく、cを小さくして、低いアーク電圧で、かつ、短絡を促進するアーク電圧の角度をつける。例えば、シールドガスにCO2ガスを用いた場合、特に低い電流域でアーク長を長くするとアーク切れになりやすいため、aを大きくし、bを小さくして、短絡からアークになった瞬間の電圧を高くしないことで、アーク長を短く保つ。例えば、シールドガスにArガスを用いて、スプレー移行のような状態にして、スパッタを少なくする時には、aを小さくし、bを大きくして、短絡からアークになった瞬間の電圧を高くして、アーク長を長く保つ。
【0011】
本発明のハード構成図第2図では、パルス溶接性、アークスタート性、制御性を考慮し、直流リアクトル11を20μH以下に設定している。直流リアクトル11が小さいため直流リアクトルの出力電圧に対する影響が小さいと、図4に示すように、指令電圧波形と出力電圧波形はほぼ同じになる。前記ハードで出力電圧波形を指数関数カーブで変化させるために、アーク期間中の出力電圧を逐次PID制御でフィードバックしている。PID制御とは、P:比例ゲイン、I:積分ゲイン、D:差分ゲインに基づいて、アーク期間中の指令電圧と出力電圧を等しくする制御をしている。
また、PID制御でアーク電圧をフィードバックしている時に、溶融プール内のガス爆発等によりワイヤ先端が飛び、突然アーク長が異常に長くなった時は、フィードバックのアーク電圧が高くなるため、指令の電圧は低くなる。この時に急速に指令電圧を低くすると、アーク長に対するアーク電圧が不足してアーク切れを引き起こす。このため、PID制御は、アーク電圧を低く制御する時は、制御速度を遅くし、アーク電圧を高く制御する時は、制御速度を速くしている。この方式として、例えば、通常は、指令電圧の幅を0V〜40Vとして、PID制御を行っているのを、12V〜40Vとして、アーク電圧が高くなり急速に下げようとしても制御の最低電圧を12Vとすることでアークが切れるような小さな電圧になることを防止している。短絡とアークを繰り返すアーク溶接において、アーク電圧を指数関数カーブで制御する本発明では、短絡状態とアーク状態の判定が重要である。
【0012】
本発明では、Y(指令電圧値)=a・b+c(0<a<1)≒出力電圧になる。また、出力電圧が下がる場合には、速いPID制御を行い出力電圧を一定に保つように制御している。このため、cを下回る電圧状態は、短絡状態である。フィードバック電圧Vf < c − 3V(通常、cは20V〜30Vなので、明らかに下回る状態と判定するオフセット電圧は、2V〜10Vとなる)のフィードバック電圧の時に短絡と判定される。
【発明の効果】
以上述べたように、本発明のアーク溶接機の制御方法では、メインの電流回路の直流リアクトルが小さい溶接機で性能の高い溶接ができる効果があり、直流リアクトルが小さいことにより、アークスタート性の向上、パルス溶接が1台の溶接機で実現することができるという効果もある。
【図面の簡単な説明】
【図1】本発明のフローチャート
【図2】本発明のブロック図
【図3】制御部17の詳細
【図4】電流、電圧、波形指令カーブ
【図5】従来例の図
【符号の説明】
1 制限部
2 加算部
3 短絡・アーク判定部
4 溶接電圧指令部
5 溶接電圧検出部
6 商用電源
7 第1整流部
8 スイッチング(インバータ部)
9 主変圧器
10 第2整流部
11 直流リアクトル
12 母材
13 ワイヤ送給装置
14 トーチ
15 ワイヤ
16 電流検出部
17 制御部
18 デジタルシグナルプロセッサ
19 電圧A/D
20 電流A/D
21 演算部
22 メモリ
23 ドライバーへの指令生成
24 インバータ駆動用ドライバー
25 上位CPU
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in an arc welding machine that rectifies an alternating current into a direct current, converts the output into a high-frequency alternating current by an inverter circuit, appropriately transforms the output by a transformer, and then converts the output into a direct current by a rectifying circuit.
[0002]
[Prior art]
In output control of a conventional arc welding machine, a detected welding voltage value and a welding voltage set value which is a predetermined voltage value are error-amplified, and the welding output is controlled by the output signal. Will be explained.
FIG. 5 is a diagram showing a configuration of a conventional arc welding machine. An input side of a first rectifying unit 7 is connected to a power source 6, and an input side of a switching unit 8 is connected to a rectifying output side of the first rectifying unit 7. ing. The output side of the switching unit 8 is connected to the primary side of the main transformer 9, the secondary side of the main transformer 9 is connected to the input side of the second rectifier 10, and the output side of the second rectifier 10 One end of the DC reactor 11 is connected to one of the DC reactors 11, and the welding voltage detector 5 is connected in parallel between the other end of the DC reactor 11 and the other output side of the second rectifier 10.
The other end of the DC reactor 11 and the other of the output side of the second rectifier 10 are output as welding output, and the other end of the DC reactor 11 is energized to the wire 15 through the wire feeding device 13 and the torch 14, The other of the output sides of the two rectifiers 10 is connected to the base material 12, and arc welding is performed between the wire 15 and the base material 12. Note that the signal from the welding voltage detecting unit 5 is taken into the limiting unit 1 without smoothing, added to the data from the welding voltage command unit 4 by the adding unit 2, and output to the switching unit 8 (for example, see Patent Reference 1).
[0003]
[Patent Document 1]
JP 2002-248573 A
[Problems to be solved by the invention]
The conventional control method is a control method on the assumption that a large DC reactor 11 for gradually changing the welding current and the welding voltage is present in the circuit. For example, when the DC reactor of the circuit is as small as 20 μH, However, there is a problem that normal control cannot be performed.
Further, in the conventional short-circuit type arc welding machine, it is premised that a large DC reactor 11 for gradually changing a welding current and a welding voltage, for example, a DC reactor 11 of 30 μH or more is provided.
However, when the large DC reactor 11 is attached, a change in current at the time of arc start is hindered, and arc start failure is likely to occur, and pulse welding that requires a steep current change cannot be performed. Also, in normal short-circuit welding, when a large DC reactor 11 is attached, a large current stored in the DC reactor flows at the moment of switching from a short circuit to an arc. Had the problem that it was impossible.
[0005]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a method for realizing stable short-circuit welding even in a welding machine having a small DC reactor of 20 μH or less.
[0006]
[Means for Solving the Problems]
To solve the above problem, the present invention controls as follows.
According to a first aspect of the present invention, there is provided a method for controlling an arc welding machine, comprising a current detector for detecting an output current and a voltage detector for detecting an output voltage, and performing welding based on a preset welding voltage value. In the method for controlling an arc welding machine, a current change rate is calculated based on an output current value detected by the current detector during an arc period, and the welding voltage is set so that the current change rate is reduced based on the current change rate. A command value is corrected, and the arc welding machine is controlled based on the welding voltage command value.
According to a second aspect of the present invention, there is provided a method for controlling an arc welding machine, wherein the welding voltage command value is not corrected based on the current change rate for a predetermined time after the short circuit is released. .
A method for controlling an arc welding machine according to a third aspect of the present invention includes a current detector for detecting an output current and a voltage detector for detecting an output voltage, and performs welding based on a preset welding voltage value. In the method for controlling an arc welding machine, as a welding voltage command value for setting an output voltage during an arc period, a welding voltage command value that changes in an exponential function curve is created, and welding is performed based on the welding voltage command value. It is a feature.
The method for controlling an arc welding machine according to claim 4 of the present invention is characterized in that the exponential function curve constant is set according to the length of the short-circuit period before the occurrence of an arc, the welding material, the type of the work, the plate thickness, and the type of the shielding gas. Is changed.
According to a fifth aspect of the present invention, there is provided a method for controlling an arc welding machine, wherein an output voltage during an arc period is sequentially feedback-controlled by PID control.
The control method of an arc welding machine according to claim 6 of the present invention is characterized in that, in the PID control, the control speed when increasing the output voltage is increased, and the control speed when decreasing the output voltage is decreased. Things.
According to a seventh aspect of the invention, there is provided a method for controlling an arc welding machine, wherein a short circuit or an arc period is determined based on a constant of the exponential function curve and the output voltage.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
2 and 3 show block diagrams of the present invention. FIG. 2 is a configuration diagram of the arc welding machine, and FIG. 3 is an explanatory diagram of the current control circuit 17 of the configuration diagram of the present invention. The configuration will be described based on FIG. The AC current input from the AC power supply 6 is rectified by the rectifier circuit 7 into a DC current. The DC current is converted into high-frequency AC by the inverter circuit 8, and the transformer 9 converts the DC current into a voltage suitable for arc welding. Next, the configuration of the current control circuit 17 will be described with reference to FIG. The current value of the output at the time of the arc is detected by the current detector 16 and read into the digital signal processor 18. The digital signal processor 18 converts an analog input welding current value into a digital value via an A / D converter 20. Normally, the welding current value is converted to a constant percentage of analog value by a Hall element or a shunt. For example, 1000 A is converted to an analog voltage of 10 V and input to the A / D converter 20. The A / D converter 20 buffers the output of the A / D converter 20 by a predetermined period of interrupt processing according to a program preset in the digital signal processor 18.
[0008]
As described above, the current value converted into the digital value is stored in the memory 22. Thus, the converted current value can be processed in time series by the timer function of the digital signal processor 18. Here, a current value change per time α = (In−I (nt)) / t is obtained from the converted current value In and the current value I (nt) detected t times before. In order to reduce the change α in the current value, a negative voltage is added to the welding command voltage when α is positively large, and a positive voltage is applied when α is negatively large.
That is, welding command voltage = command voltage−a * α.
a is a constant that is experimentally obtained, and a large constant is set when the change in the current value is made gentle. When the voltage (−a * α) is added to the command voltage at the time of the arc, the current value changes gently, but a short circuit occurs at the time of the arc, and immediately after the short circuit is released, the voltage (−a * α) is applied. It takes time to return from the high current at the moment when the short circuit is released to the current at the time of normal arc, and the operation becomes oscillating. For a predetermined time (several hundred microseconds), this -a * α voltage is Do not add.
The processing described above is shown in the flowchart of FIG.
In S1 of FIG. 1, an output current is input. In S2, a current change rate is obtained from the time-series data of the output current input in S1. In S3, the magnitudes of the change rates are compared. In S4, if the current change rate is positive, a negative voltage is added. In S5, when the current change rate is negative, a positive voltage is added.
[0009]
(Second embodiment)
The digital signal processor 18 issues a command using a curve using an exponential function as the command voltage during the arc period.
Exponential function can be expressed by Y (command voltage value) = a x · b + c 0 <a <1. The command voltage represented by an exponential function is superimposed on the -a * α for reducing the current change, and becomes a welding command voltage. The command voltage represented by the exponential function has different values for a, b, and c depending on the length of the short circuit period before the occurrence of an arc, the type of the welding material, and the type of the shielding gas.
For example, if the short-circuit period before the occurrence of an arc is long, the amount of heat is insufficient, so that large values are set for a, b, and c to increase the heat input. However, if a, b, and c are simply changed in proportion to the short circuit period before the occurrence of the arc, the arc length always fluctuates and becomes unstable. Therefore, in the same welding section, a and c are almost fixed. However, b is changed so as to have a strong correlation with the short-circuit period before the occurrence of the arc. When stainless steel is used as a welding material, stainless steel is likely to be formed in a convex bead. Therefore, it is necessary to form heat as soon as possible by applying heat immediately after an arc is formed from a short circuit. As described above, in order to apply heat instantaneously from the short-circuit to the arc, a is decreased, b is increased, the voltage is increased just after the short-circuit becomes an arc, and the voltage is rapidly decreased thereafter. .
[0010]
Further, when performing welding on an ultra-thin plate, it is necessary to stabilize the welding by increasing the number of short circuits as much as possible without applying the arc heat, so that a is increased, b is decreased, and c is decreased. The angle of the arc voltage is low and the arc voltage promotes a short circuit. For example, when CO2 gas is used as the shielding gas, the arc is likely to break when the arc length is increased particularly in a low current range. Therefore, the voltage a at the moment when a short-circuit becomes an arc is increased by increasing a and decreasing b. Keep the arc length short by not setting it high. For example, when Ar gas is used as a shielding gas and a state like a spray transfer is used to reduce spatters, a is reduced, b is increased, and the voltage at the moment when a short-circuit becomes an arc is increased. , Keep the arc length long.
[0011]
In FIG. 2 of the hardware configuration diagram of the present invention, the DC reactor 11 is set to 20 μH or less in consideration of the pulse weldability, the arc startability, and the controllability. If the DC reactor 11 is small and the influence on the output voltage of the DC reactor is small, the command voltage waveform and the output voltage waveform become almost the same as shown in FIG. In order to change the output voltage waveform with an exponential function curve by the hardware, the output voltage during the arc period is sequentially fed back by PID control. The PID control is a control for equalizing a command voltage and an output voltage during an arc period based on P: proportional gain, I: integral gain, and D: differential gain.
In addition, when the arc voltage is fed back by the PID control, the tip of the wire flies due to gas explosion in the molten pool or the like, and when the arc length suddenly becomes abnormally long, the feedback arc voltage increases. The voltage will be lower. At this time, if the command voltage is rapidly lowered, the arc voltage with respect to the arc length becomes insufficient and the arc breaks. For this reason, in the PID control, when the arc voltage is controlled to be low, the control speed is reduced, and when the arc voltage is controlled to be high, the control speed is increased. As this method, for example, normally, the width of the command voltage is set to 0 V to 40 V, and the PID control is performed. The control voltage is set to 12 V to 40 V. By doing so, it is prevented that the voltage becomes small enough to cut off the arc. In the present invention in which the arc voltage is controlled by an exponential function curve in the arc welding in which the short circuit and the arc are repeated, it is important to determine the short circuit state and the arc state.
[0012]
In the present invention, Y (command voltage value) = ax × b + c (0 <a <1) ≒ output voltage. When the output voltage decreases, fast PID control is performed to control the output voltage to be constant. Therefore, a voltage state lower than c is a short-circuit state. A short circuit is determined when the feedback voltage is Vf <c-3V (usually, since c is 20 V to 30 V, the offset voltage for determining that the voltage is clearly lower is 2 V to 10 V).
【The invention's effect】
As described above, the arc welding machine control method of the present invention has an effect that high-performance welding can be performed by a welding machine having a small DC reactor of a main current circuit, and the small DC reactor has an effect of arc start. There is also an effect that the improvement and the pulse welding can be realized by one welding machine.
[Brief description of the drawings]
FIG. 1 is a flowchart of the present invention. FIG. 2 is a block diagram of the present invention. FIG. 3 is a diagram showing details of a control unit 17. FIG. 4 is a current, voltage, and waveform command curve.
REFERENCE SIGNS LIST 1 limiter 2 adder 3 short circuit / arc determiner 4 welding voltage commander 5 welding voltage detector 6 commercial power supply 7 first rectifier 8 switching (inverter)
9 Main transformer 10 Second rectifier 11 DC reactor 12 Base material 13 Wire feeder 14 Torch 15 Wire 16 Current detector 17 Controller 18 Digital signal processor 19 Voltage A / D
20 Current A / D
Reference Signs List 21 arithmetic unit 22 memory 23 command generation to driver 24 inverter driving driver 25 host CPU

Claims (7)

出力電流を検出する電流検出器と出力電圧を検出する電圧検出器とを備え、予め設定された溶接電圧値に基づいて溶接を行うアーク溶接機の制御方法において、
アーク期間中に前記電流検出器で検出した出力電流値に基づいて電流変化率を計算し、
前記電流変化率に基づいて前記電流変化率が小さくなるように溶接電圧指令値を補正し、
前記溶接電圧指令値に基づいてアーク溶接機を制御することを特徴とするアーク溶接機の制御方法。
A method for controlling an arc welding machine that includes a current detector that detects an output current and a voltage detector that detects an output voltage, and performs welding based on a welding voltage value set in advance.
Calculate the current change rate based on the output current value detected by the current detector during the arc period,
Correcting the welding voltage command value so that the current change rate is reduced based on the current change rate,
An arc welding machine control method, comprising controlling an arc welding machine based on the welding voltage command value.
短絡解放後の所定の時間は前記電流変化率に基づいて前記溶接電圧指令値の補正を行はないことを特徴とする請求項1記載のアーク溶接機の制御方法。2. The control method for an arc welding machine according to claim 1, wherein the welding voltage command value is not corrected based on the current change rate for a predetermined time after the short circuit is released. 出力電流を検出する電流検出器と出力電圧を検出する電圧検出器とを備え、予め設定された溶接電圧値に基づいて溶接を行うアーク溶接機の制御方法において、
アーク期間中の出力電圧を設定する溶接電圧指令値として、指数関数カーブで変化する溶接電圧指令値を作成し、
前記溶接電圧指令値に基づいて溶接を行うことを特徴とするアーク溶接機の制御方法。
A method for controlling an arc welding machine that includes a current detector that detects an output current and a voltage detector that detects an output voltage, and performs welding based on a welding voltage value set in advance.
As a welding voltage command value to set the output voltage during the arc period, create a welding voltage command value that changes in an exponential function curve,
A method for controlling an arc welding machine, wherein welding is performed based on the welding voltage command value.
アーク発生前の短絡期間の長さ、溶接材料、ワークの種類、板厚、シールドガスの種類に応じて、前記指数関数カーブの定数を変化させることを特徴とする請求項3記載のアーク溶接機の制御方法。The arc welding machine according to claim 3, wherein the constant of the exponential function curve is changed according to the length of a short circuit period before the occurrence of an arc, a welding material, a type of a work, a plate thickness, and a type of a shielding gas. Control method. 出力電流を検出する電流検出器と出力電圧を検出する電圧検出器とを備え、予め設定された溶接電圧値に基づいて溶接を行うアーク溶接機の制御方法において、
アーク期間中の出力電圧を逐次PID制御でフィードバック制御することを特徴とするアーク溶接機の制御方法。
A method for controlling an arc welding machine that includes a current detector that detects an output current and a voltage detector that detects an output voltage, and performs welding based on a welding voltage value set in advance.
A method for controlling an arc welding machine, wherein an output voltage during an arc period is sequentially feedback-controlled by PID control.
前記PID制御は、出力電圧を増大させる時の制御速度を速く、出力電圧を減少させる時の制御速度を遅くすることを特徴とする請求項5記載のアーク溶接機の制御方法。The method according to claim 5, wherein in the PID control, the control speed when increasing the output voltage is increased and the control speed when decreasing the output voltage is decreased. 前記指数関数カーブの定数と前記出力電圧とに基づいて短絡またはアークの期間を判定することを特徴とする請求項5乃至6記載のアーク溶接機の制御方法。7. The control method for an arc welding machine according to claim 5, wherein a short circuit or an arc period is determined based on a constant of the exponential function curve and the output voltage.
JP2003063006A 2003-03-10 2003-03-10 Control method of arc welder Expired - Lifetime JP4725762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063006A JP4725762B2 (en) 2003-03-10 2003-03-10 Control method of arc welder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063006A JP4725762B2 (en) 2003-03-10 2003-03-10 Control method of arc welder

Publications (3)

Publication Number Publication Date
JP2004268095A true JP2004268095A (en) 2004-09-30
JP2004268095A5 JP2004268095A5 (en) 2006-03-16
JP4725762B2 JP4725762B2 (en) 2011-07-13

Family

ID=33124707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063006A Expired - Lifetime JP4725762B2 (en) 2003-03-10 2003-03-10 Control method of arc welder

Country Status (1)

Country Link
JP (1) JP4725762B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075827A (en) * 2005-09-12 2007-03-29 Daihen Corp Method of detecting/controlling constriction in consumable electrode arc welding
CN102179597A (en) * 2011-04-07 2011-09-14 上海威特力焊接设备制造股份有限公司 Arc stabilizer of AC argon arc welding machine
CN102962548A (en) * 2012-11-22 2013-03-13 上海广为拓浦电源有限公司 Pulse arc-stabilizing device of inverting alternating-current square-wave argon tungsten-arc welding machine
CN103084711A (en) * 2012-12-21 2013-05-08 上海广为拓浦电源有限公司 Double-contravariant alternating square wave argon tungsten-arc welder
KR20140011276A (en) * 2012-07-18 2014-01-28 가부시키가이샤 다이헨 Power control method of welding source
JP2014037004A (en) * 2012-07-18 2014-02-27 Daihen Corp Output control method for welding power source
CN103962686A (en) * 2014-04-25 2014-08-06 深圳麦格米特电气股份有限公司 Consumable electrode electric arc welding droplet necking detection method
CN111069737A (en) * 2018-10-19 2020-04-28 伊利诺斯工具制品有限公司 System and method for voltage control of short circuits during pulse welding process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266178A (en) * 1985-05-20 1986-11-25 Hitachi Seiko Ltd Power source for arc welding
JPH07116839A (en) * 1993-10-25 1995-05-09 Sansha Electric Mfg Co Ltd Consumable electrode dc arc welding machine
JP2004523368A (en) * 2001-04-20 2004-08-05 テヒニーシェ ウニヴェルシテート ベルリン Method used in gas shielded metal arc welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266178A (en) * 1985-05-20 1986-11-25 Hitachi Seiko Ltd Power source for arc welding
JPH07116839A (en) * 1993-10-25 1995-05-09 Sansha Electric Mfg Co Ltd Consumable electrode dc arc welding machine
JP2004523368A (en) * 2001-04-20 2004-08-05 テヒニーシェ ウニヴェルシテート ベルリン Method used in gas shielded metal arc welding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075827A (en) * 2005-09-12 2007-03-29 Daihen Corp Method of detecting/controlling constriction in consumable electrode arc welding
CN102179597A (en) * 2011-04-07 2011-09-14 上海威特力焊接设备制造股份有限公司 Arc stabilizer of AC argon arc welding machine
KR20140011276A (en) * 2012-07-18 2014-01-28 가부시키가이샤 다이헨 Power control method of welding source
JP2014037004A (en) * 2012-07-18 2014-02-27 Daihen Corp Output control method for welding power source
KR102099984B1 (en) * 2012-07-18 2020-04-10 가부시키가이샤 다이헨 Power control method of welding source
CN102962548A (en) * 2012-11-22 2013-03-13 上海广为拓浦电源有限公司 Pulse arc-stabilizing device of inverting alternating-current square-wave argon tungsten-arc welding machine
CN103084711A (en) * 2012-12-21 2013-05-08 上海广为拓浦电源有限公司 Double-contravariant alternating square wave argon tungsten-arc welder
CN103084711B (en) * 2012-12-21 2015-04-29 上海广为焊接设备有限公司 Double-contravariant alternating square wave argon tungsten-arc welder and control method thereof
CN103962686A (en) * 2014-04-25 2014-08-06 深圳麦格米特电气股份有限公司 Consumable electrode electric arc welding droplet necking detection method
CN111069737A (en) * 2018-10-19 2020-04-28 伊利诺斯工具制品有限公司 System and method for voltage control of short circuits during pulse welding process
CN111069737B (en) * 2018-10-19 2023-05-26 伊利诺斯工具制品有限公司 System and method for voltage control of short circuits during pulse welding process

Also Published As

Publication number Publication date
JP4725762B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US8080763B2 (en) Method of controlling arc welding and welding apparatus
EP2251132B1 (en) Ac pulse arc welding method
KR102124223B1 (en) Output control method of pulse arc welding
US20160346864A1 (en) Arc welding method
JP2007075827A (en) Method of detecting/controlling constriction in consumable electrode arc welding
JP2010000539A (en) Output control method in pulse arc welding
JP6524412B2 (en) Arc welding control method
JP2004268095A (en) Control method for arc welding machine
CN108890081B (en) Method and apparatus for stabilizing arc length
US9770777B2 (en) Arc welding apparatus, arc welding method, arc welding system, and welded article
JP4946785B2 (en) Arc welding control method and arc welding apparatus
JP6994623B2 (en) Arc start method
JP2005313179A (en) Welding method interchanging dc arc welding and pulse arc welding and controlling heat input
JPS6316868A (en) Low electric current welding method
JPS60223661A (en) Arc welding method
JP4459768B2 (en) AC pulse arc welding welding current control method
JP5082665B2 (en) Arc welding control method and arc welding machine
JP2016128186A (en) Output control method for pulse arc welding
JPS60223662A (en) Arc welding method
JP4850638B2 (en) Polarity switching short-circuit arc welding method
US20230249274A1 (en) Arc welding control method
JP2804382B2 (en) Plasma processing equipment
KR102338734B1 (en) Output control method of alternating pulse arc welding
JPS58224070A (en) Arc welding
JPS60177963A (en) Arc welding method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4725762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

EXPY Cancellation because of completion of term