JP2014014835A - Constriction detection time current control method of consumable electrode arc welding - Google Patents

Constriction detection time current control method of consumable electrode arc welding Download PDF

Info

Publication number
JP2014014835A
JP2014014835A JP2012153749A JP2012153749A JP2014014835A JP 2014014835 A JP2014014835 A JP 2014014835A JP 2012153749 A JP2012153749 A JP 2012153749A JP 2012153749 A JP2012153749 A JP 2012153749A JP 2014014835 A JP2014014835 A JP 2014014835A
Authority
JP
Japan
Prior art keywords
current
constriction
value
arc
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012153749A
Other languages
Japanese (ja)
Other versions
JP5918051B2 (en
Inventor
Akihiro Ide
章博 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2012153749A priority Critical patent/JP5918051B2/en
Publication of JP2014014835A publication Critical patent/JP2014014835A/en
Application granted granted Critical
Publication of JP5918051B2 publication Critical patent/JP5918051B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the occurrence of spatter caused by vibration of a molten pool, in a constriction detection time current control method for quickly reducing a welding current by detecting constriction of a droplet in a short-circuit period.SOLUTION: When detecting the constriction of the droplet, a welding current Iw energized to a short-circuit load is reduced, and is maintained at a low constriction current value Im, and when an arc is regenerated, the welding current Iw is raised up to a high arc current value Ih from the low constriction current value Im by imparting an inclination S to the welding current Iw when a delay period Td passes. This inclination S in a front half part and a rear half par is a value different from in an intermediate part, and is set so that the inclination of the front half part and the rear half part is a value smaller than the inclination of the intermediate part. Thus, transfer to an inclination period Tu from the constriction current Im and transfer to the high arc current Ih from the inclination period Tu become smooth, and the molten pool is not vibrated when arc force is suddenly changed, so that the occurrence of spatter can be reduced.

Description

本発明は、短絡期間中に溶滴のくびれ現象を検出してアーク再発生直前に溶接電流を急減させてスパッタの発生を低減する消耗電極アーク溶接のくびれ検出時電流制御方法に関するものである。   The present invention relates to a current control method for detecting constriction in consumable electrode arc welding, in which a constriction phenomenon of droplets is detected during a short-circuit period, and the welding current is rapidly reduced just before the reoccurrence of arc to reduce the occurrence of spatter.

消耗電極(溶接ワイヤ)と母材との間でアーク発生状態と短絡状態とを繰り返す消耗電極アーク溶接にあって、短絡状態からアークが再発生する前兆現象である溶滴のくびれ現象を消耗電極・母材間の電圧値又は抵抗値の変化によって検出し、このくびれ現象を検出すると短絡負荷に通電する溶接電流を減少させて低くびれ電流値に維持し、アークが再発生するとその時点又はそれから遅延期間経過した時点で溶接電流を前記低くびれ電流値から傾斜を持たせて高アーク電流値まで上昇させてアーク負荷に通電する消耗電極アーク溶接のくびれ検出時電流制御方法が広く使用されている。この方法は、鉄鋼材料の消耗電極アーク溶接に主に適用されている。消耗電極アーク溶接としては、炭酸ガスアーク溶接、マグ溶接、パルスマグ溶接、交流パルスマグ溶接等が使用される。溶滴の移行形態としては、短絡移行形態、短絡を伴うグロビュール移行形態、短絡を伴うスプレー移行形態等に適用される。   In consumable electrode arc welding that repeats the arc generation state and short circuit state between the consumable electrode (welding wire) and the base metal, the constriction electrode of the droplet constriction phenomenon, which is a precursor to the occurrence of an arc again from the short circuit state・ Detected by changes in the voltage value or resistance value between the base metals, and when this squeezing phenomenon is detected, the welding current flowing through the short-circuit load is reduced and maintained at a low squeezing current value. A current control method at the time of constriction detection of consumable electrode arc welding in which the welding current is ramped from the low constriction current value to a high arc current value at the time when the delay period has elapsed and the arc load is energized is widely used. . This method is mainly applied to consumable electrode arc welding of steel materials. As the consumable electrode arc welding, carbon dioxide arc welding, mag welding, pulse mag welding, AC pulse mag welding, or the like is used. As a transfer form of the droplet, a short circuit transfer form, a globule transfer form with a short circuit, a spray transfer form with a short circuit, and the like are applied.

アーク期間中に形成された溶接ワイヤ先端の溶滴が母材と接触して短絡状態になると、溶滴に大電流値の短絡電流が通電する。この短絡電流によるピンチ力によって溶滴上部にくびれが発生する。そしてこのくびれが急速に進行して、溶滴は溶接ワイヤから溶融池へと離脱しアークが再発生する。このくびれ現象が発生すると、数百μs程度の極短時間後に短絡が開放されてアークが再発生する。すなわち、このくびれ現象はアーク再発生の前兆現象となる。くびれが発生すると、短絡電流の通電路がくびれ部分で狭くなるために、くびれ部分の抵抗値が増大する。この抵抗値の増大は、くびれが進行してくびれ部分がより狭くなるほど大きくなる。したがって、短絡期間中において溶接ワイヤと母材との間の抵抗値の変化を検出することでくびれ現象の発生を検出することができる。この抵抗値の変化は、溶接電圧を溶接電流で除算して算出することができる。また、くびれが発生している期間中の短絡電流が略一定値と見なせる場合には、抵抗値の変化に代えて溶接電圧の変化によってもくびれ現象の発生を検出することができる。具体的なくびれ検出方法としては、短絡期間中の抵抗値又は溶接電圧値の変化率(微分値)を算出し、この変化率が予め定めたくびれ検出基準値に達したことを判別することによってくびれ検出を行う。また、第2の方法としては、短絡期間中のくびれ発生前の安定した短絡電圧値からの電圧上昇値を検出し、この電圧上昇値が予め定めたくびれ検出基準値に達したことを判別することによってくびれ検出を行う。   When the droplet at the tip of the welding wire formed during the arc period comes into contact with the base material and is short-circuited, a short-circuit current having a large current value is passed through the droplet. Necking occurs at the top of the droplet due to the pinch force caused by this short-circuit current. And this constriction progresses rapidly, the droplets are detached from the welding wire to the molten pool, and the arc is regenerated. When this constriction occurs, the short circuit is opened after an extremely short time of about several hundreds μs, and the arc is regenerated. In other words, this constriction phenomenon is a precursor of arc reoccurrence. When the constriction occurs, the current path of the short-circuit current becomes narrow at the constricted portion, and the resistance value of the constricted portion increases. The increase in the resistance value increases as the constriction progresses and the constricted portion becomes narrower. Therefore, the occurrence of the constriction phenomenon can be detected by detecting a change in resistance value between the welding wire and the base material during the short circuit period. This change in resistance value can be calculated by dividing the welding voltage by the welding current. In addition, when the short-circuit current during the period in which the constriction occurs can be regarded as a substantially constant value, the occurrence of the constriction phenomenon can be detected by the change in the welding voltage instead of the change in the resistance value. As a specific squeezing detection method, by calculating the rate of change (differential value) of the resistance value or welding voltage value during the short circuit period, it is determined that this rate of change has reached a predetermined squeezing detection reference value. Constriction detection is performed. As a second method, a voltage rise value from a stable short-circuit voltage value before the occurrence of constriction during the short-circuit period is detected, and it is determined that the voltage rise value has reached a predetermined constriction detection reference value. Constriction detection is performed.

特許文献1の発明によれば、アーク再発生後に低くびれ電流値から高アーク電流値まで上昇させる溶接電流に予め定めた傾斜を持たせることによって、アーク力の変化をソフトにしている。このようにすると、アーク力による溶融池の振動が小さくなるので、溶融池の振動に起因するスパッタの発生を低減することができる。さらに、溶融池の振動が小さくなるので、アーク再発生直後の再短絡の発生を抑制することができる。   According to the invention of Patent Document 1, the change in the arc force is softened by giving a predetermined inclination to the welding current that is raised from the low current value to the high arc current value after the arc is regenerated. In this way, since the vibration of the molten pool due to the arc force is reduced, the generation of spatter due to the vibration of the molten pool can be reduced. Furthermore, since the vibration of the molten pool is reduced, it is possible to suppress the occurrence of a re-short circuit immediately after the arc is regenerated.

特許第4875311号公報Japanese Patent No. 4875311

上述したように、従来技術では、アーク再発生後に低くびれ電流値から高アーク電流値まで上昇させる溶接電流に予め定めた傾斜を持たせることによって、アーク力の変化をソフトにしているので、アーク力による溶融池の振動が小さくなり、溶融池の振動に起因するスパッタの発生を低減することができる。スパッタの発生をさらに一段と低減するために、アーク発生部を高速度カメラで観測すると、以下のようなことが判明した。すなわち、低くびれ電流値から高アーク電流値への溶接電流の上昇中に溶融池の振動が大きくなる一部の期間があり、その期間にスパッタが発生している。この一部の期間は、低くびれ電流値から上昇傾斜に移行した期間及び上昇傾斜から高アーク電流値へと移行した期間である。   As described above, in the prior art, the arc force change is softened by giving a predetermined slope to the welding current that is increased from a low squeezing current value to a high arc current value after the arc is regenerated. The vibration of the molten pool due to the force is reduced, and the occurrence of spatter due to the vibration of the molten pool can be reduced. In order to further reduce the generation of spatter, observation of the arc generation portion with a high-speed camera revealed the following. That is, there is a period during which the vibration of the weld pool increases during the increase in the welding current from the low current value to the high arc current value, and sputtering occurs during that period. This part of the period is a period in which the low current value shifts to a rising slope and a period in which the rising slope shifts to a high arc current value.

そこで、本発明では、アーク再発生後の低くびれ電流値から高アーク電流値への上昇傾斜中に発生するスパッタを低減することができる消耗電極アーク溶接のくびれ検出時電流制御方法を提供することを目的とする。   In view of this, the present invention provides a current control method for detecting constriction in consumable electrode arc welding that can reduce spatter generated during a rising slope from a low constriction current value to a high arc current value after arc reoccurrence. Objective.

上述した課題を解決するために、請求項1の発明は、消耗電極と母材との間でアーク発生状態と短絡状態とを繰り返す消耗電極アーク溶接にあって、短絡状態からアークが再発生する前兆現象である溶滴のくびれ現象を消耗電極・母材間の電圧値又は抵抗値の変化によって検出し、このくびれ現象を検出すると短絡負荷に通電する溶接電流を減少させて低くびれ電流値に維持し、アークが再発生するとその時点又はそれから遅延期間経過した時点で溶接電流を前記低くびれ電流値から傾斜を持たせて高アーク電流値まで上昇させてアーク負荷に通電する消耗電極アーク溶接のくびれ検出時電流制御方法において、
前記傾斜は前半部分及び後半部分は中間部分と異なる値であり、前記前半部分及び前記後半部分の傾斜が前記中間部分の傾斜よりも小さな値である、
ことを特徴とする消耗電極アーク溶接のくびれ検出時電流制御方法である。
In order to solve the above-described problem, the invention of claim 1 is consumable electrode arc welding in which an arc generation state and a short-circuit state are repeated between a consumable electrode and a base material, and the arc is regenerated from the short-circuit state. The constriction phenomenon of droplets, which is a precursor phenomenon, is detected by a change in the voltage value or resistance value between the consumable electrode and the base material, and when this constriction phenomenon is detected, the welding current flowing to the short-circuit load is reduced to lower the constriction current value. When the arc is regenerated, the welding current is ramped up from the low constriction current value to a high arc current value at that time or when a delay period has elapsed from that point, and the consumable electrode arc welding is performed. In the current control method when detecting constriction,
The inclination of the first half part and the second half part is different from that of the intermediate part, and the inclination of the first half part and the second half part is smaller than the inclination of the intermediate part.
This is a current control method for detecting constriction in consumable electrode arc welding.

請求項2の発明は、前記前半部分の傾斜は0から前記中間部分の傾斜まで連続的に変化する値であり、前記後半部分の傾斜は前記中間部分の傾斜から0まで連続的に変化する値である、
ことを特徴とする請求項1記載の消耗電極アーク溶接のくびれ検出時電流制御方法である。
According to a second aspect of the present invention, the slope of the first half portion is a value that continuously changes from 0 to the slope of the intermediate portion, and the slope of the second half portion is a value that continuously changes from the slope of the intermediate portion to 0. Is,
2. The current control method according to claim 1, wherein the constriction detection of consumable electrode arc welding is detected.

請求項3の発明は、前記前半部分、前記中間部分及び前記後半部分の期間長さが同一である、
ことを特徴とする請求項1又は請求項2記載の消耗電極アーク溶接のくびれ検出時電流制御方法である。
In the invention of claim 3, the period lengths of the first half part, the middle part and the second half part are the same.
The current control method according to claim 1 or 2, wherein the constriction detection of consumable electrode arc welding is detected.

請求項4の発明は、前記中間部分の傾斜は送給速度に応じて変化する、
ことを特徴とする請求項1〜3のいずれか1項に記載の消耗電極アーク溶接のくびれ検出時電流制御方法である。
In the invention of claim 4, the inclination of the intermediate portion changes according to the feeding speed.
The current control method for constriction detection of consumable electrode arc welding according to any one of claims 1 to 3.

本発明によれば、低くびれ電流から小さな傾斜の前半部分を経て大きな傾斜の中間部分に円滑に移行させることができる。同様に、大きな傾斜の中間部分から小さな傾斜の後半部分を経て高アーク電流に円滑に移行させることができる。このために、溶接電流の傾斜が急変することがなくなり、アーク力が急変して溶融池を振動させることがなくなるので、スパッタの発生をさらに少なくすることができる。   According to the present invention, it is possible to smoothly shift from a low current to a middle portion having a large slope through a first half portion having a small slope. Similarly, it is possible to smoothly shift from a middle portion having a large slope to a high arc current through a second half portion having a small slope. For this reason, the slope of the welding current does not change suddenly, and the arc force does not change suddenly to vibrate the molten pool, so that the generation of spatter can be further reduced.

本発明の実施の形態に係る消耗電極アーク溶接のくびれ検出時電流制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for implementing the current control method at the time of the constriction detection of consumable electrode arc welding which concerns on embodiment of this invention. 図1の溶接電源における各信号のタイミングチャートである。It is a timing chart of each signal in the welding power supply of FIG. 図2において、時刻t2〜t5の定電流特性期間における経過時間tに対する電流設定信号Irの値の変化を示す図である。In FIG. 2, it is a figure which shows the change of the value of the electric current setting signal Ir with respect to the elapsed time t in the constant current characteristic period of the time t2-t5.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態に係る消耗電極アーク溶接のくびれ検出時電流制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して、各ブロックについて説明する。   FIG. 1 is a block diagram of a welding power source for carrying out a current control method during constriction detection in consumable electrode arc welding according to an embodiment of the present invention. Hereinafter, each block will be described with reference to FIG.

電源主回路MCは、3相200V等の商用電源(図示は省略)を入力として、後述する誤差増幅信号Eaに従ってインバータ制御、チョッパー制御等の出力制御を行い、出力電圧Vo及び溶接電流Iwを出力する。トランジスタTR及び抵抗器Rの並列回路は通電路に挿入されて、後述するように、くびれ検出時にトランジスタTRがオフ状態になり抵抗器Rを通って通電することによって溶接電流Iwを急減させる。溶接ワイヤ1は送給モータ(図示は省略)によって定速送給されており母材2との間に溶接電圧Vwが印加されて、アーク3が発生する。   The power supply main circuit MC receives a commercial power supply (not shown) such as three-phase 200V, performs output control such as inverter control and chopper control according to an error amplification signal Ea described later, and outputs an output voltage Vo and a welding current Iw. To do. The parallel circuit of the transistor TR and the resistor R is inserted into the energization path, and as will be described later, when the constriction is detected, the transistor TR is turned off and energized through the resistor R to rapidly reduce the welding current Iw. The welding wire 1 is fed at a constant speed by a feed motor (not shown), and a welding voltage Vw is applied to the base material 2 to generate an arc 3.

くびれ検出回路NDは、溶接電圧Vwを入力として、上述したくびれ検出方法によってくびれを検出するとLowレベルに変化し、アークが再発生するとHighレベルに戻るくびれ検出信号Ndを出力する。上述したように、溶接電圧Vwを溶接電流Iwで除算して溶滴の抵抗値を算出して、この抵抗値の変化によってくびれを検出しても良い。駆動回路DRは、このくびれ検出信号NdがLowレベルのときにのみトランジスタTRをオフ状態にする駆動信号Drを出力する。すなわち、くびれ検出期間Tn中は抵抗器Rが通電路に挿入されるために通電路抵抗値は短絡負荷(0.01〜0.03Ω程度)の10倍以上大きな値(0.5〜3Ω程度)になる。このために、溶接電源内の直流リアクトル及びケーブルのリアクトルに蓄積されたエネルギーが急放電されて、溶接電流Iwは急激に減少する。くびれ検出期間Tn以外の期間中はトランジスタTRはオン状態になるために、抵抗器Rは短絡されて通常の溶接電源と同一の構成となる。   The squeezing detection circuit ND receives the welding voltage Vw and outputs a squeezing detection signal Nd that changes to a low level when the squeezing is detected by the above-described squeezing detection method and returns to a high level when an arc is regenerated. As described above, the resistance value of the droplet may be calculated by dividing the welding voltage Vw by the welding current Iw, and the constriction may be detected by the change in the resistance value. The drive circuit DR outputs a drive signal Dr that turns off the transistor TR only when the squeezing detection signal Nd is at a low level. That is, since the resistor R is inserted into the current path during the constriction detection period Tn, the current path resistance value is 10 times or more larger than the short-circuit load (about 0.01 to 0.03Ω) (about 0.5 to 3Ω). )become. For this reason, the energy accumulated in the DC reactor in the welding power source and the reactor of the cable is suddenly discharged, and the welding current Iw decreases rapidly. Since the transistor TR is in an on state during a period other than the constriction detection period Tn, the resistor R is short-circuited to have the same configuration as that of a normal welding power source.

遅延期間設定回路TDRは、予め定めた遅延期間設定信号Tdrを出力する。上昇期間設定回路TURは、予め定めた上昇期間設定信号Turを出力する。低くびれ電流設定回路IMRは、予め定めた低くびれ電流設定信号Imrを出力する。高アーク電流設定回路IHRは、予め定めた高アーク電流設定信号Ihrを出力する。傾斜軌跡記憶回路SMは、図3で後述する予め定めた傾斜軌跡記憶信号Smを出力する。送給速度設定回路FRは、溶接ワイヤ1の送給速度を設定する送給速度設定信号Frを出力する。くびれ検出時電流傾斜制御回路NSCは、上記の遅延期間設定信号Tdr、上記の上昇期間設定信号Tur、上記の低くびれ電流設定信号Imr、上記の高アーク電流設定信号Ihr、上記のくびれ検出信号Nd、上記の傾斜軌跡記憶信号Sm及び上記の送給速度設定信号Frを入力として、後述する図2及び図3の処理を行い、電源特性切換信号Sw及び電流設定信号Irを出力する。   The delay period setting circuit TDR outputs a predetermined delay period setting signal Tdr. The rising period setting circuit TUR outputs a predetermined rising period setting signal Tur. The low current setting circuit IMR outputs a predetermined low current setting signal Imr. The high arc current setting circuit IHR outputs a predetermined high arc current setting signal Ihr. The inclination locus storage circuit SM outputs a predetermined inclination locus storage signal Sm, which will be described later with reference to FIG. The feed speed setting circuit FR outputs a feed speed setting signal Fr for setting the feed speed of the welding wire 1. The squeezing detection current slope control circuit NSC includes the delay period setting signal Tdr, the rising period setting signal Tur, the low squeezing current setting signal Imr, the high arc current setting signal Ihr, and the squeezing detection signal Nd. Then, the above-described inclination trajectory storage signal Sm and the above-described feed speed setting signal Fr are input, and the processes shown in FIGS. 2 and 3 to be described later are performed to output the power supply characteristic switching signal Sw and the current setting signal Ir.

電圧設定回路VRは、予め定めた電圧設定信号Vrを出力する。電流検出回路IDは、溶接電流Iwを検出して、電流検出信号Idを出力する。電圧検出回路VDは、出力電圧Voを検出して、電圧検出信号Vdを出力する。電圧誤差増幅回路EVは、上記の電圧設定信号Vrと上記の電圧検出信号Vdとの誤差を増幅して、電圧誤差増幅信号Evを出力する。電流誤差増幅回路EIは、上記の電流設定信号Irと上記の電流検出信号Idとの誤差を増幅して、電流誤差増幅信号Eiを出力する。電源特性切換回路SWは、上記の電源特性切換信号Swを入力として、図2で後述するくびれ検出期間Tn+遅延期間Td+上昇期間Tu中はb側に切り換わり上記の電流誤差増幅信号Eiを誤差増幅信号Eaとして出力し、それ以外の期間中はa側に切り換わり上記の電圧誤差増幅信号Evを誤差増幅信号Eaとして出力する。したがって、a側に切り換わっている期間は定電流特性期間となり、b側に切り換わっている期間は定電圧特性期間となる。   The voltage setting circuit VR outputs a predetermined voltage setting signal Vr. The current detection circuit ID detects the welding current Iw and outputs a current detection signal Id. The voltage detection circuit VD detects the output voltage Vo and outputs a voltage detection signal Vd. The voltage error amplification circuit EV amplifies an error between the voltage setting signal Vr and the voltage detection signal Vd, and outputs a voltage error amplification signal Ev. The current error amplification circuit EI amplifies an error between the current setting signal Ir and the current detection signal Id, and outputs a current error amplification signal Ei. The power supply characteristic switching circuit SW receives the power supply characteristic switching signal Sw as an input, and switches to the b side during the squeezing detection period Tn + delay period Td + rise period Tu, which will be described later with reference to FIG. 2, and error-amplifies the current error amplification signal Ei. The signal Ea is output, and during the other periods, the voltage is switched to the a side and the voltage error amplified signal Ev is output as the error amplified signal Ea. Therefore, the period switched to the a side is a constant current characteristic period, and the period switched to the b side is a constant voltage characteristic period.

図2は、図1の溶接電源における各信号のタイミングチャートである。同図(A)は溶接電流Iwの時間変化を示し、同図(B)は溶接電圧Vwの時間変化を示し、同図(C)はくびれ検出信号Ndの時間変化を示し、同図(D)は電源特性切換信号Swの時間変化を示し、同図(E)は電流設定信号Irの時間変化を示す。以下、同図を参照して説明する。   FIG. 2 is a timing chart of each signal in the welding power source of FIG. (A) shows the time change of the welding current Iw, (B) shows the time change of the welding voltage Vw, (C) shows the time change of the squeezing detection signal Nd, (D) ) Shows a time change of the power supply characteristic switching signal Sw, and FIG. 9E shows a time change of the current setting signal Ir. Hereinafter, a description will be given with reference to FIG.

同図において、時刻t2〜t5の定電流特性期間以外の期間は、定電圧特性期間となる。この定電圧特性期間中は、トランジスタTRはオン状態になるので、一般的な消耗電極アーク溶接の場合の電流・電圧波形と同一になる。   In the figure, a period other than the constant current characteristic period at times t2 to t5 is a constant voltage characteristic period. During this constant voltage characteristic period, the transistor TR is in an on state, so that it has the same current / voltage waveform as in the case of general consumable electrode arc welding.

時刻t1において、溶接ワイヤ先端の溶滴と母材とが短絡すると、同図(B)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、同図(A)に示すように、溶接電流Iwは次第に増加する。溶接電流Iwが増加するのに伴い、溶滴にピンチ力が作用して、溶滴上部にくびれを形成するようになる。   When the droplet at the tip of the welding wire and the base material are short-circuited at time t1, the welding voltage Vw rapidly decreases to a short-circuit voltage value of several volts as shown in FIG. In addition, the welding current Iw gradually increases. As the welding current Iw increases, a pinch force acts on the droplet to form a constriction at the top of the droplet.

くびれが進行して時刻t2において、同図(B)に示すように、電圧上昇値ΔVがくびれ検出基準値Vtnに達すると、同図(C)に示すように、くびれ検出信号NdはHighレベルからLowレベルに変化する。これに応動して、同図(D)に示すように、電源特性切換信号SwはLowレベルに変化し電源特性は定電流特性に切り換わる。同時に、トランジスタTRはオフ状態になり通電路に抵抗器Rが挿入されるために、同図(A)に示すように、溶接電流Iwは急減して低くびれ電流値Imに維持される。   When the constriction progresses and the voltage rise value ΔV reaches the constriction detection reference value Vtn at time t2 as shown in FIG. 5B, the constriction detection signal Nd becomes high level as shown in FIG. Changes from low to low level. In response to this, as shown in FIG. 4D, the power supply characteristic switching signal Sw is changed to the low level, and the power supply characteristic is switched to the constant current characteristic. At the same time, since the transistor TR is turned off and the resistor R is inserted into the energization path, the welding current Iw is rapidly decreased and kept at the current value Im as shown in FIG.

くびれがさらに進行して時刻t3においてアークが再発生すると、同図(B)に示すように、溶接電圧Vwが短絡/アーク判別値Vtaに達するので、同図(C)に示すように、くびれ検出信号NdがHighレベルに変化する。この時刻t3の時点から時刻t4までの予め定めた遅延期間Td中は、同図(E)に示すように、電流設定信号Irは低くびれ電流設定信号Imrによって定まる値を維持する。このために、同図(A)に示すように、溶接電流Iwは低くびれ電流値Imを維持する。時刻t3においてアークが再発生したときに、溶接電流値は低くびれ電流値Imであるために溶滴離脱時のアーク力が弱くなり、スパッタの発生が抑制される。さらに、時刻t3でアークが再発生した時点から時刻t4までの予め定めた遅延期間Tdを設け、この遅延期間Td中は同図(E)に示すように電流設定信号Ir=Imrに維持する。これによって溶滴が溶融池に移行した影響による溶融池の振動が収まるのを待つことになる。溶融池の振動が収まってから次の課程で溶接電流Iwを上昇させるので、電流変化によるアーク力の変化と溶融池の振動とが共振してスパッタを発生させることもない。この遅延期間Tdは溶接条件に応じて設けるか否かを決めることが多い。遅延期間Tdは、0〜1ms程度である。   If the constriction further progresses and the arc is regenerated at time t3, the welding voltage Vw reaches the short circuit / arc discriminating value Vta as shown in FIG. 5B, so that the constriction occurs as shown in FIG. The detection signal Nd changes to the high level. During a predetermined delay period Td from time t3 to time t4, the current setting signal Ir is low and maintains a value determined by the current setting signal Imr, as shown in FIG. For this reason, the welding current Iw is low and the current value Im is maintained as shown in FIG. When the arc is regenerated at time t3, the welding current value is low and the current value Im, so that the arc force at the time of droplet detachment becomes weak and the occurrence of spatter is suppressed. Further, a predetermined delay period Td from the time when the arc is regenerated at time t3 to time t4 is provided, and during this delay period Td, the current setting signal Ir = Imr is maintained as shown in FIG. This waits for the vibration of the molten pool to settle due to the influence of the droplets transferred to the molten pool. Since the welding current Iw is increased in the next process after the vibration of the molten pool has subsided, the change in the arc force due to the current change and the vibration of the molten pool do not resonate to generate spatter. In many cases, the delay period Td is determined depending on the welding conditions. The delay period Td is about 0 to 1 ms.

時刻t4において遅延期間Tdが終了すると、同図(E)に示すように、電流設定信号Irは、低くびれ電流設定信号Imrの値から傾斜軌跡記憶信号Smによって定まる傾斜特性で上昇し、予め定めた上昇期間Tuが終了する時刻t5において高アーク電流設定信号Ihrの値に達する。この傾斜軌跡記憶信号Smは、図3で後述するように、前半部分及び後半部分は中間部分と異なる傾斜であり、前半部分及び後半部分の傾斜が中間部分の傾斜よりも小さな値である。これに応動して、同図(A)に示すように、溶接電流Iwは低くびれ電流値Imから傾斜特性Sによって上昇し、時刻t5に高アーク電流値Ihに達する。時刻t4〜t5の上昇期間Tuは、1ms程度であり、低くびれ電流値Imは数十A程度であり、高アーク電流値Ihは数百A程度である。   When the delay period Td ends at time t4, the current setting signal Ir rises with a slope characteristic determined by the slope trajectory memory signal Sm from the value of the squeezing current setting signal Imr, as shown in FIG. The value of the high arc current setting signal Ihr is reached at time t5 when the rising period Tu ends. As will be described later with reference to FIG. 3, the slope locus storage signal Sm has a slope different from that of the intermediate portion in the first half portion and the latter half portion, and the slope of the first half portion and the latter half portion is smaller than the slope of the intermediate portion. In response to this, as shown in FIG. 5A, the welding current Iw is low and rises from the squeezing current value Im by the slope characteristic S, and reaches the high arc current value Ih at time t5. The rising period Tu from time t4 to t5 is about 1 ms, the low current value Im is about several tens of A, and the high arc current value Ih is about several hundred A.

時刻t5において上昇期間Tuが終了すると、同図(D)に示すように、電源特性切換信号SwはHighレベルに変化するので、溶接電源は定電圧特性となる。同図(A)に示すように、溶接電流Iwは、時刻t5以降も高アーク電流値Ihと略等しい値を短時間維持した後に、アーク負荷に応じて変化して次第に減少する。同図(B)に示すように、溶接電圧Vwも次第に減少して電圧設定信号Vrの値に収束する。   When the rising period Tu ends at time t5, as shown in FIG. 4D, the power supply characteristic switching signal Sw changes to a high level, so that the welding power supply has a constant voltage characteristic. As shown in FIG. 3A, the welding current Iw changes according to the arc load and gradually decreases after maintaining a value substantially equal to the high arc current value Ih for a short time after time t5. As shown in FIG. 5B, the welding voltage Vw gradually decreases and converges to the value of the voltage setting signal Vr.

図3は、上述した図2において、時刻t2〜t5の定電流特性期間における経過時間tに対する電流設定信号Irの値の変化を示す図である。同図において、時刻t2〜t3のくびれ検出期間Tn及び時刻t3〜t4の遅延期間Td中は、電流設定信号Ir=Imr(低くびれ電流設定信号)となる。続く時刻t4〜t5の上昇期間Tu中は、電流設定信号Irは、低くびれ電流設定信号Imrの値から傾斜軌跡記憶信号Smによって設定された傾斜特性L1〜L2の折れ線状又は曲線状に上昇して、時刻t5に高アーク電流設定信号Ihrの値に達する。   FIG. 3 is a diagram showing a change in the value of the current setting signal Ir with respect to the elapsed time t in the constant current characteristic period from time t2 to t5 in FIG. 2 described above. In the figure, during the squeezing detection period Tn from time t2 to t3 and during the delay period Td from time t3 to t4, the current setting signal Ir = Imr (low squeezing current setting signal). During the subsequent rising period Tu from time t4 to t5, the current setting signal Ir rises from the value of the squeezing current setting signal Imr to a polygonal line or a curve of the slope characteristics L1 to L2 set by the slope trajectory memory signal Sm. Thus, the value of the high arc current setting signal Ihr is reached at time t5.

破線で示す傾斜特性L1は、前半部分、中間部分及び後半部分の3つの折れ線から形成されている。前半部分及び後半部分の傾斜は、中間部分の傾斜よりも小さな値となっている。同図では、前半部分、中間部分及び後半部分の各期間長さは同一値となっている。前半部分及び後半部分の期間長さは、中間部分の期間長さの−50〜0%程度の範囲である。   The slope characteristic L1 indicated by the broken line is formed by three broken lines of the first half part, the middle part and the second half part. The slopes of the first half and the second half are smaller than the slope of the middle part. In the figure, the period lengths of the first half part, the middle part and the second half part have the same value. The period length of the first half part and the second half part is in a range of about −50 to 0% of the period length of the intermediate part.

実践で示す傾斜特性L2も、前半部分、中間部分及び後半部分に分けて曲線状に変化する。前半部分の傾斜は、低くびれ電流設定信号Imrの傾斜0から中間部分の傾斜まで連続的に変化する値である。後半部分の傾斜は、中間部分の傾斜から高アーク電流設定信号Ihrの傾斜0まで連続的に変化する値である。   The slope characteristic L2 shown in practice also changes in a curved manner in the first half part, the middle part and the second half part. The slope of the first half is a value that continuously changes from the slope 0 of the narrow current setting signal Imr to the slope of the middle portion. The slope of the latter half is a value that continuously changes from the slope of the middle part to the slope 0 of the high arc current setting signal Ihr.

これらの傾斜特性は、上記の傾斜軌跡記憶回路SMに予め記憶しておく。そして、中間部分の傾斜は、送給速度設定信号Frの値すなわち溶接電流平均値に比例して大きくなるように変化させる。溶接電流平均値が大きくなると、傾斜を大きくして速やかに溶接電流Iwを上昇させることで、アーク熱が不足するのを防止している。中間部分の傾斜は、溶接法、溶接速度、溶接継手、母材材質等によっても切り換えることが望ましい。中間部分の傾斜は、50〜100A/100μs程度である。前半部分及び後半部分の傾斜は、中間部分の傾斜の50%程度である。その部分の傾斜が曲線状に変化するときは、連続して変化する傾斜の平均値がこれらの数値となる。   These inclination characteristics are stored in advance in the inclination trajectory storage circuit SM. The inclination of the intermediate portion is changed so as to increase in proportion to the value of the feed speed setting signal Fr, that is, the welding current average value. When the welding current average value is increased, the inclination is increased to promptly increase the welding current Iw, thereby preventing the arc heat from becoming insufficient. It is desirable to switch the inclination of the intermediate part depending on the welding method, welding speed, welded joint, base material, and the like. The inclination of the intermediate portion is about 50 to 100 A / 100 μs. The inclination of the first half part and the second half part is about 50% of the inclination of the middle part. When the inclination of the portion changes in a curved line, the average value of the continuously changing inclination becomes these numerical values.

上述した実施の形態によれば、低くびれ電流値から傾斜を持たせて高アーク電流値まで上昇させ、この傾斜は前半部分及び後半部分は中間部分と異なる値であり、前半部分及び後半部分の傾斜が中間部分の傾斜よりも小さな値である。このようにすると、低くびれ電流から小さな傾斜の前半部分を経て大きな傾斜の中間部分に円滑に移行させることができる。同様に、大きな傾斜の中間部分から小さな傾斜の後半部分を経て高アーク電流に円滑に移行させることができる。このために、溶接電流の傾斜が急変することがなくなり、アーク力が急変して溶融池を振動させることがなくなるので、スパッタの発生をさらに少なくすることができる。   According to the above-described embodiment, the slope is increased from the low current value to the high arc current value, and this slope is different from the middle part in the first half part and the second half part. The slope is smaller than the slope of the middle part. In this way, it is possible to smoothly shift from a low current to a middle portion having a large slope through a first half portion having a small slope. Similarly, it is possible to smoothly shift from a middle portion having a large slope to a high arc current through a second half portion having a small slope. For this reason, the slope of the welding current does not change suddenly, and the arc force does not change suddenly to vibrate the molten pool, so that the generation of spatter can be further reduced.

上述した実施の形態においては、上昇期間Tu中の傾斜特性を定電流特性の下で電流設定信号Irを制御することで生成する場合について説明した。これ以外の方法として、上昇期間Tu中を定電圧特性とし、公知技術である電子リアクトル制御によって傾斜特性を生成するようにしても良い。この場合には、傾斜特性の前半部分及び後半部分の傾斜を小さくするために電子リアクトル制御のゲインを大きくし、中間部分の傾斜を大きくするために電子リアクトル制御のゲインを小さくすれば良い。   In the above-described embodiment, the case where the slope characteristic during the rising period Tu is generated by controlling the current setting signal Ir under the constant current characteristic has been described. As another method, the ramp characteristics may be generated by electronic reactor control, which is a known technique, with constant voltage characteristics during the rising period Tu. In this case, the gain of the electronic reactor control may be increased in order to reduce the inclination of the first half portion and the latter half portion of the inclination characteristic, and the gain of the electronic reactor control may be reduced in order to increase the inclination of the intermediate portion.

1 溶接ワイヤ
2 母材
3 アーク
DR 駆動回路
Dr 駆動信号
Ea 誤差増幅信号
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
FR 送給速度設定回路
Fr 送給速度設定信号
ID 電流検出回路
Id 電流検出信号
Ih 高アーク電流値
IHR 高アーク電流設定回路
Ihr 高アーク電流設定信号
Im 低くびれ電流値
IMR 低くびれ電流設定回路
Imr 低くびれ電流設定信号
Ir 電流設定信号
Iw 溶接電流
L1、L2 傾斜特性
MC 電源主回路
ND くびれ検出回路
Nd くびれ検出信号
NSC くびれ検出時電流傾斜制御回路
R 抵抗器
S 傾斜特性
SM 傾斜軌跡記憶回路
Sm 傾斜軌跡記憶信号
SW 電源特性切換回路
Sw 電源特性切換信号
t 経過時間
Td 遅延期間
TDR 遅延期間設定回路
Tdr 遅延期間設定信号
Tn くびれ検出期間
TR トランジスタ
Tu 上昇期間
TUR 上昇期間設定回路
Tur 上昇期間設定信号
VD 電圧検出回路
Vd 電圧検出信号
Vo 出力電圧
VR 電圧設定回路
Vr 電圧設定信号
Vta 短絡/アーク判別値
Vtn くびれ検出基準値
Vw 溶接電圧
ΔV 電圧上昇値
DESCRIPTION OF SYMBOLS 1 Welding wire 2 Base material 3 Arc DR Drive circuit Dr Drive signal Ea Error amplification signal EI Current error amplification circuit Ei Current error amplification signal EV Voltage error amplification circuit EV Voltage error amplification signal FR Feeding speed setting circuit Fr Feeding speed setting signal ID current detection circuit Id current detection signal Ih high arc current value IHR high arc current setting circuit Ihr high arc current setting signal Im low constriction current value IMR low constriction current setting circuit Imr low constriction current setting signal Ir current setting signal Iw welding current L1 , L2 Inclination characteristic MC Power supply main circuit ND Constriction detection circuit Nd Constriction detection signal NSC Constriction detection current inclination control circuit R Resistor S Inclination characteristic SM Inclination locus storage circuit Sm Inclination locus storage signal SW Power supply characteristic switching circuit Sw Power supply characteristic switching signal t Elapsed time Td Delay period TDR Delay period setting circuit Tdr Delay period setting signal No. Tn Necking detection period TR Transistor Tu Rising period TUR Rising period setting circuit Tur Rising period setting signal VD Voltage detection circuit Vd Voltage detection signal Vo Output voltage VR Voltage setting circuit Vr Voltage setting signal Vta Short circuit / arc discrimination value Vtn Constriction detection reference value Vw Welding voltage ΔV Voltage rise value

Claims (4)

消耗電極と母材との間でアーク発生状態と短絡状態とを繰り返す消耗電極アーク溶接にあって、短絡状態からアークが再発生する前兆現象である溶滴のくびれ現象を消耗電極・母材間の電圧値又は抵抗値の変化によって検出し、このくびれ現象を検出すると短絡負荷に通電する溶接電流を減少させて低くびれ電流値に維持し、アークが再発生するとその時点又はそれから遅延期間経過した時点で溶接電流を前記低くびれ電流値から傾斜を持たせて高アーク電流値まで上昇させてアーク負荷に通電する消耗電極アーク溶接のくびれ検出時電流制御方法において、
前記傾斜は前半部分及び後半部分は中間部分と異なる値であり、前記前半部分及び前記後半部分の傾斜が前記中間部分の傾斜よりも小さな値である、
ことを特徴とする消耗電極アーク溶接のくびれ検出時電流制御方法。
In consumable electrode arc welding where the arc generation state and short circuit state are repeated between the consumable electrode and the base material, the constriction phenomenon of droplets, which is a precursor to the arc re-occurring from the short circuit state, is observed between the consumable electrode and the base material. Detected by a change in the voltage value or resistance value of this, and when this squeezing phenomenon is detected, the welding current flowing to the short-circuit load is reduced and maintained at a low squeezing current value, and when the arc is regenerated, at that time or after that a delay period has elapsed In the current control method at the time of constriction detection of consumable electrode arc welding in which the welding current is ramped up from the low constriction current value to a high arc current value at a time point and the arc load is energized,
The inclination of the first half part and the second half part is different from that of the intermediate part, and the inclination of the first half part and the second half part is smaller than the inclination of the intermediate part.
A current control method for detecting a constriction in consumable electrode arc welding.
前記前半部分の傾斜は0から前記中間部分の傾斜まで連続的に変化する値であり、前記後半部分の傾斜は前記中間部分の傾斜から0まで連続的に変化する値である、
ことを特徴とする請求項1記載の消耗電極アーク溶接のくびれ検出時電流制御方法。
The slope of the first half portion is a value that continuously changes from 0 to the slope of the intermediate portion, and the slope of the second half portion is a value that continuously changes from the slope of the intermediate portion to 0.
The current control method for detecting constriction in consumable electrode arc welding according to claim 1.
前記前半部分、前記中間部分及び前記後半部分の期間長さが同一である、
ことを特徴とする請求項1又は請求項2記載の消耗電極アーク溶接のくびれ検出時電流制御方法。
The first half part, the middle part and the second half part have the same period length,
The current control method at the time of constriction detection of consumable electrode arc welding according to claim 1 or 2.
前記中間部分の傾斜は送給速度に応じて変化する、
ことを特徴とする請求項1〜3のいずれか1項に記載の消耗電極アーク溶接のくびれ検出時電流制御方法。
The slope of the intermediate portion changes according to the feeding speed.
The current control method at the time of constriction detection of consumable electrode arc welding according to any one of claims 1 to 3.
JP2012153749A 2012-07-09 2012-07-09 Current control method for constriction detection in consumable electrode arc welding Expired - Fee Related JP5918051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012153749A JP5918051B2 (en) 2012-07-09 2012-07-09 Current control method for constriction detection in consumable electrode arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012153749A JP5918051B2 (en) 2012-07-09 2012-07-09 Current control method for constriction detection in consumable electrode arc welding

Publications (2)

Publication Number Publication Date
JP2014014835A true JP2014014835A (en) 2014-01-30
JP5918051B2 JP5918051B2 (en) 2016-05-18

Family

ID=50110003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012153749A Expired - Fee Related JP5918051B2 (en) 2012-07-09 2012-07-09 Current control method for constriction detection in consumable electrode arc welding

Country Status (1)

Country Link
JP (1) JP5918051B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064774A (en) * 1983-04-30 1985-04-13 Kobe Steel Ltd Method for controlling current of welding accompanying short-circuit transfer
JPH044074A (en) * 1990-04-20 1992-01-08 Dainippon Printing Co Ltd Method for functioning surface cured by ionization radiation ray
JPH0938773A (en) * 1995-07-31 1997-02-10 Osaka Denki Co Ltd Arc welding machine
JP2006247710A (en) * 2005-03-11 2006-09-21 Daihen Corp Electric current control method in detecting constriction in consumable electrode arc welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064774A (en) * 1983-04-30 1985-04-13 Kobe Steel Ltd Method for controlling current of welding accompanying short-circuit transfer
JPH044074A (en) * 1990-04-20 1992-01-08 Dainippon Printing Co Ltd Method for functioning surface cured by ionization radiation ray
JPH0938773A (en) * 1995-07-31 1997-02-10 Osaka Denki Co Ltd Arc welding machine
JP2006247710A (en) * 2005-03-11 2006-09-21 Daihen Corp Electric current control method in detecting constriction in consumable electrode arc welding

Also Published As

Publication number Publication date
JP5918051B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP4875311B2 (en) Current control method for constriction detection in consumable electrode arc welding
JP4875390B2 (en) Constriction detection control method for consumable electrode arc welding
JP5927433B2 (en) Arc welding method and arc welding apparatus
JP2012006020A (en) Arc welding control method
US20120199560A1 (en) Welding device and carbon dioxide gas shielded arc welding method
JP6895210B2 (en) Arc welding control method
JP2014073521A (en) Arc welding control method, and arc welding apparatus
CN105750695A (en) Pulsed arc welding arcing control method
JPWO2017029783A1 (en) Arc welding control method
JP5808947B2 (en) Constriction detection control method for consumable electrode arc welding
JP6268360B2 (en) Arc welding control method and arc welding apparatus
JP5545996B2 (en) Constriction detection control method for consumable electrode arc welding
JP5851798B2 (en) Current control method for constriction detection in consumable electrode arc welding
JP5918051B2 (en) Current control method for constriction detection in consumable electrode arc welding
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP2021079427A (en) Arc-welding control method
JP7039413B2 (en) Arc welding control method
JP7053121B2 (en) Arc welding control method
CN113825582B (en) Arc welding method and arc welding device
JP6576294B2 (en) Pulse arc welding control method
JP7335677B2 (en) Arc welding control method
WO2020235620A1 (en) Arc welding method and arc welding device
JP2022185998A (en) Arc-welding power source
JP2023122461A (en) Arc-welding control method
JP2022185999A (en) Arc-welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160407

R150 Certificate of patent or registration of utility model

Ref document number: 5918051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees