JP4620519B2 - Consumable electrode arc welding end control method - Google Patents

Consumable electrode arc welding end control method Download PDF

Info

Publication number
JP4620519B2
JP4620519B2 JP2005129250A JP2005129250A JP4620519B2 JP 4620519 B2 JP4620519 B2 JP 4620519B2 JP 2005129250 A JP2005129250 A JP 2005129250A JP 2005129250 A JP2005129250 A JP 2005129250A JP 4620519 B2 JP4620519 B2 JP 4620519B2
Authority
JP
Japan
Prior art keywords
welding
arc
voltage
circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005129250A
Other languages
Japanese (ja)
Other versions
JP2006305584A (en
Inventor
哲生 恵良
裕康 水取
章博 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2005129250A priority Critical patent/JP4620519B2/en
Publication of JP2006305584A publication Critical patent/JP2006305584A/en
Application granted granted Critical
Publication of JP4620519B2 publication Critical patent/JP4620519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Description

本発明は、消耗電極アーク溶接における溶接終了制御期間中のスパッタ発生を抑制するための消耗電極アーク溶接終了制御方法に関するものである。   The present invention relates to a consumable electrode arc welding end control method for suppressing spatter generation during a welding end control period in consumable electrode arc welding.

図5は、短絡期間Tsとアーク期間Taとを繰り返す消耗電極アーク溶接における電流・電圧波形及び溶滴移行を示す図である。同図(A)は消耗電極(以下、溶接ワイヤ1という)を通電する溶接電流Iwの時間変化を示し、同図(B)は溶接ワイヤ1・母材2間に印加する溶接電圧Vwの時間変化を示し、同図(C)〜(E)は溶滴1aの移行の様子を示す。以下、同図を参照して説明する。   FIG. 5 is a diagram showing current / voltage waveforms and droplet transfer in consumable electrode arc welding in which the short-circuit period Ts and the arc period Ta are repeated. FIG. 4A shows the change over time in the welding current Iw for energizing the consumable electrode (hereinafter referred to as welding wire 1), and FIG. 4B shows the time of the welding voltage Vw applied between the welding wire 1 and the base material 2. FIG. FIGS. 3C to 3E show the transition of the droplet 1a. Hereinafter, a description will be given with reference to FIG.

時刻t1〜t3の短絡期間Ts中は溶接ワイヤ1先端の溶滴1aが母材2と短絡した状態にあり、同図(A)に示すように、溶接電流Iwは次第に増加し、同図(B)に示すように、溶接電圧Vwは短絡状態にあるために数V程度の低い値となる。同図(C)に示すように、時刻t1において溶滴1aが母材2と接触して短絡状態に入る。その後、同図(D)に示すように、溶滴1aを通電する溶接電流Iwによる電磁的ピンチ力によって溶滴1a上部にくびれ1bが発生する。そしてこのくびれ1bが急速に進行して、時刻t3において同図(E)に示すように、溶滴1aは溶接ワイヤ1から溶融池2aへと移行しアーク3が再発生する。   During the short-circuit period Ts from time t1 to t3, the droplet 1a at the tip of the welding wire 1 is short-circuited with the base material 2, and as shown in FIG. As shown in B), since the welding voltage Vw is in a short circuit state, the welding voltage Vw becomes a low value of about several volts. As shown in FIG. 5C, the droplet 1a comes into contact with the base material 2 at a time t1 to enter a short circuit state. Thereafter, as shown in FIG. 4D, a constriction 1b is generated at the upper part of the droplet 1a by an electromagnetic pinch force generated by a welding current Iw for energizing the droplet 1a. And this constriction 1b advances rapidly, and as shown to the same figure (E) at the time t3, the droplet 1a transfers from the welding wire 1 to the molten pool 2a, and the arc 3 regenerates.

上記のくびれ現象が発生すると、数百μs程度の極短時間後に短絡が解除されてアーク3が再発生する。すなわち、このくびれ現象は短絡解除の前兆現象となる。くびれ1bが発生すると、溶接電流Iwの通電路がくびれ部分で狭くなるために、くびれ部分の抵抗値が増大する。この抵抗値の増大は、くびれが進行してくびれ部分がより狭くなるほど大きくなる。したがって、短絡期間Ts中において溶接ワイヤ1・母材2間の抵抗値の変化を検出することでくびれ現象の発生及び進行を検出することができる。この抵抗値の変化は、(溶接電圧Vw)/(溶接電流Iw)によって算出することができる。また、上述したように、くびれ発生時間は極短時間であるために、同図(A)に示すように、この期間中の溶接電流Iwの変化は小さい。このために、抵抗値の変化に代えて溶接電圧Vwの変化によってもくびれ現象の発生を検出することができる。具体的なくびれ検出方法としては、短絡期間Ts中の抵抗値又は溶接電圧値Vwの変化率(微分値)を算出し、この変化率が予め定めたくびれ検出基準値に達したことによってくびれ検出を行う方法がある。また、他の方法として、同図(B)に示すように、短絡期間Ts中のくびれ発生前の安定した短絡電圧値Vsからの電圧上昇値ΔVを算出し、時刻t2においてこの電圧上昇値ΔVが予め定めたくびれ検出基準値Vtnに達したことによってくびれ検出を行う方法がある。以下の説明では、くびれ検出方法が上記の電圧上昇値ΔVによる場合について説明するが、従来から種々提案されている他の方法であっても良い。時刻t3のアーク再発生の検出は、溶接電圧Vwが短絡/アーク判別値Vta以上になったことを判別して簡単に行うことができる。ちなみに、Vw<Vtaの期間が短絡期間Tsとなり、Vw≧Vtaの期間がアーク期間Taとなる。時刻t3においてアークが再発生すると、同図(A)に示すように、溶接電流Iwは急上昇した後に、なだらかに減少し、同図(B)に示すように、溶接電圧Vwは数十V程度のアーク電圧値になる。時刻t3〜t4のアーク期間Ta中は、溶接ワイヤ1先端が溶融されて溶滴1aが形成される。以後、時刻t1〜t4の期間の動作を繰り返す。   When the above-mentioned constriction phenomenon occurs, the short circuit is released after a very short time of about several hundred μs, and the arc 3 is regenerated. That is, this constriction phenomenon is a precursor phenomenon of short circuit cancellation. When the constriction 1b occurs, the conduction path of the welding current Iw becomes narrow at the constricted portion, and the resistance value of the constricted portion increases. The increase in the resistance value increases as the constriction progresses and the constricted portion becomes narrower. Therefore, the occurrence and progress of the constriction phenomenon can be detected by detecting the change in resistance value between the welding wire 1 and the base material 2 during the short-circuit period Ts. This change in resistance value can be calculated by (welding voltage Vw) / (welding current Iw). Further, as described above, since the constriction occurrence time is extremely short, the change in the welding current Iw during this period is small as shown in FIG. For this reason, the occurrence of the constriction phenomenon can be detected by the change of the welding voltage Vw instead of the change of the resistance value. As a specific necking detection method, a change rate (differential value) of the resistance value or the welding voltage value Vw during the short-circuit period Ts is calculated, and the necking detection is performed when the rate of change reaches a predetermined necking detection reference value. There is a way to do. As another method, as shown in FIG. 5B, a voltage increase value ΔV from a stable short-circuit voltage value Vs before occurrence of constriction during the short-circuit period Ts is calculated, and this voltage increase value ΔV is calculated at time t2. There is a method of detecting the squeezing when the squeezing reaches a predetermined squeezing detection reference value Vtn. In the following description, a case in which the squeezing detection method is based on the above-described voltage increase value ΔV will be described, but other methods that have been proposed in the past may be used. Detection of arc reoccurrence at time t3 can be easily performed by determining that the welding voltage Vw has become equal to or greater than the short circuit / arc determination value Vta. Incidentally, the period of Vw <Vta is the short circuit period Ts, and the period of Vw ≧ Vta is the arc period Ta. When the arc is regenerated at time t3, the welding current Iw increases rapidly as shown in FIG. 6A, and then decreases gradually. As shown in FIG. 5B, the welding voltage Vw is about several tens of volts. Arc voltage value. During the arc period Ta from time t3 to t4, the tip of the welding wire 1 is melted to form a droplet 1a. Thereafter, the operation in the period from time t1 to t4 is repeated.

上述した短絡を伴う溶接では、時刻t3においてアーク3が再発生したときのアーク再発生時電流値iaが大電流値であると、アーク3から溶融池2aへのアーク力が急峻に大きくなり、大量のスパッタが発生する。すなわち、アーク再発生時電流値Iaの値に略比例してスパッタ発生量が増加する。したがって、スパッタの発生を抑制するためには、このアーク再発生時電流値Iaを小さくする必要がある。このための方法として、上記のくびれ現象の発生を検出して溶接電流Iwを急減させてアーク再発生時電流値Iaを小さくするくびれ検出制御方法を付加した溶接電源が従来から種々提案されている。以下、この従来技術について説明する。   In the welding with the short circuit described above, when the arc regeneration current value ia when the arc 3 is regenerated at time t3 is a large current value, the arc force from the arc 3 to the molten pool 2a increases sharply. A large amount of spatter is generated. That is, the amount of spatter generated increases substantially in proportion to the current value Ia at the time of arc re-generation. Therefore, in order to suppress the occurrence of sputtering, it is necessary to reduce the current value Ia at the time of arc re-occurrence. As a method for this, various welding power sources have been proposed in which a constriction detection control method is added to detect the occurrence of the above-mentioned constriction phenomenon, to rapidly reduce the welding current Iw and to reduce the current value Ia at the time of arc reoccurrence. . Hereinafter, this prior art will be described.

図6は、従来技術のくびれ検出制御方法を採用した溶接電源のブロック図である。電源主回路PMは、3相200V等の商用電源を入力として、後述する駆動信号Drに従ってインバータ制御、チョッパ制御等の出力制御を行い、アーク溶接に適した溶接電圧Vw及び溶接電流Iwを出力する。トランジスタTRは出力に直列に挿入され、それと並列に抵抗器Rが接続されている。くびれ検出制御回路NDは、溶接電圧Vwを入力として短絡期間中に溶滴にくびれが発生したことを電圧の上昇によって検出するとHighレベルとなるくびれ検出信号Ndを出力する。トランジスタ駆動回路DRTは、このくびれ検出信号NdがLowレベルのとき(非くびれ検出時)は上記のトランジスタTRをオン状態にするトランジスタ駆動信号Drtを出力する。したがって、上記のトランジスタTRは、上記のくびれ検出信号NdがHighレベルのとき(くびれ検出時)はオフ状態になる。溶接ワイヤ1は送給モータMによって送給速度Wf[m/min]で送給されて、母材2との間にアーク3が発生する。   FIG. 6 is a block diagram of a welding power source employing a squeezing detection control method of the prior art. The power source main circuit PM receives a commercial power source such as a three-phase 200V as an input, performs output control such as inverter control and chopper control according to a drive signal Dr described later, and outputs a welding voltage Vw and a welding current Iw suitable for arc welding. . The transistor TR is inserted in series with the output, and a resistor R is connected in parallel therewith. The squeezing detection control circuit ND outputs a squeezing detection signal Nd that is at a high level when the welding voltage Vw is input to detect the occurrence of squeezing of the droplet during the short-circuiting period by increasing the voltage. The transistor drive circuit DRT outputs a transistor drive signal Drt that turns on the transistor TR when the squeezing detection signal Nd is at a low level (when non-necking is detected). Therefore, the transistor TR is turned off when the squeezing detection signal Nd is at a high level (when squeezing is detected). The welding wire 1 is fed at a feeding speed Wf [m / min] by a feeding motor M, and an arc 3 is generated between the welding wire 1 and the base material 2.

電圧設定回路VRは、定常時の溶接電圧Vwを設定するための予め定めた電圧設定信号Vrを出力する。アンチスチック電圧設定回路VARは、アンチスチック制御期間中の溶接電圧Vwを制御するための予め定めたアンチスチック電圧設定信号Varを出力する。切換回路SWは、外部からの溶接開始信号Stを入力として、Highレベル(定常時)に変化するとa側に切り換わり上記の電圧設定信号Vrを電圧制御設定信号Vcrとして出力し、Lowレベル(アンチスチック制御時)に変化すると上記のアンチスチック電圧設定信号Varを電圧制御設定信号Vcrとして出力する。   The voltage setting circuit VR outputs a predetermined voltage setting signal Vr for setting the welding voltage Vw at the normal time. The anti-stic voltage setting circuit VAR outputs a predetermined anti-stic voltage setting signal Var for controlling the welding voltage Vw during the anti-stic control period. The switching circuit SW receives the welding start signal St from the outside and switches to the a side when it changes to the High level (steady state) and outputs the voltage setting signal Vr as the voltage control setting signal Vcr. The above-described anti-stic voltage setting signal Var is output as the voltage control setting signal Vcr.

電圧検出回路VDは、溶接電圧Vwを検出して、電圧検出信号Vdを出力する。誤差増幅回路EAは、上記の電圧制御設定信号Vcrと上記の電圧検出信号Vdとの誤差を増幅して、誤差増幅信号Eaを出力する。この回路によって、消耗電極アーク溶接電源は定電圧特性となる。起動回路ONは、上記の溶接開始信号StがHighレベルに変化するとHighレベルに変化し、Lowレベルに変化すると予め定めたアンチスチック期間Tanだけ遅延してLowレベルに変化する起動信号Onを出力する。駆動回路DRは、この起動信号Onを入力として、Highレベルの間は上記の誤差増幅信号Eaに従って駆動信号Drを出力する。送給制御回路FCは、上記の溶接開始信号StがHighレベルの間は予め定めた送給速度に相当する回転数に送給モータMを制御するための送給制御信号Fcを出力する。   The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The error amplification circuit EA amplifies an error between the voltage control setting signal Vcr and the voltage detection signal Vd, and outputs an error amplification signal Ea. With this circuit, the consumable electrode arc welding power source has constant voltage characteristics. The start-up circuit ON outputs the start-up signal On that changes to the high level when the welding start signal St changes to the high level, and changes to the low level after being delayed by a predetermined antistic period Tan when the start signal St changes to the low level. . The drive circuit DR receives the activation signal On and outputs the drive signal Dr according to the error amplification signal Ea during the high level. The feed control circuit FC outputs a feed control signal Fc for controlling the feed motor M at a rotational speed corresponding to a predetermined feed speed while the welding start signal St is at a high level.

図7は、上記の溶接電源の各信号のタイミングチャートである。同図(A)は溶接電
流Iwの、同図(B)は溶接電圧Vwの、同図(C)はくびれ検出信号Ndの、同図(D)はトランジスタ駆動信号Drtの時間変化を示す。同図は定常時のタイミングチャートである。以下、同図を参照して説明する。
FIG. 7 is a timing chart of each signal of the welding power source. FIG. 4A shows the welding current Iw, FIG. 2B shows the welding voltage Vw, FIG. 3C shows the squeezing detection signal Nd, and FIG. 4D shows the time change of the transistor drive signal Drt. The figure is a timing chart in a steady state. Hereinafter, a description will be given with reference to FIG.

同図において、時刻t2〜t3のくびれ検出期間以外の期間は、同図(C)に示すように、くびれ検出信号NdはLowレベルであるので、同図(D)に示すように、トランジスタ駆動信号DrtはHighレベルになる。この結果、トランジスタTRはオン状態になるので、通常の消耗電極アーク溶接用の溶接電源と同一の動作となる。   In the figure, during the period other than the squeezing detection period from time t2 to t3, the squeezing detection signal Nd is at the low level as shown in FIG. 10C, so that the transistor drive is performed as shown in FIG. The signal Drt becomes High level. As a result, since the transistor TR is turned on, the operation is the same as that of a normal welding power source for consumable electrode arc welding.

時刻t2において、同図(B)に示すように、短絡期間Ts中に溶接電圧Vwが上昇して電圧上昇値ΔVが予め定めたくびれ検出基準値Vtn以上になったことを検出して溶滴にくびれが発生したと判別すると、同図(C)に示すように、くびれ検出信号NdがHighレベルになる。これに応動して、同図(D)に示すように、トランジスタ駆動信号DrtはLowレベルになるので、トランジスタTRはオフ状態になる。この結果、抵抗器Rが溶接電流Iwの通電路に挿入される。この抵抗器Rの値は短絡負荷(数十mΩ)の10倍以上大きな値に設定されるために、同図(A)に示すように、溶接電源内の直流リアクトル及びケーブルのリアクトルに蓄積されたエネルギーが急放電されて溶接電流Iwは急激に減少する。時刻t3において、短絡が解除されてアークが再発生すると、同図(B)に示すように、溶接電圧Vwが予め定めた短絡/アーク判別値Vta以上になる。これを検出して、同図(C)に示すように、くびれ検出信号NdはLowレベルになり、同図(D)に示すように、トランジスタ駆動信号DrtはHighレベルになる。この結果、トランジスタTRはオン状態になり、通常の消耗電極アーク溶接の制御となる。この動作によって、アーク再発生時(時刻t3)のアーク再発生時電流値Iaを小さくすることができ、スパッタの発生を抑制することができる。(特許文献1参照)   At time t2, as shown in FIG. 5B, it is detected that the welding voltage Vw has increased during the short-circuit period Ts and the voltage increase value ΔV has become equal to or greater than a predetermined squeezing detection reference value Vtn. If it is determined that constriction has occurred, the constriction detection signal Nd becomes High level as shown in FIG. In response to this, as shown in FIG. 4D, the transistor drive signal Drt is at the low level, so that the transistor TR is turned off. As a result, the resistor R is inserted into the energization path of the welding current Iw. Since the value of this resistor R is set to a value that is at least 10 times larger than the short-circuit load (several tens of mΩ), it is accumulated in the DC reactor in the welding power source and the cable reactor as shown in FIG. As a result, the welding current Iw decreases rapidly. When the short circuit is released and the arc is regenerated at time t3, the welding voltage Vw becomes equal to or higher than a predetermined short circuit / arc discrimination value Vta as shown in FIG. When this is detected, the squeezing detection signal Nd becomes a low level as shown in FIG. 5C, and the transistor drive signal Drt becomes a high level as shown in FIG. As a result, the transistor TR is turned on, and normal consumable electrode arc welding is controlled. By this operation, the arc regeneration current value Ia at the time of arc regeneration (time t3) can be reduced, and the occurrence of sputtering can be suppressed. (See Patent Document 1)

図8は、図6で上述した溶接電源の溶接終了制御時のタイミングチャートである。同図(A)は溶接開始信号Stの、同図(B)は起動信号Onの、同図(C)は送給速度Wfの、同図(D)は電圧制御設定信号Vcrの、同図(E)は溶接電圧Vwの、同図(F)は溶接電流Iwの時間変化を示す。以下、同図を参照して説明する。   FIG. 8 is a timing chart during the welding end control of the welding power source described above with reference to FIG. FIG. 4A shows the welding start signal St, FIG. 3B shows the start signal On, FIG. 3C shows the feed speed Wf, and FIG. 4D shows the voltage control setting signal Vcr. (E) shows the time variation of the welding voltage Vw, and FIG. (F) shows the time change of the welding current Iw. Hereinafter, a description will be given with reference to FIG.

時刻t1において、同図(A)に示すように、溶接開始信号StがLowレベル(終了指令)に変化すると、同図(B)に示すように、起動信号Onは時刻t3までのアンチスチック期間Tan遅延してLowレベルに変化する。時刻t1の溶接開始信号Stの変化に応動して、同図(C)に示すように、送給モータMへの送給制御信号Fcは停止指令に変化し、送給速度Wfは慣性によって数十ms程度かけて徐々に遅くなり、時刻t2において送給は停止する。送給モータMがサーボモータであるときには、停止指令後の送給速度の減速率を制御することも実施されている。また、モータの駆動部にブレーキ回路を付加して減速期間を短くすることも実施されている。同図(D)に示すように、電圧制御設定信号Vcrは、時刻t2においてアンチスチック電圧設定信号Vanによって定まる値に低下する。   At time t1, when the welding start signal St changes to a low level (end command) as shown in FIG. 5A, the activation signal On is in the anti-stic period until time t3 as shown in FIG. It changes to Low level after Tan delay. In response to the change in the welding start signal St at time t1, the feed control signal Fc to the feed motor M is changed to a stop command as shown in FIG. It gradually slows down over about 10 ms, and the feeding stops at time t2. When the feed motor M is a servo motor, the rate of reduction of the feed speed after the stop command is also controlled. In addition, a brake circuit is added to the motor drive unit to shorten the deceleration period. As shown in FIG. 4D, the voltage control setting signal Vcr drops to a value determined by the anti-stic voltage setting signal Van at time t2.

アンチスチック期間Tan中は、同図(E)に示すように、アンチスチック電圧設定信号Varは低い値なので数回の短絡を繰り返す。そして、時刻t2において、同図(C)に示すように、送給速度Wfはゼロとなり慣性による送給は停止し、この時刻前後においてワイヤ燃上り高さがアークを維持することができる限界電圧値Vhに達してアークが消滅する。アークが消滅すると、溶接電圧Vwは高い値の無負荷電圧となる。時刻t3において、同図(B)に示すように、起動信号OnがLowレベルに変化し、溶接電源の出力は停止する。上記の限界電圧値Vhは、アンチスチック電圧設定信号Varの値に略比例する。したがって、ワイヤ燃上り高さを所望値にするためには、アンチスチック電圧設定信号Varを調整すれば良い。   During the anti-stic period Tan, the anti-stic voltage setting signal Var is a low value, as shown in FIG. Then, at time t2, as shown in FIG. 5C, the feeding speed Wf becomes zero and the feeding by inertia stops, and the wire burnup height can maintain the arc before and after this time. When the value Vh is reached, the arc disappears. When the arc disappears, the welding voltage Vw becomes a high value no-load voltage. At time t3, as shown in FIG. 5B, the start signal On changes to the low level, and the output of the welding power source stops. The limit voltage value Vh is substantially proportional to the value of the anti-stick voltage setting signal Var. Therefore, the anti-stick voltage setting signal Var may be adjusted to set the wire burn-up height to a desired value.

上記は、所定のアンチスチック期間Tan中所定のアンチスチック電圧を印加するアンチスチック制御方法であるが、これ以外にも以下に示す方法が従来から慣用されている。まず第2のアンチスチック制御方法では、限界電圧値Vhを設定し、アンチスチック期間Tan中の溶接電圧値Vwがこの設定値に達した時点(t2)で溶接電源の出力を停止する。この方法では、ワイヤ燃上り高さを決める限界電圧値Vhを直接設定することができる。また、時刻t2〜t3のムダな無負荷電圧印加期間を省略することができる。次に、第3のアンチスチック制御方法では、アンチスチック期間Tan中の短絡解除から数十A程度の低い値の溶接電流Iwを所定期間通電することによって、ワイヤ溶融量を調整してワイヤ燃上り高さを所望値にするものである。この方法は、消耗電極パルスアーク溶接等のように定電流特性の溶接電源に適用されることが多い。このように、ワイヤ燃上り高さを所望値にするためのアンチスチック制御方法には種々の方法がある。(特許文献1、2参照)   The above is an antistic control method in which a predetermined antistic voltage is applied during a predetermined antistic period Tan. In addition to this, the following methods are conventionally used. First, in the second anti-stick control method, the limit voltage value Vh is set, and the output of the welding power source is stopped when the welding voltage value Vw during the anti-stick period Tan reaches this set value (t2). In this method, the limit voltage value Vh that determines the wire burnup height can be set directly. In addition, the wasteful no-load voltage application period at times t2 to t3 can be omitted. Next, in the third anti-stic control method, a welding current Iw having a low value of about several tens of A is applied for a predetermined period from the release of the short circuit during the anti-stic period Tan, thereby adjusting the amount of wire melt and The height is set to a desired value. This method is often applied to a welding power source having a constant current characteristic such as consumable electrode pulse arc welding. As described above, there are various anti-stick control methods for setting the wire burn-up height to a desired value. (See Patent Documents 1 and 2)

特開昭59−206159号公報JP 59-206159 A 特開昭62−176680号公報Japanese Patent Laid-Open No. 62-176680 特開平9−267171号公報JP-A-9-267171

上述した図8を参照して課題を説明する。アンチスチック期間Tanに入る前の定常時においては、時刻taに示すように、くびれ検出制御によって短絡が解除されてアークが再発生したときの電流値は低い値であるので、スパッタの発生は抑制される。しかし、アンチスチック期間Tan中の短絡解除アーク再発生時(時刻tb、tc)の電流値は非常に大きいままである。この理由は以下のとおりである。すなわち、アンチスチック期間Tan中は、同図(C)に示すように、送給速度Wfが次第に遅くなるように変化しているために、くびれ検出感度の調整が難しい状態になる。このために、くびれ検出が誤検出することが多く、かえってアーク状態を不安定にすることも多い。これに対処するために、アンチスチック期間Tan中はくびれ検出制御を禁止して行わないのが一般的であった。この結果、アンチスチック期間Tan中に短絡が発生するとアーク再発生時の電流値が大きくなりスパッタ発生を抑制することができないという課題があった。   The problem will be described with reference to FIG. 8 described above. In the steady state before entering the anti-stic period Tan, as shown at time ta, since the current value is low when the short circuit is released by the constriction detection control and the arc is regenerated, the occurrence of spatter is suppressed. Is done. However, the current value at the time of the occurrence of the short-circuit release arc during the anti-stick period Tan (time tb, tc) remains very large. The reason for this is as follows. That is, during the anti-stic period Tan, as shown in FIG. 5C, the feeding speed Wf changes so as to become gradually slower, so that it becomes difficult to adjust the squeezing detection sensitivity. For this reason, the constriction detection is often erroneously detected, and the arc state is often made unstable. In order to cope with this, it has been common to prohibit the squeezing detection control from being performed during the anti-stick period Tan. As a result, when a short circuit occurs during the anti-stic period Tan, the current value at the time of arc reoccurrence increases, and there is a problem that the generation of spatter cannot be suppressed.

そこで、本発明では,溶接終了制御時もくびれ検出制御によってスパッタの発生を抑制することができる消耗電極アーク溶接終了制御方法を提供する。   Therefore, the present invention provides a consumable electrode arc welding end control method capable of suppressing the occurrence of spatter by constriction detection control even during welding end control.

上述した課題を解決するために、第1の発明は、溶接電源に溶接終了指令が入力されると送給モータに停止指令を出力し、溶接ワイヤが停止したときのワイヤ燃上り高さが略所望値になるように溶接電源の出力をアンチスチック制御する消耗電極アーク溶接終了制御方法において、
前記溶接終了指令が入力された後の最初の短絡発生を検出して前記送給モータに前記停止指令を出力し、続いてこの短絡期間中に溶滴のくびれ現象を検出して溶接電流を急減させて低い値に維持してアークを再発生させ、アーク長が略一定の低い状態でアークが再発生すると前記アンチスチック制御を行いワイヤ燃上り高さを所望値にする、ことを特徴とする消耗電極アーク溶接終了制御方法である。
In order to solve the above-described problems, the first invention outputs a stop command to the feed motor when a welding end command is input to the welding power source, and the wire burnup height when the welding wire stops is substantially equal. In the consumable electrode arc welding end control method for anti-stick control of the output of the welding power source so as to have a desired value,
The first short-circuit occurrence after the welding end command is input is detected and the stop command is output to the feed motor, and then the welding current is rapidly reduced by detecting the constriction phenomenon of the droplet during the short-circuit period. The arc is regenerated by maintaining it at a low value, and when the arc is regenerated in a state where the arc length is substantially constant, the anti-stick control is performed to set the wire burnup height to a desired value. This is a consumable electrode arc welding end control method.

また、第2の発明は、第1の発明記載の送給モータに停止指令を出力するタイミングを、前記アーク再発生時点とする、ことを特徴とする消耗電極アーク溶接終了制御方法である。   According to a second aspect of the present invention, there is provided a consumable electrode arc welding end control method characterized in that a timing at which a stop command is output to the feed motor according to the first aspect of the invention is the arc re-generation time.

本発明によれば、溶接終了制御中の短絡に対しても高精度なくびれ検出制御を行うことができるので、溶接終了制御期間中のスパッタ発生を大幅に抑制することができる。さらに、溶接終了制御期間に入って最初に発生した短絡が解除されてアークが再発生したときのアーク状態が安定した一定状態であるので、これ以降のアンチスチック制御中に再び短絡が発生する可能性は低くなる。このために、再短絡によるスパッタの発生を抑制することができ、かつ、ワイヤ燃上り高さのバラツキも少なくすることができる。   According to the present invention, it is possible to perform control for detecting squeezing with high accuracy even for a short circuit during welding end control, so that it is possible to significantly suppress the occurrence of spatter during the welding end control period. In addition, since the short-circuit that occurred first during the welding end control period is canceled and the arc is re-generated, the arc state is stable and constant, so a short-circuit can occur again during the subsequent anti-stick control. The nature becomes low. For this reason, generation | occurrence | production of the sputter | spatter by a re-short circuit can be suppressed, and the variation in wire burnup height can also be reduced.

以下に本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
本発明の実施の形態1は、溶接終了指令が入力された後の最初の短絡発生を検出して送給モータに停止指令を出力し、続いてこの短絡期間中に溶滴のくびれ現象を検出して溶接電流を急減させて低い値に維持してアークを再発生させ、アーク長が略一定の低い状態でアークが再発生するとアンチスチック制御を行いワイヤ燃上り高さを所望値にする消耗電極アーク溶接終了制御方法である。以下、この実施の形態1について詳述する。
[Embodiment 1]
The first embodiment of the present invention detects the first occurrence of a short circuit after a welding end command is input, outputs a stop command to the feed motor, and subsequently detects a droplet constriction phenomenon during this short circuit period. Then, the welding current is rapidly reduced and maintained at a low value, and the arc is regenerated. When the arc is regenerated with the arc length being low, the antistick control is performed and the wire burnup height is reduced to the desired value. This is an electrode arc welding end control method. Hereinafter, the first embodiment will be described in detail.

図1は、本発明の実施の形態1に係る消耗電極アーク溶接終了制御方法を実施するための溶接電源のブロック図である。同図において上述した図6と同一のブロックには同一符号を付してそれらの説明は省略する。以下、図6とは異なる点線で示すブロックについて説明する。   FIG. 1 is a block diagram of a welding power source for carrying out the consumable electrode arc welding end control method according to Embodiment 1 of the present invention. In the figure, the same blocks as those in FIG. 6 described above are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, blocks indicated by dotted lines different from those in FIG. 6 will be described.

短絡検出回路SDは、電圧検出信号Vdの値によって短絡状態を検出してHighレベルになる短絡検出信号Sdを出力する。アンチスチック制御切換回路ACは、この短絡検出信号Sd及び溶接開始信号Stを入力として、溶接開始信号StがHighレベルからLowレベル(溶接終了指令)に変化した後に短絡検出信号Sdが最初にHighレベル(短絡)に変化した時点でHighレベルに変化するアンチスチック制御切換信号Acを出力する。同図では、上記のアンチスチック制御切換信号Acを起動回路ON、切換回路SW及び送給制御回路FCへの同期のための入力信号とする。   The short circuit detection circuit SD detects a short circuit state based on the value of the voltage detection signal Vd, and outputs a short circuit detection signal Sd that becomes High level. The anti-stick control switching circuit AC receives the short circuit detection signal Sd and the welding start signal St, and the short circuit detection signal Sd is first set to the High level after the welding start signal St changes from the High level to the Low level (welding end command). At the time of changing to (short circuit), an anti-stick control switching signal Ac that changes to High level is output. In the figure, the above-mentioned anti-stick control switching signal Ac is used as an input signal for synchronization to the start-up circuit ON, the switching circuit SW, and the feed control circuit FC.

図2は、上記の溶接電源における溶接終了制御時のタイミングチャートである。同図(A)は溶接開始信号Stの、同図(B)は起動信号Onの、同図(C)は送給速度Wfの、同図(D)は電圧制御設定信号Vcrの、同図(E)は溶接電圧Vwの、同図(F)は溶接電流Iwの、同図(G)は短絡検出信号Sdの、同図(H)はアンチスチック制御切換信号Acの時間変化を示す。同図は上述した図8と対応している。以下、同図を参照して説明する。   FIG. 2 is a timing chart during welding end control in the above-described welding power source. FIG. 4A shows the welding start signal St, FIG. 3B shows the start signal On, FIG. 3C shows the feed speed Wf, and FIG. 4D shows the voltage control setting signal Vcr. (E) shows the welding voltage Vw, (F) shows the welding current Iw, (G) shows the short circuit detection signal Sd, and (H) shows the time change of the anti-stick control switching signal Ac. This figure corresponds to FIG. 8 described above. Hereinafter, a description will be given with reference to FIG.

時刻t1において、同図(A)に示すように、溶接開始信号StがLowレベル(溶接終了指令)に変化するが、同図(H)に示すように、アンチスチック制御切換信号AcはLowレベルのままで変化しない。このために、同図(C)に示す送給速度Wf及び同図(D)に示す電圧制御設定信号Vcrは定常時のままである。時刻t2において、同図(E)に示すように、時刻t1以降の最初の短絡が発生すると、同図(G)に示すように、短絡検出信号SdがHighレベルに変化し、これに応動して同図(H)に示すように、アンチスチック制御切換信号AcはHighレベルに変化する。これに応動して、同図(B)に示すように、起動信号Onは時刻t2から所定のアンチスチック期間Tanだけ遅延して時刻t4にLowレベルに変化する。同時に、同図(C)に示すように、送給モータMへ送給制御信号Fcによって停止指令が出力されて送給速度Wfは慣性により次第に遅くなる。同時に、同図(D)に示すように、電圧制御設定信号Vcrはアンチスチック電圧設定値Varに変化する。   At time t1, the welding start signal St changes to the low level (welding end command) as shown in FIG. 5A, but the anti-stick control switching signal Ac is at the low level as shown in FIG. It remains unchanged. For this reason, the feeding speed Wf shown in FIG. 6C and the voltage control setting signal Vcr shown in FIG. When the first short circuit after time t1 occurs at time t2 as shown in (E) of the figure, the short circuit detection signal Sd changes to High level and responds to this as shown in (G) of the figure. As shown in FIG. 5H, the anti-stick control switching signal Ac changes to the high level. In response to this, as shown in FIG. 4B, the activation signal On is delayed by a predetermined anti-stic period Tan from time t2 and changes to the low level at time t4. At the same time, as shown in FIG. 5C, a stop command is output to the feed motor M by the feed control signal Fc, and the feed speed Wf is gradually decreased due to inertia. At the same time, as shown in FIG. 4D, the voltage control setting signal Vcr changes to the anti-stick voltage setting value Var.

時刻t2において発生した短絡期間中は、上述したように、送給速度Wfは略定常時のままであるためにくびれ検出は定常時と同様に高精度に行うことができる。このために、同図(F)に示すように、時刻tbのアーク再発生時の電流値を低くすることができ、時刻t1以降の溶接終了制御期間中のスパッタ発生を抑制することができる。さらに、時刻tbのアーク再発生時点のアーク長は、くびれ検出制御によって円滑にワイヤ先端の溶滴が略全て移行しかつ電流値が低い値であるのでアーク力が弱いために、当初は略一定の低い状態になる。すなわち、アーク再発生時のアーク長は、溶接条件によってあまりバラツキがなく略一定の低い値となる。このアーク長が略一定の状態からアンチスチック制御が行われるので、同図(C)に示すように、時刻t3において送給速度Wfが略ゼロとなる前後において、同図(E)に示すように、ワイヤ燃上り高さが略所望値に達してアークが消滅する。時刻t4において、アンチスチック期間Tanが終了すると、同図(B)に示すように、起動信号OnがLowレベルに変化し、溶接電源の出力は停止する。   During the short-circuit period occurring at time t2, as described above, the feed speed Wf remains substantially steady, so that the constriction detection can be performed with high accuracy as in the steady state. For this reason, as shown in FIG. 5F, the current value at the time of arc re-occurrence at time tb can be lowered, and the occurrence of spatter during the welding end control period after time t1 can be suppressed. Furthermore, the arc length at the time of arc re-occurrence at time tb is substantially constant at first because the arc force is weak because almost all of the droplets on the wire tip are smoothly transferred by the constriction detection control and the current value is low. It becomes a low state. That is, the arc length when the arc is regenerated does not vary greatly depending on the welding conditions, and is a substantially constant low value. Since the anti-stick control is performed from a state in which the arc length is substantially constant, as shown in FIG. 5C, before and after the feeding speed Wf becomes substantially zero at time t3, as shown in FIG. In addition, the wire burn-up height reaches a substantially desired value and the arc disappears. When the anti-stic period Tan ends at time t4, as shown in FIG. 5B, the start signal On changes to the low level, and the output of the welding power source stops.

上述した実施の形態1では、溶接終了制御期間中の短絡に対しても高精度なくびれ検出制御を行うことができるので、溶接終了制御期間中のスパッタ発生を大幅に抑制することができる。さらに、溶接終了制御期間に入って最初に発生した短絡が解除されてアークが再発生したときのアーク状態が安定した一定状態であるので、これ以降のアンチスチック期間中に再び短絡が発生する可能性は低くなる。このために、再短絡によるスパッタの発生のおそれも低くなり、かつ、ワイヤ燃上り高さのバラツキも少なくなる。   In the first embodiment described above, since the squeezing detection control can be performed with high accuracy even for a short circuit during the welding end control period, the occurrence of spatter during the welding end control period can be significantly suppressed. In addition, the arc state when the short circuit that occurred first in the welding end control period is canceled and the arc is regenerated is a stable and constant state, so that a short circuit can occur again during the subsequent anti-stic period. The nature becomes low. For this reason, the possibility of occurrence of spatter due to re-short-circuiting is reduced, and variations in the wire burn-up height are reduced.

[実施の形態2]
本発明の実施の形態2は、実施の形態1記載のアンチスチック制御に切り換えて送給モータに停止指令を出力するタイミングを、溶接終了指令が入力された後に最初に発生した短絡が解除されてアークが再発生した時点とするものである。以下、この実施の形態2について実施の形態1と異なる典を説明する。
[Embodiment 2]
The second embodiment of the present invention switches the anti-stick control described in the first embodiment and outputs a stop command to the feed motor. The first short circuit that occurs after the welding end command is input is released. This is the time when the arc is regenerated. In the following, the second embodiment will be described differently from the first embodiment.

図3は、本発明の実施の形態2に係る消耗電極アーク溶接終了制御方法を実施するための溶接電源のブロック図である。同図において上述した図1と同一のブロックには同一符号を付してそれらの説明は省略する。以下、図1とは異なる点線で示すブロックについて説明する。   FIG. 3 is a block diagram of a welding power source for carrying out the consumable electrode arc welding end control method according to Embodiment 2 of the present invention. In the figure, the same blocks as those in FIG. 1 described above are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, blocks indicated by dotted lines different from those in FIG. 1 will be described.

第2アンチスチック制御切換回路AC2は、短絡検出信号Sd及び溶接開始信号Stを入力として、溶接開始信号StがHighレベルからLowレベル(溶接終了指令)に変化した後に短絡検出信号Sdが最初にHighレベル(短絡)になり再びLowレベル(アーク再発生)に変化した時点でHighレベルに変化するアンチスチック制御切換信号Acを出力する。これによって、アンチスチック制御切換信号AcがHighレベルに変化するタイミングは、実施の形態1での最初の短絡発生時から短絡解除アーク再発生時にシフトする。   The second anti-stick control switching circuit AC2 receives the short circuit detection signal Sd and the welding start signal St, and after the welding start signal St changes from the High level to the Low level (welding end command), the short circuit detection signal Sd is first High. The anti-stick control switching signal Ac that changes to the high level is output when the level (short circuit) is reached and the level changes again to the low level (arc reoccurrence). As a result, the timing at which the anti-stick control switching signal Ac changes to the high level is shifted from the time when the first short circuit occurs in the first embodiment to the time when the short circuit release arc is regenerated.

図4は、上記の溶接電源における溶接終了制御時のタイミングチャートである。同図(A)は溶接開始信号Stの、同図(B)は起動信号Onの、同図(C)は送給速度Wfの、同図(D)は電圧制御設定信号Vcrの、同図(E)は溶接電圧Vwの、同図(F)は溶接電流Iwの、同図(G)は短絡検出信号Sdの、同図(H)はアンチスチック制御切換信号Acの時間変化を示す。同図は上述した図2と対応しており、以下、図2と異なる点について説明する。   FIG. 4 is a timing chart at the time of welding end control in the above-described welding power source. FIG. 4A shows the welding start signal St, FIG. 3B shows the start signal On, FIG. 3C shows the feed speed Wf, and FIG. 4D shows the voltage control setting signal Vcr. (E) shows the welding voltage Vw, (F) shows the welding current Iw, (G) shows the short circuit detection signal Sd, and (H) shows the time change of the anti-stick control switching signal Ac. This figure corresponds to FIG. 2 described above, and the points different from FIG. 2 will be described below.

時刻t2において、同図(G)に示すように、短絡検出信号SdがLowレベルに変化すると、同図(H)に示すように、アンチスチック制御切換信号AcはHighレベルに変化する。これに応動してアンチスチック制御に切り換わり、同図(B)に示すように、起動信号Onはアンチスチック期間Tan経過後Lowレベルになり、同図(C)に示すように、送給モータへ停止指令が出力されて送給速度Wfは慣性によって次第に遅くなる。同時に、同図(D)に示すように、電圧制御設定信号Vcrは定常時の電圧設定値Vrからアンチスチック電圧設定値Varに変化する。これ以外の動作は図2と同一である。したがって、実施の形態2では、アンチスチック制御切換信号AcがHighレベルになるタイミングを最初の短絡発生時から解除時にシフトさせたものである。実施の形態2の作用効果については実施の形態1と同一である。   At time t2, when the short circuit detection signal Sd changes to the low level as shown in FIG. 5G, the anti-stick control switching signal Ac changes to the high level as shown in FIG. In response to this, the control is switched to the anti-stick control, and the start signal On becomes the low level after the anti-stick period Tan has elapsed as shown in FIG. 5B, and as shown in FIG. A stop command is output and the feed speed Wf is gradually decreased due to inertia. At the same time, as shown in FIG. 4D, the voltage control setting signal Vcr changes from the voltage setting value Vr in the steady state to the anti-stick voltage setting value Var. The other operations are the same as those in FIG. Therefore, in the second embodiment, the timing at which the anti-stick control switching signal Ac becomes the high level is shifted from the first short-circuit occurrence to the release. The operational effects of the second embodiment are the same as those of the first embodiment.

上述した実施の形態1〜2では、アンチスチック制御方法として所定期間中アンチスチック電圧を印加する方法を例示した。しかし、本発明におけるアンチスチック制御方法としては、従来技術の項で上述したように、アンチスチック期間中の溶接電圧が所定値に達した時点で出力を停止する方法、所定電流を所定期間通電する方法等の種々の従来技術であっても良い。   In the above-described first and second embodiments, a method of applying an anti-stic voltage for a predetermined period is illustrated as an anti-stick control method. However, as the anti-stick control method in the present invention, as described above in the section of the prior art, a method of stopping output when the welding voltage during the anti-stic period reaches a predetermined value, and applying a predetermined current for a predetermined period. Various conventional techniques such as methods may be used.

本発明の実施の形態1に係る消耗電極アーク溶接終了制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for implementing the consumable electrode arc welding completion | finish control method which concerns on Embodiment 1 of this invention. 図1の溶接電源における溶接終了制御時のタイミングチャートである。It is a timing chart at the time of the welding end control in the welding power supply of FIG. 本発明の実施の形態2に係る消耗電極アーク溶接終了制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power source for implementing the consumable electrode arc welding completion | finish control method which concerns on Embodiment 2 of this invention. 図3の溶接電源における溶接終了制御時のタイミングチャートである。It is a timing chart at the time of the welding end control in the welding power supply of FIG. 従来技術における消耗電極アーク溶接の電流・電圧波形図である。It is a current and voltage waveform diagram of consumable electrode arc welding in the prior art. 従来技術における消耗電極アーク溶接終了制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power supply for implementing the consumable electrode arc welding completion | finish control method in a prior art. 図6の溶接電源における定常時のタイミングチャートである。It is a timing chart at the time of the steady state in the welding power supply of FIG. 図6の溶接電源における溶接終了制御時のタイミングチャートである。It is a timing chart at the time of the welding end control in the welding power supply of FIG.

符号の説明Explanation of symbols

1 溶接ワイヤ
1a 溶滴
1b くびれ
2 母材
2a 溶融池
3 アーク
AC アンチスチック制御切換回路
Ac アンチスチック制御切換信号
AC2 第2アンチスチック制御切換回路
DR 駆動回路
Dr 駆動信号
DRT トランジスタ駆動回路
Drt トランジスタ駆動信号
EA 誤差増幅回路
Ea 誤差増幅信号
FC 送給制御回路
Fc 送給制御信号
Ia アーク再発生時電流値
Iw 溶接電流
M 送給モータ
ND くびれ検出制御回路
Nd くびれ検出信号
ON 起動回路
On 起動信号
PM 電源主回路
R 抵抗器
SD 短絡検出回路
Sd 短絡検出信号
St 溶接開始信号
SW 切換回路
Tan アンチスチック期間
TR トランジスタ
Ts 短絡期間
VAR アンチスチック電圧設定回路
Var アンチスチック電圧設定(値/信号)
Vcr 電圧制御設定信号
VD 電圧検出回路
Vd 電圧検出信号
Vh 限界電圧値
VR 電圧設定回路
Vr 電圧設定(値/信号)
Vs 短絡電圧値
Vta 短絡/アーク判別値
Vtn くびれ検出基準値
Vw 溶接電圧
Wf 送給速度
ΔV 電圧上昇値

DESCRIPTION OF SYMBOLS 1 Welding wire 1a Droplet 1b Constriction 2 Base material 2a Weld pool 3 Arc AC Antistic control switching circuit Ac Antistic control switching signal AC2 2nd antistic control switching circuit DR Drive circuit Dr Drive signal DRT Transistor drive circuit Drt Transistor drive signal EA Error amplification circuit Ea Error amplification signal FC Feed control circuit Fc Feed control signal Ia Arc regeneration current value Iw Welding current M Feed motor ND Constriction detection control circuit Nd Constriction detection signal ON Start circuit On Start signal PM Main power Circuit R Resistor SD Short-circuit detection circuit Sd Short-circuit detection signal St Welding start signal SW Switching circuit Tan Anti-stic period TR Transistor Ts Short-circuit period VAR Anti-stic voltage setting circuit Var Anti-stic voltage setting (value / signal)
Vcr Voltage control setting signal VD Voltage detection circuit Vd Voltage detection signal Vh Limit voltage value VR Voltage setting circuit Vr Voltage setting (value / signal)
Vs Short-circuit voltage value Vta Short-circuit / arc discrimination value Vtn Necking detection reference value Vw Welding voltage Wf Feeding speed ΔV Voltage increase value

Claims (2)

溶接電源に溶接終了指令が入力されると送給モータに停止指令を出力し、溶接ワイヤが停止したときのワイヤ燃上り高さが略所望値になるように溶接電源の出力をアンチスチック制御する消耗電極アーク溶接終了制御方法において、
前記溶接終了指令が入力された後の最初の短絡発生を検出して前記送給モータに前記停止指令を出力し、続いてこの短絡期間中に溶滴のくびれ現象を検出して溶接電流を急減させて低い値に維持してアークを再発生させ、アーク長が略一定の低い状態でアークが再発生すると前記アンチスチック制御を行いワイヤ燃上り高さを所望値にする、ことを特徴とする消耗電極アーク溶接終了制御方法。
When a welding end command is input to the welding power source, a stop command is output to the feed motor, and the output of the welding power source is controlled in an anti-stick manner so that the wire burn-up height when the welding wire stops is approximately the desired value. In the consumable electrode arc welding end control method,
The first short-circuit occurrence after the welding end command is input is detected and the stop command is output to the feed motor, and then the welding current is rapidly reduced by detecting the constriction phenomenon of the droplet during the short-circuit period. The arc is regenerated by maintaining it at a low value, and when the arc is regenerated in a state where the arc length is substantially constant, the anti-stick control is performed to set the wire burnup height to a desired value. Consumable electrode arc welding end control method.
請求項1記載の送給モータに停止指令を出力するタイミングを、前記アーク再発生時点とする、ことを特徴とする消耗電極アーク溶接終了制御方法。

2. A consumable electrode arc welding end control method, characterized in that a timing at which a stop command is output to the feeding motor according to claim 1 is the arc re-generation time.

JP2005129250A 2005-04-27 2005-04-27 Consumable electrode arc welding end control method Expired - Fee Related JP4620519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005129250A JP4620519B2 (en) 2005-04-27 2005-04-27 Consumable electrode arc welding end control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005129250A JP4620519B2 (en) 2005-04-27 2005-04-27 Consumable electrode arc welding end control method

Publications (2)

Publication Number Publication Date
JP2006305584A JP2006305584A (en) 2006-11-09
JP4620519B2 true JP4620519B2 (en) 2011-01-26

Family

ID=37473081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129250A Expired - Fee Related JP4620519B2 (en) 2005-04-27 2005-04-27 Consumable electrode arc welding end control method

Country Status (1)

Country Link
JP (1) JP4620519B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039104A1 (en) * 2010-09-24 2012-03-29 パナソニック株式会社 Welding machine
JP5944664B2 (en) * 2011-12-28 2016-07-05 株式会社ダイヘン Arc welding system
EP3342521B1 (en) * 2012-03-16 2019-08-21 Panasonic Intellectual Property Management Co., Ltd. Arc welding device
JP6112991B2 (en) * 2013-06-25 2017-04-12 株式会社ダイヘン Method for detecting wire tip particle size at the end of welding and arc start control method using the same
JP6599505B2 (en) * 2018-04-27 2019-10-30 株式会社ダイヘン Arc end adjusting device, welding system, arc end adjusting method, and computer program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166380A (en) * 1983-03-14 1984-09-19 Mitsubishi Electric Corp Ending method of consumable electrode type arc welding
JPS59206159A (en) * 1983-05-04 1984-11-21 Shinko Electric Co Ltd Method and device for controlling welding power source
JPS60102276A (en) * 1983-11-09 1985-06-06 Hitachi Seiko Ltd Arc welding machine
JPS60108174A (en) * 1983-11-17 1985-06-13 Kobe Steel Ltd Output controlling method of welding electric power source
JPS62176680A (en) * 1986-01-30 1987-08-03 Toyota Motor Corp Antistick control device for arc welding
JPH04210872A (en) * 1990-12-10 1992-07-31 Daihen Corp Consumable electrode arc welding control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457976A (en) * 1987-08-28 1989-03-06 Mitsubishi Electric Corp Control circuit for pulse arc welding machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166380A (en) * 1983-03-14 1984-09-19 Mitsubishi Electric Corp Ending method of consumable electrode type arc welding
JPS59206159A (en) * 1983-05-04 1984-11-21 Shinko Electric Co Ltd Method and device for controlling welding power source
JPS60102276A (en) * 1983-11-09 1985-06-06 Hitachi Seiko Ltd Arc welding machine
JPS60108174A (en) * 1983-11-17 1985-06-13 Kobe Steel Ltd Output controlling method of welding electric power source
JPS62176680A (en) * 1986-01-30 1987-08-03 Toyota Motor Corp Antistick control device for arc welding
JPH04210872A (en) * 1990-12-10 1992-07-31 Daihen Corp Consumable electrode arc welding control method

Also Published As

Publication number Publication date
JP2006305584A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4875390B2 (en) Constriction detection control method for consumable electrode arc welding
JP4875311B2 (en) Current control method for constriction detection in consumable electrode arc welding
EP1985400B1 (en) Method of controlling arc welding and welding device
JP4907892B2 (en) Constriction detection control method for consumable electrode arc welding
JP6129188B2 (en) Method and system for suppressing spatter in a pulsed arc welding process
JP4965311B2 (en) Constriction detection control method for consumable electrode AC arc welding
JP2006263757A (en) Method for controlling arc length in pulse arc welding
JP4620519B2 (en) Consumable electrode arc welding end control method
JP2009148819A (en) Method for detecting/controlling constriction in consumable electrode arc welding
JP4773044B2 (en) Feed control method for arc welding with short circuit
JP5808947B2 (en) Constriction detection control method for consumable electrode arc welding
JP5545996B2 (en) Constriction detection control method for consumable electrode arc welding
CN102380691B (en) Necking detecting and controlling method for melted-electrode arc welding
JP5710011B2 (en) Method and system for suppressing spatter in a pulsed arc welding process
JP5042527B2 (en) Welding end control method for consumable electrode arc welding
JP4490011B2 (en) Arc start control method
JP2022185997A (en) Pulse arc welding power source
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP4545483B2 (en) Welding power supply and welding equipment with current suddenly decreasing function when detecting constriction
JP4847082B2 (en) Welding power supply with current suddenly decreasing function when detecting constriction
JP2020082195A (en) Method for controlling arc welding system to reduce spatter
JP2007222888A (en) Arc start control method for consumable electrode arc welding
JP2008068283A (en) Method of controlling output of consumable electrode arc welding source
EP3974092B1 (en) Arc welding method
JP2008207215A (en) Method for detecting/controlling constriction in consumable electrode arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4620519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees