JPS6064774A - Method for controlling current of welding accompanying short-circuit transfer - Google Patents

Method for controlling current of welding accompanying short-circuit transfer

Info

Publication number
JPS6064774A
JPS6064774A JP7664783A JP7664783A JPS6064774A JP S6064774 A JPS6064774 A JP S6064774A JP 7664783 A JP7664783 A JP 7664783A JP 7664783 A JP7664783 A JP 7664783A JP S6064774 A JPS6064774 A JP S6064774A
Authority
JP
Japan
Prior art keywords
current
short
electrode wire
consumable electrode
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7664783A
Other languages
Japanese (ja)
Inventor
Naoki Takeuchi
竹内 直記
Takaaki Ogasawara
小笠原 隆明
Tokuji Maruyama
徳治 丸山
Sadao Nakanishi
中西 貞夫
Yoshihiro Nakajima
中島 良浩
Hitoshi Kono
等 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinko Electric Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Electric Co Ltd filed Critical Kobe Steel Ltd
Priority to JP7664783A priority Critical patent/JPS6064774A/en
Publication of JPS6064774A publication Critical patent/JPS6064774A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To enable continuous operation for long time and to improve working efficiency by increasing the current of a consumable electrode wire to the current larger than a short-circuit current when the contraction of a droplet is not detected upon lapse of specified time after start of a short-circuit period. CONSTITUTION:The contraction of the droplet of a consumable electrode wire is detected at the end period of a short-circuit and the short-circuit current is decreased to decrease generation of spatter in welding accompanying short-circuit transfer. The short-circuit current is increased to prevent the consumable electrode wire from sticking to the base material when the contraction of the droplet is not detected for the specified time or longer in the short-circuit period. The failure of arc generation is thus prohibited during repetition of the short- circuit and the arc and the arc is smoothly started.

Description

【発明の詳細な説明】 技術分野 この発明はショートアーク溶接やグロビュール溶接等の
短絡移行を伴なう溶接に用いる電源の制御方法特に溶接
ワイヤ電流の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for controlling a power source used in welding involving short-circuit transition such as short arc welding and globule welding, and particularly to a method for controlling a welding wire current.

短絡移行を伴なう溶接は消耗電極ワイヤと溶接母材との
間に短絡とアーク発生をくり返すことにより特徴づけら
れるものである。
Welding with short circuit transition is characterized by repeated short circuits and arcing between the consumable electrode wire and the weld base metal.

第1図は上述の短絡移行溶接時における消耗電極ワイヤ
電圧波形、電流波形ならひに消耗電極ワイヤ10と母材
11との間の位置関係を示したものであり、各図におい
て、a、b、c、d、eはそれぞれの溶接状態を示す。
FIG. 1 shows the positional relationship between the consumable electrode wire 10 and the base material 11, as well as the voltage waveform and current waveform of the consumable electrode wire during short-circuit transition welding, and in each figure, a, b , c, d, and e indicate the respective welding states.

即ちアーク発生中3から徐々にアーク長が短かくなり、
短絡すに至る。
That is, the arc length gradually becomes shorter from 3 during arc generation,
This will lead to a short circuit.

このとき電流を上昇させて、ある一定値に保持する。溶
滴が最も強固に、母材10,11に結合した時点Cを経
過した後、消耗電極ワイヤ1oの先端がくびれ始めたd
点後、溶接電流を急激に低下させて、電流が充分に低下
した時点eにてアーク再生に移行する。
At this time, the current is increased and held at a certain constant value. After the point C when the droplets are most firmly bonded to the base materials 10 and 11, the tip of the consumable electrode wire 1o begins to constrict d
After this point, the welding current is rapidly lowered, and at a point e when the current has sufficiently decreased, arc regeneration begins.

この種の溶接に用いられる従来の溶接電源装置によれば
、第1図に示されるように、溶滴が溶融プールに接触す
る短絡初期からアークが再生する時点まで、電流はb”
、C”、d“、e”に示すように増加する。
According to the conventional welding power supply used in this type of welding, as shown in FIG.
, C", d", and e".

この短絡が破れアークが発生する時点eにおいて、スパ
ッタが発生することが知られており、時点Cの電流が高
い程、スパッタの発生量が多くなることも明らかになっ
ている。これは溶接ワイヤの浪費を招き、スパッタの除
去作業に多大な時間を要するだけでなく、トーチノズル
内部にも入り込み、究極的にこれを詰まらせることにな
る。
It is known that spatter occurs at time e when this short circuit is broken and an arc occurs, and it has also been revealed that the higher the current at time C, the more spatter is generated. This not only results in waste of welding wire and requires a great deal of time to remove the spatter, but also causes the spatter to get inside the torch nozzle and ultimately clog it.

動作特性への影響を与えずにスパッタを減少させる方法
として、アーク再生直前に短絡電流を下げる方法が提案
されている。この制御によると溶滴移行の瞬間は低電流
レベルにある訳であり、溶滴移行を電磁力効果で完了さ
せるには不十分で、代わって溶滴移行には表面張力2重
力が大きく寄与することになる。この方法はスパッタを
減少させることについてはある程度の効果はあったが、
溶接トーチと母材間の距離やワイヤ送給速度、溶接速度
などの急変に対しての考慮が不十分でこれらが変動した
場合は不安定であった。即ち、第2図において、d’、
d”の溶滴にくびれが生じる短絡後期からe、e″のア
ーク発生にいたる過程で前述の外乱が影響して消耗電極
ワイヤ先端の溶融部が離脱しきれずあるいは消耗電極ワ
イヤの未溶融部までが溶融プールに入り込んでしまうこ
ともあり、消耗電極ワイヤが母材に溶着してしまったり
してアーク再生にいたらず、溶接を中断することを余儀
なくされる場合も生じるという欠点があった。
As a method of reducing spatter without affecting the operating characteristics, a method of lowering the short-circuit current immediately before arc regeneration has been proposed. According to this control, the instant of droplet transfer is at a low current level, which is insufficient for the electromagnetic force effect to complete the droplet transfer, and instead surface tension and gravity contribute greatly to droplet transfer. It turns out. Although this method was effective to some extent in reducing spatter,
Sudden changes in the distance between the welding torch and the base metal, wire feeding speed, welding speed, etc. were not sufficiently considered, and the process was unstable if these changed. That is, in FIG. 2, d',
In the process from the late stage of the short circuit when the droplet at d'' becomes constricted to the arc generation at e and e'', the above-mentioned disturbance affects the molten part at the tip of the consumable electrode wire, or even the unmelted part of the consumable electrode wire. There are also disadvantages in that the consumable electrode wire may get into the molten pool, and the consumable electrode wire may become welded to the base metal, preventing arc regeneration and forcing the welding to be interrupted.

発明の目的 この発明は上述の種々の欠点を除くためになされたもの
であって、短絡移行を伴う溶接において、スパッタの発
生を確実に減少させるとともに、アーク再生の失敗を防
ぎ、溶接中断の回数を低減させ得る溶接電源の制御方法
を提供することを目的とするものである。
Purpose of the Invention The present invention was made in order to eliminate the various drawbacks mentioned above, and it is possible to reliably reduce the occurrence of spatter in welding involving short-circuit transition, prevent arc regeneration failure, and reduce the number of welding interruptions. It is an object of the present invention to provide a control method for a welding power source that can reduce the

発明の概要 本発明は、特に第2図のd’、d”におけるアーク再生
の前兆である溶滴のくびれを検出し、このくびれ検出に
応答して消耗電極ワイヤの電流を下げ、る一方、短絡期
間に入ってから一定時間後にくびれが発生しないとき、
短絡電流を増加させる。この増加させた短絡電流は一定
値であっても、また時間とともに増加するものであって
もよい。
SUMMARY OF THE INVENTION The present invention detects droplet constriction, which is a precursor to arc regeneration, particularly at d', d'' in FIG. When constriction does not occur after a certain period of time after entering the short circuit period,
Increase short circuit current. This increased short circuit current may be a constant value or may increase over time.

実施例 以下にこの発明の一実施例を図面とともに説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

第3図において、101は溶接電源、1o3は消耗電極
ワイヤであって、この消耗電極ワイヤ103は図示しな
いモータによって所定の速度制御を受けながら溶接トー
チ104を通って母材106の方に送給される。トーチ
104の先端からは公知のようにシールドガスが流出し
ており、消耗電極ワイヤ103の突出部はこのシールド
ガスにより包囲されつつ母材106との間でアーク10
 ’5を発生して消耗し、溶接が行なわれる。
In FIG. 3, 101 is a welding power source, 1o3 is a consumable electrode wire, and this consumable electrode wire 103 is fed to the base material 106 through a welding torch 104 while being controlled at a predetermined speed by a motor (not shown). be done. As is well known, a shielding gas flows out from the tip of the torch 104, and the protruding portion of the consumable electrode wire 103 is surrounded by this shielding gas and forms an arc 10 between it and the base material 106.
'5 is generated and consumed, and welding is performed.

第3図において、溶接トーチ104と母材106間の電
圧■を検出する電圧検出器110の出力信号は微硲回路
113に印加され、この検出された電圧■は微分回路1
13で時間【について微分さ設定器115によって設定
された設定値と比較して電圧微分値が設定値より大とな
ったとき消耗電極ワイヤにくびれが生じたと判断して、
この比較器114は制御信号を溶接電源101に印加し
て、スイッチ120を低電流側の設定器121に切り換
えて、溶接電源101の出力電流ミしたがって消耗電極
ワイヤ103の電流を低減させる。
In FIG. 3, the output signal of a voltage detector 110 that detects the voltage between the welding torch 104 and the base metal 106 is applied to the differential circuit 113, and the detected voltage is applied to the differential circuit 1.
In step 13, the voltage differential value is compared with the set value set by the differential setter 115 with respect to time, and when the voltage differential value becomes larger than the set value, it is determined that a constriction has occurred in the consumable electrode wire,
The comparator 114 applies a control signal to the welding power source 101 and switches the switch 120 to the low current setting device 121 to reduce the output current of the welding power source 101 and thus the current in the consumable electrode wire 103.

設定器115の設定値は溶接ワイヤにくひれが生じる時
の消耗電極ワイヤと母材間の電圧値の微分値に対応して
定められる。
The setting value of the setting device 115 is determined corresponding to the differential value of the voltage value between the consumable electrode wire and the base metal when the welding wire is creased.

なお電圧の微分値■を用いる代りに消耗電極ワイヤ10
3と母材106間の抵抗Rの時間微分dR ■によって消耗電極ワイヤのくひれを検出してもよい。
Note that instead of using the voltage differential value ■, the consumable electrode wire 10
The constriction of the consumable electrode wire may be detected by the time differential dR (2) of the resistance R between the consumable electrode wire 3 and the base material 106.

なお122は溶接時の電流設定器であり、また溶接電源
101は誤差増幅器101aに電流設定器122から印
加される設定値と電流検出器112から検出される消耗
電極ワイヤ電流との偏差に応じて電力制御回路101b
の出力電流を電流設定器122で設定された値になるよ
うに制御する。
Note that 122 is a current setting device during welding, and the welding power source 101 operates according to the deviation between the set value applied from the current setting device 122 to the error amplifier 101a and the consumable electrode wire current detected by the current detector 112. Power control circuit 101b
The output current of the current setting device 122 is controlled to be the value set by the current setting device 122.

123はタイマであって電流検出器112によって消耗
電極ワイヤと母材間の短絡が検出された時間から計時を
開始し、一定時間Tl後にアークが再生していなければ
スイッチ120を設定器124に切り換えて所望の値に
増加した短絡電流を消耗電極ワイヤに供給する。
Reference numeral 123 denotes a timer that starts counting from the time when the short circuit between the consumable electrode wire and the base metal is detected by the current detector 112, and if the arc is not regenerated after a certain period of time Tl, the switch 120 is switched to the setting device 124. to supply a short circuit current increased to the desired value to the consumable electrode wire.

この短絡電流によって消耗電極ワイヤ端は溶融し、くび
れが生じてアークが再生する。
This short circuit current melts the consumable electrode wire end, creating a constriction and regenerating the arc.

上述の設定時間と増加すべき短絡電流についてさらに詳
述する。
The above-mentioned setting time and the short circuit current to be increased will be explained in more detail.

この種の溶接においては、短絡時間は一様ではなく、一
般的には1〜5 m5ec中に90〜95%が分布して
いるといわれているが、いずれにせよタイマ23の設定
時間、即ち短絡期間に入ってから短絡電流の増加を開始
するまでの基準設定時間T1は、消耗電極ワイヤが母材
に溶着するような異常事態に至らない程度の時間に任意
に設定できる。また短絡期間Tの測定開始点は消耗電極
ワイヤに印加される電圧又は電流の変化する時点ならど
こでもよい。たとえば、第4図において短絡の開始PO
から電流IsPへの切換時点p1の間ならどこでもよい
。以下の実施例ではこの短絡期間の測定開始点は短絡電
流が最低になった時点P2を用いる。
In this type of welding, the short-circuit time is not uniform, and it is generally said that 90-95% is distributed within 1-5 m5ec, but in any case, the short-circuit time is The reference setting time T1 from the start of the short-circuit period until the short-circuit current starts to increase can be arbitrarily set to a time that does not lead to an abnormal situation such as welding of the consumable electrode wire to the base material. Further, the measurement start point of the short circuit period T may be any point at which the voltage or current applied to the consumable electrode wire changes. For example, in FIG.
to the switching point p1 to the current IsP. In the following embodiments, the measurement start point for this short circuit period is the time point P2 when the short circuit current becomes the lowest.

なお時点POを用いる場合には溶滴の母材への付着状態
によって、最低電流となるタイミングが定まらない場合
があり、この最低レベルの時間を考慮しておく必要があ
る。
Note that when using the time point PO, the timing at which the current reaches the lowest level may not be determined depending on the state of adhesion of the droplet to the base material, and it is necessary to take this minimum level time into consideration.

溶接時において、短絡とアーク再生が正常に行なわれる
場合には、消耗電極ワイヤと母材との間の短絡直後に短
絡電流の印加開始と同時にタイマ23が作動を開始する
。タイマ23の基準設定時間T1の間に消耗電極ワイヤ
のくびれが土から検知されると、消耗電極ワイヤへの電
流は設定器21で設定された値に従って低下し、その後
正常にアークが発生すると、タイマ23はリセットされ
、次のアークサイクルに入る。この間の動作は第5図の
ステップ81〜S6で示されており正常時には上述の動
作がくり返される。
During welding, if the short circuit and arc regeneration are performed normally, the timer 23 starts operating immediately after the short circuit between the consumable electrode wire and the base metal and at the same time as the application of the short circuit current starts. When the constriction of the consumable electrode wire is detected from the soil during the reference setting time T1 of the timer 23, the current to the consumable electrode wire decreases according to the value set by the setting device 21, and after that, when an arc is normally generated, Timer 23 is reset and the next arc cycle begins. The operations during this time are shown in steps 81 to S6 in FIG. 5, and the above-mentioned operations are repeated during normal operation.

上述の動作において、何らかの原因で溶滴のくびれが発
生しなかったか或いは発生しても−がt 小さい場合には、タイマ23が基準設定時間T1に達す
る。そしてステップS6で溶滴のくびれが検知されなか
った場合には、ステップS7に進んてタイマ23をリセ
ットし、一方スイッチ2oを設定器124に切り換えて
、消耗電極ワイヤの電流を短絡電流”SPよりも大きい
ISP十α1tに設定する。ここでα□は定数、【は時
間であり、消耗電極ワイヤ電流は時間とともに増加する
。α□tに変えて一定値α□を短絡電流’SPに加えた
ものでよい。
In the above-described operation, if for some reason the constriction of the droplet does not occur, or even if it does occur, if - is small, the timer 23 reaches the reference setting time T1. If the constriction of the droplet is not detected in step S6, the process proceeds to step S7, where the timer 23 is reset, and the switch 2o is switched to the setting device 124, so that the current of the consumable electrode wire is lowered from the short circuit current "SP". is also set to a large ISP ten α1t. Here, α□ is a constant, [ is time, and the consumable electrode wire current increases with time. Instead of α□t, a constant value α□ is added to the short circuit current 'SP. Anything is fine.

さらにこの消耗電極ワイヤの電流増加と同時に別のタイ
マ(図示せず)を動作せしめて、基準設定増加時間L1
の間に溶滴のくびれが検出されればステップS1に戻っ
て、正常のアーク発生をする。
Furthermore, another timer (not shown) is operated at the same time as the current of the consumable electrode wire increases, and the reference setting increase time L1
If a constriction of the droplet is detected during this period, the process returns to step S1 to generate a normal arc.

一方、もし基準設定増加時間t1の間にくびれが検出さ
れなければ、ステップSllでもとの短絡電流IsPを
設定し、ステップS5に戻って、タイマ23を再作動し
て上述の動作をくり返す。
On the other hand, if no constriction is detected during the reference setting increase time t1, the original short circuit current IsP is set in step Sll, the process returns to step S5, the timer 23 is restarted, and the above-described operation is repeated.

上述の説明から明らかなように、第4図+2)に示すよ
うに短絡期間において基準設定増加時間E1内に溶滴の
くびれが発生した場合には、その後アーク期間へ移行し
、また第4図(b)に示すように、基準設定増加時間t
1が経過しても溶滴のくひれが発生しない場合には、短
絡電流’spに復帰する。
As is clear from the above explanation, if the constriction of the droplet occurs during the standard set increase time E1 during the short circuit period as shown in Figure 4+2), then the arc period will begin, and as shown in Figure 4 As shown in (b), the reference setting increase time t
If no droplet fins occur even after 1 elapses, the short circuit current returns to 'sp'.

なおかつ溶滴のくびれが発生しない場合にはステップS
5へ戻って、タイマ23のセットが行なわれ、以後ステ
ップS8で消耗電極ワイヤの電流は再び第4図(b)の
X点へ復帰して”SP+α□tで増加する。以後アーク
が再生する迄上述の動作をくり返す。
Furthermore, if no constriction of the droplet occurs, step S
Returning to step 5, the timer 23 is set, and thereafter, in step S8, the current of the consumable electrode wire returns to the point X in FIG. Repeat the above operation until.

ここで前記短絡電流IsPについて触れておくと、IS
Pそのものが直接にスパッタに与える影響はなく再アー
ク電流’RAか低レベルであるほどスパッタ発生は少な
し)。しかしながら溶接電流の経路中のインダクタンス
と抵抗により定まる時定数で電流はISPより降下して
いくため、くびれ検知からアーク発生までの時間がほぼ
一定と考えると、IsPが低いほどIRAが下がり、結
果的にISPが低い方がスパッタ発生は少ないことが知
られている。しかるに本発明の方法では特に第3図(a
)の如きではIsP+αの過程で溶滴のくびれを検知し
ており輸λ(>”RA)で再アークすることになるがか
かる例は全く時折りであって、スパッタに対して厳しく
影響を及ぼすものではない。さらにこのことは言い換え
れば全く時折りの異常発生時たけ短絡電流を上げるかわ
りに通常の場合の’SPは可能な限り低く設定すること
ができ、よりスパッタの発生を抑制できる。
Here, to touch on the short circuit current IsP, IS
P itself has no direct effect on sputtering, and the lower the re-arc current 'RA, the less spatter will be generated.) However, the current falls below the ISP with a time constant determined by the inductance and resistance in the welding current path, so if we consider that the time from waist detection to arc generation is almost constant, the lower the IsP, the lower the IRA, and as a result, It is known that the lower the ISP, the less spatter occurs. However, in the method of the present invention, especially in FIG.
), the constriction of the droplet is detected in the process of IsP+α, and re-arc occurs at transport λ(>”RA), but such cases are only occasional and have a severe effect on spatter. In other words, instead of increasing the short-circuit current only when an abnormality occurs occasionally, 'SP in the normal case can be set as low as possible, and the occurrence of spatter can be further suppressed.

なおこの発明によれば短絡後の消耗電極ワイヤへの印加
電流は一定である必要はなく、時間的に変化するものも
含まれる。
According to the present invention, the current applied to the consumable electrode wire after a short circuit does not need to be constant, and may vary over time.

発明の効果 以上詳述したようにこの発明は短絡移行を伴なう溶接に
おいて短絡終期に消耗電極ワイヤの溶滴のくびれを検出
して短絡電流を低減させるのでスパッタの発生を効果的
に低減できるとともに、短絡期間において、一定時間以
上溶滴のくひれが検出されないときは短絡電流を増大さ
せるようにしたから、消耗電極ワイヤが母材へ溶着され
るのを防止し、したがって短絡とアークとのくり返し中
にアーク再生失敗を有効に阻止し、またアークスタート
もスムーズになる。またこの結果長時間連続溶接が可能
となり、溶接作業能率の向上を図るとともに、溶接ロボ
ット作業の無人化に寄与できる。
Effects of the Invention As detailed above, the present invention detects the constriction of the droplet of the consumable electrode wire at the end of the short circuit in welding involving short circuit transition and reduces the short circuit current, thereby effectively reducing the occurrence of spatter. At the same time, during the short circuit period, if droplet fins are not detected for a certain period of time, the short circuit current is increased, which prevents the consumable electrode wire from being welded to the base metal, thereby reducing the risk of short circuits and arcs. This effectively prevents arc regeneration failure during repetition, and also makes arc start smoother. Furthermore, as a result, continuous welding for a long period of time becomes possible, which improves welding work efficiency and contributes to unmanned welding robot work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は短絡移行溶接の過程を示し、(イ)は溶滴移行
過程、(ロ)は電圧波形、(ハ)は電流波形を示す図、
第2図はアーク再生直前に電流を低下させる短絡移行溶
接の過程を示す電圧、電流波形を示す図、第3図はこの
発明の制御方法に適用される回路ので例を示すフロック
図、第4図(a) 、 (b)はこの発明の制御方法の
実施例の電圧波形および電流波形図、第5図はこの発明
の制御方法を示すフローチャートである。 101・・・溶接電源 103・・・消耗電極ワイヤ 106・・・母材 1i0・・・電圧検出器 112・・・電流検出器 114・・・比較回路 123・・・タイマ 124・・・設定器 特許出願人 株式会社 神戸製鋼所外1名代理人弁理士
青山 葆外2名 第1図 第2図 第3図 第4図
Figure 1 shows the process of short-circuit transfer welding, (a) shows the droplet transfer process, (b) shows the voltage waveform, and (c) shows the current waveform.
Fig. 2 is a diagram showing voltage and current waveforms showing the process of short-circuit transition welding that reduces the current immediately before arc regeneration, Fig. 3 is a block diagram showing an example of a circuit applied to the control method of the present invention, and Fig. 4 Figures (a) and (b) are voltage and current waveform diagrams of an embodiment of the control method of the present invention, and Fig. 5 is a flowchart showing the control method of the present invention. 101... Welding power source 103... Consumable electrode wire 106... Base material 1i0... Voltage detector 112... Current detector 114... Comparison circuit 123... Timer 124... Setting device Patent applicant: Kobe Steel, Ltd. (1 person) Patent attorney: Aoyama and Sogai (2 persons) Figure 1 Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)消耗電極ワイヤと母材との間で短絡とアーク発生
が交互に発生する短絡移行を伴なう溶接に関し、短絡時
に所定の短絡電流■spを電極ワイヤに供給し、短絡終
期に生じる消耗電極ワイヤの溶滴のくびれを検出し、こ
のくびれ検出に応答して消耗電極ワイヤの電流を低下さ
せる制御方法において、短絡期間に入ってから一定時間
経過後くびれを検知しない場合に消耗電極ワイヤの電流
を上記短絡電流IsPよりも大きい電流に増加させるこ
とを特徴とする短絡移行を伴なう溶接の電流制御方法。
(1) Regarding welding with short circuit transition in which short circuit and arc generation occur alternately between the consumable electrode wire and the base metal, a predetermined short circuit current sp is supplied to the electrode wire at the time of short circuit, and the current occurs at the end of the short circuit. In a control method that detects the constriction of a droplet of a consumable electrode wire and reduces the current of the consumable electrode wire in response to the constriction detection, if the constriction is not detected after a certain period of time after entering the short circuit period, the consumable electrode wire A current control method for welding with short circuit transition, characterized in that the current is increased to a current larger than the short circuit current IsP.
(2)<びれを検知しない場合に消耗電極ワイヤに流す
電流は時間とともに増加するものである特許請求の範囲
第1項に記載の短絡移行を伴なう溶接の電流制御方法。
(2) The current control method for welding with short-circuit transition according to claim 1, wherein the current flowing through the consumable electrode wire increases with time when no fining is detected.
(3)上記一定時間の経過後増加した電流を供給しかつ
さらにその一定時間経過後くびれを検知しない場合には
消耗電極に供給する電流を短絡電流工sPに復帰させる
ものである特許請求の範囲第1項に記載の短絡移行を伴
なう溶接の電流制御方法。
(3) The scope of the claim is that the increased current is supplied after the lapse of the above-mentioned certain period of time, and if no constriction is detected after the lapse of the certain period of time, the current supplied to the consumable electrode is returned to the short-circuit current generator sP. 2. The method of controlling a welding current with short-circuit transition according to item 1.
JP7664783A 1983-04-30 1983-04-30 Method for controlling current of welding accompanying short-circuit transfer Pending JPS6064774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7664783A JPS6064774A (en) 1983-04-30 1983-04-30 Method for controlling current of welding accompanying short-circuit transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7664783A JPS6064774A (en) 1983-04-30 1983-04-30 Method for controlling current of welding accompanying short-circuit transfer

Publications (1)

Publication Number Publication Date
JPS6064774A true JPS6064774A (en) 1985-04-13

Family

ID=13611182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7664783A Pending JPS6064774A (en) 1983-04-30 1983-04-30 Method for controlling current of welding accompanying short-circuit transfer

Country Status (1)

Country Link
JP (1) JPS6064774A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253176A (en) * 1985-05-02 1986-11-11 Matsushita Electric Ind Co Ltd Power source for arc welding
JP2004523368A (en) * 2001-04-20 2004-08-05 テヒニーシェ ウニヴェルシテート ベルリン Method used in gas shielded metal arc welding
JP2006247710A (en) * 2005-03-11 2006-09-21 Daihen Corp Electric current control method in detecting constriction in consumable electrode arc welding
JP2010214399A (en) * 2009-03-16 2010-09-30 Daihen Corp Arc welding method
JP2013501620A (en) * 2009-08-10 2013-01-17 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method of cutting short circuit during short circuit arc welding and welding apparatus for short circuit arc welding
JP2014014835A (en) * 2012-07-09 2014-01-30 Daihen Corp Constriction detection time current control method of consumable electrode arc welding
EP1940578B1 (en) 2005-09-08 2017-05-24 Kemppi Oy Method for short-arc welding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50112245A (en) * 1974-02-14 1975-09-03
JPS5829575A (en) * 1981-08-13 1983-02-21 Murase Kogyo Kk Electric power source device for welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50112245A (en) * 1974-02-14 1975-09-03
JPS5829575A (en) * 1981-08-13 1983-02-21 Murase Kogyo Kk Electric power source device for welding

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253176A (en) * 1985-05-02 1986-11-11 Matsushita Electric Ind Co Ltd Power source for arc welding
JP2004523368A (en) * 2001-04-20 2004-08-05 テヒニーシェ ウニヴェルシテート ベルリン Method used in gas shielded metal arc welding
JP4776868B2 (en) * 2001-04-20 2011-09-21 テヒニーシェ ウニヴェルシテート ベルリン Method used in gas shielded metal arc welding
JP2006247710A (en) * 2005-03-11 2006-09-21 Daihen Corp Electric current control method in detecting constriction in consumable electrode arc welding
EP1940578B1 (en) 2005-09-08 2017-05-24 Kemppi Oy Method for short-arc welding
JP2010214399A (en) * 2009-03-16 2010-09-30 Daihen Corp Arc welding method
CN101898272A (en) * 2009-03-16 2010-12-01 株式会社大亨 Arc-welding method
JP2013501620A (en) * 2009-08-10 2013-01-17 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method of cutting short circuit during short circuit arc welding and welding apparatus for short circuit arc welding
US9035218B2 (en) 2009-08-10 2015-05-19 Fronius International Gmbh Method for short-arc welding and welding device for short-arc welding
JP2014014835A (en) * 2012-07-09 2014-01-30 Daihen Corp Constriction detection time current control method of consumable electrode arc welding

Similar Documents

Publication Publication Date Title
US6933466B2 (en) Method and apparatus for arc welding with wire heat control
KR100651062B1 (en) Electric arc welder and method of electric arc welding
CN108356390B (en) Apparatus and method for welding with AC waveform
US9415457B2 (en) Method to control an arc welding system to reduce spatter
US6326591B1 (en) Method and apparatus for short arc welding
US9162308B2 (en) Apparatus and method for pulse welding with AC waveform
JP3204946U (en) Apparatus and method for welding using AC waveform
JP2006247710A (en) Electric current control method in detecting constriction in consumable electrode arc welding
CN108356388B (en) Apparatus and method for welding with AC waveform
CN108356391B (en) Apparatus and method for welding with AC waveform
JP3132409B2 (en) Consumable electrode type pulse arc welding machine controller
JPS6064774A (en) Method for controlling current of welding accompanying short-circuit transfer
JP5545996B2 (en) Constriction detection control method for consumable electrode arc welding
JPH0641026B2 (en) Welding power output control method
JP4490011B2 (en) Arc start control method
CN103269822A (en) Method to control an arc welding system to reduce spatter
JPH0328260B2 (en)
KR20040086476A (en) Two stage welder and method of operating same
JP3156032B2 (en) Consumable electrode pulse arc welding machine
JPH01299769A (en) Output control method for gas shielded arc welding power source
JPS60223661A (en) Arc welding method
JPH0641028B2 (en) 2-step pulse arc welding method
JPH0632857B2 (en) Power source for arc welding
JPS59199174A (en) Controlling method of welding current accompanying short-circuit transfer
WO2020235620A1 (en) Arc welding method and arc welding device