JP2008068283A - Method of controlling output of consumable electrode arc welding source - Google Patents

Method of controlling output of consumable electrode arc welding source Download PDF

Info

Publication number
JP2008068283A
JP2008068283A JP2006248982A JP2006248982A JP2008068283A JP 2008068283 A JP2008068283 A JP 2008068283A JP 2006248982 A JP2006248982 A JP 2006248982A JP 2006248982 A JP2006248982 A JP 2006248982A JP 2008068283 A JP2008068283 A JP 2008068283A
Authority
JP
Japan
Prior art keywords
welding
output
feeding
power source
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006248982A
Other languages
Japanese (ja)
Other versions
JP4875443B2 (en
Inventor
Futoshi Nishisaka
太志 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2006248982A priority Critical patent/JP4875443B2/en
Publication of JP2008068283A publication Critical patent/JP2008068283A/en
Application granted granted Critical
Publication of JP4875443B2 publication Critical patent/JP4875443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform control in consumable electrode arc welding in such a manner that welding is not interrupted while preventing buckling of a welding wire caused by an increase in a feed load. <P>SOLUTION: A method for controlling the output of a consumable electrode arc welding source is provided for outputting a torque excess signal Td when a motor current Im flowing through a feed motor M exceeds a standard current value It during welding, and stopping the feed of the feed motor M and the output of a welding source PS based on the torque excess signal Td. In the method, when the welding state upon the output of the torque excess signal Td lies in a short circuit state, the feed of the feed motor M is stopped and the output of the welding source PS is continued, and when the welding state upon the output of the torque excess signal Td does not lie in a short circuit state, the feed of the feed motor M and the output of the welding source PS are stopped. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶接ワイヤの座屈による作業効率の低下を抑制するための消耗電極アーク溶接電源の出力制御方法に関するものである。   The present invention relates to an output control method of a consumable electrode arc welding power source for suppressing a decrease in work efficiency due to buckling of a welding wire.

消耗電極アーク溶接では、送給モータによって溶接ワイヤを溶接部に送給すると共に、溶接電源から溶接電圧・電流を供給してアークを発生させて溶接が行われる。溶接ワイヤは送給機からコンジットケーブル内のライナ内を通って溶接トーチ本体に送られる。溶接ワイヤは送給負荷が重くなると座屈が発生して送給ができなくなる。送給負荷が重くなる原因には以下のように種々の場合がある。
(1)ライナ内部等に溶接ワイヤの送給による切削カスが堆積し送給負荷が増大する(送給経路の送給負荷の増大)。
(2)溶接ワイヤが給電チップ内部等で溶着し送給負荷が増大する(溶着による送給負荷の増大)。
(3)アークスタート時又は定常溶接時に数十msを越える長期短絡が発生し、溶接ワイヤ先端が溶融せずに母材に押しつけられて送給負荷が増大する(長期短絡による送給負荷の増大)。
In the consumable electrode arc welding, a welding wire is fed to a welding part by a feeding motor, and welding voltage / current is supplied from a welding power source to generate an arc to perform welding. The welding wire is fed from the feeder to the welding torch body through the liner in the conduit cable. When the feeding load becomes heavy, the welding wire is buckled and cannot be fed. There are various reasons why the feeding load becomes heavy as follows.
(1) Cutting waste due to feeding of the welding wire accumulates inside the liner and the like, and the feeding load increases (increase in the feeding load of the feeding path).
(2) The welding wire is welded inside the power feed tip and the like, and the feeding load is increased (increasing the feeding load due to welding).
(3) A long-term short circuit exceeding several tens of ms occurs at the time of arc start or steady welding, and the welding wire tip is not melted and pressed against the base metal, increasing the feeding load (increasing feeding load due to long-term short-circuiting) ).

上述した溶接ワイヤの座屈を防止する方法として以下に示す従来技術が慣用されている。すなわち、送給負荷を送給モータのトルク量で検出し、送給負荷が増大しトルク量が基準値を超えると座屈発生のおそれが高まるので溶接ワイヤの送給及び溶接電源の出力を停止する。通常、トルク量の検出は送給モータを流れる電流(モータ電流)の値によって検出する(例えば、特許文献1〜3参照)。   The following prior art is commonly used as a method for preventing the above-described welding wire buckling. In other words, the feeding load is detected by the torque amount of the feeding motor, and if the feeding load increases and the torque amount exceeds the reference value, the possibility of buckling increases, so the welding wire feeding and the welding power supply output are stopped. To do. Usually, the amount of torque is detected by the value of the current (motor current) flowing through the feeding motor (see, for example, Patent Documents 1 to 3).

特開平5−31577号公報JP-A-5-31577 特開平8−215846号公報JP-A-8-215846 特開2003−200265号公報Japanese Patent Laid-Open No. 2003-200265

上述した座屈防止方法が作動した場合、溶接途中であっても溶接ワイヤの送給及び溶接電源の出力を強制的に停止する。このために座屈防止方法が作動したワークは溶接不良となる。さらに、座屈防止方法が作動すると溶接ラインが復旧のために長く停止することになるために、生産効率が低下する。溶接ワイヤの座屈が発生する原因には上述したように種々の種類がある。したがって、本発明では、送給負荷の増大の原因をタイプ別に判別することによって、座屈を防止しつつ溶接の中断をできるだけ回避することができる消耗電極アーク溶接電源の出力制御方法を提供する。   When the buckling prevention method described above is activated, feeding of the welding wire and output of the welding power source are forcibly stopped even during welding. For this reason, the work in which the buckling prevention method is operated is poorly welded. In addition, when the buckling prevention method is activated, the welding line is stopped for a long time for recovery, so that the production efficiency is lowered. As described above, there are various types of causes for occurrence of buckling of the welding wire. Therefore, the present invention provides an output control method for a consumable electrode arc welding power source capable of avoiding buckling as much as possible and discriminating the cause of the increase in feeding load by type, while avoiding as much as possible the interruption of welding.

上述した課題を解決するために、第1の発明は、送給モータによって溶接ワイヤを送給すると共に溶接電源から溶接電圧・電流を供給して溶接を行い、溶接中に前記送給モータを流れるモータ電流が基準電流値を越えたときはトルク超過信号を出力し、このトルク超過信号に基づいて前記送給モータの送給及び前記溶接電源の出力を停止する消耗電極アーク溶接電源の出力制御方法において、
前記トルク超過信号が出力されたときの溶接状態が短絡状態であるときは、前記送給モータの送給は停止し前記溶接電源の出力は継続し、
前記トルク超過信号が出力されたときの溶接状態が短絡状態でないときは、前記送給モータの送給及び前記溶接電源の出力を停止する、ことを特徴とする消耗電極アーク溶接電源の出力制御方法である。
In order to solve the above-described problem, the first invention is to feed a welding wire by a feeding motor and to supply a welding voltage / current from a welding power source to perform welding, and to flow through the feeding motor during welding. Output control method of consumable electrode arc welding power source that outputs torque excess signal when motor current exceeds reference current value and stops feeding of feeding motor and output of welding power source based on this torque excess signal In
When the welding state when the torque excess signal is output is a short circuit state, the feeding of the feeding motor is stopped and the output of the welding power source is continued,
An output control method for a consumable electrode arc welding power source, wherein the feeding of the feeding motor and the output of the welding power source are stopped when the welding state when the torque excess signal is output is not a short circuit state It is.

第2の発明は、前記トルク超過信号が出力されたときの溶接状態が短絡状態でない状態であり、かつ、アーク長が基準アーク長よりも長いときにのみ、前記送給モータの送給及び前記溶接電源の出力を停止する、ことを特徴とする第1の発明記載の消耗電極アーク溶接電源の出力制御方法である。   2nd invention is a state where the welding state when the torque excess signal is output is not in a short-circuit state, and only when the arc length is longer than a reference arc length, the feeding of the feeding motor and the The output control method for a consumable electrode arc welding power source according to the first aspect of the invention, wherein the output of the welding power source is stopped.

上記第1の発明によれば、アークスタート時、定常溶接時等において長期短絡が発生し送給負荷が増大した場合、この状態を判別して溶接電源の出力は継続したままで送給のみを停止する。これによって、溶接を強制終了することなく座屈を防止することができる。このために、溶接中断によってワークを溶接不良にすることなく、溶接ラインを停止することもない。長期短絡を起因とする座屈の発生回数は全座屈発生回数の中でかなりの比率を占めるので、溶接中断を回避できる効果は大きい。   According to the first aspect of the invention, when a long-term short circuit occurs at the time of arc start, steady welding or the like and the feeding load increases, this state is discriminated and only the feeding is performed while the output of the welding power source continues. Stop. Thus, buckling can be prevented without forcibly terminating welding. For this reason, the welding line is not stopped by welding interruption, and the welding line is not stopped. The number of occurrences of buckling due to a long-term short circuit occupies a considerable proportion of the total number of occurrences of buckling, so the effect of avoiding welding interruption is great.

さらに、上記第2の発明によれば、第1の発明の効果に加えて、送給モータのトルク量が基準値よりも超過したときに、短絡状態でなくかつアーク長が基準値よりも超過しているときにのみ出力及び送給を停止する。このために、座屈防止の検出制度が向上する。   Furthermore, according to the second aspect of the invention, in addition to the effect of the first aspect, when the torque amount of the feed motor exceeds the reference value, the short circuit state is not established and the arc length exceeds the reference value. Output and feed are stopped only when For this reason, the detection system for preventing buckling is improved.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係る消耗電極アーク溶接電源の出力制御方法を実施するための溶接電源PSのブロック図である。以下、同図を参照して各ブロックについて説明する。
[Embodiment 1]
FIG. 1 is a block diagram of a welding power source PS for carrying out an output control method for a consumable electrode arc welding power source according to Embodiment 1 of the present invention. Hereinafter, each block will be described with reference to FIG.

出力制御回路PMは、三相200V等の商用電源を入力としてインバータ制御等の出力制御を行い、アーク溶接に適した溶接電圧Vw及び溶接電流Iwを出力する。この出力制御回路PMは、後述する出力停止信号PsがHighレベルのときは出力を停止する。溶接ワイヤ1は送給モータMに結合された送給ロール5の回転によって溶接トーチ4のケーブル内を送給されて、母材2との間にアーク3が発生し溶接が行われる。   The output control circuit PM performs output control such as inverter control with a commercial power source such as three-phase 200V as an input, and outputs a welding voltage Vw and a welding current Iw suitable for arc welding. The output control circuit PM stops output when an output stop signal Ps described later is at a high level. The welding wire 1 is fed through the cable of the welding torch 4 by the rotation of the feed roll 5 coupled to the feed motor M, and an arc 3 is generated between the base metal 2 and welding is performed.

送給モータ制御回路MCは、上記の送給モータMの回転速度を制御する。この送給モータ制御回路MCは、後述する送給停止信号MsがHighレベルのときは送給モータMの回転を停止させる。モータ電流検出回路IMは、送給モータMにかかるトルク量に略比例するモータ電流を検出して、モータ電流検出信号Imを出力する。トルク超過判別回路TDは、このモータ電流検出信号Imの値が基準電流値Itを越えたときにHighレベルとなるトルク超過信号Tdを出力する。   The feed motor control circuit MC controls the rotational speed of the feed motor M described above. The feed motor control circuit MC stops the rotation of the feed motor M when a feed stop signal Ms described later is at a high level. The motor current detection circuit IM detects a motor current that is substantially proportional to the amount of torque applied to the feeding motor M, and outputs a motor current detection signal Im. The torque excess determination circuit TD outputs a torque excess signal Td that becomes High level when the value of the motor current detection signal Im exceeds the reference current value It.

電圧検出回路VDは、溶接電圧Vwを検出して電圧検出信号Vdを出力する。短絡判別回路SDは、この電圧検出信号Vdの値によって溶接状態が短絡状態にあることを判別して、短絡判別信号Sdを出力する。   The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The short circuit determination circuit SD determines that the welding state is a short circuit state based on the value of the voltage detection signal Vd, and outputs a short circuit determination signal Sd.

座屈防止回路ZPは、上記のトルク超過信号TdがHighレベル(トルク超過)になったときに、
(1)上記の短絡判別信号SdがHighレベル(短絡)であれば出力停止信号Ps=Lowレベル及び送給停止信号Ms=Highレベルを出力し、その後に短絡判別信号SdがLowレベル(非短絡)になると出力停止信号Ps=Lowレベル及び送給停止信号Ms=Lowレベルを出力し、
(2)上記の短絡判別信号SdがLowレベル(非短絡)であれば出力停止信号Ps=Highレベル及び送給停止信号Ms=Highレベルを出力する。すなわち、トルク超過信号Td=Highレベルになったときに溶接状態が短絡状態でないときは出力制御回路PMの出力及び送給を共に停止する。他方、トルク超過信号Td=Highレベルになったときの溶接状態が短絡状態であるときは出力制御回路PMの出力は継続し、送給のみを停止する。この場合、出力を継続することによって短絡を解除し、短絡が解除された後は送給を再開する。
The buckling prevention circuit ZP, when the above torque excess signal Td becomes High level (torque excess),
(1) If the short circuit determination signal Sd is at a high level (short circuit), an output stop signal Ps = Low level and a feed stop signal Ms = High level are output, and then the short circuit determination signal Sd is at a low level (non-short circuit) ), An output stop signal Ps = Low level and a feed stop signal Ms = Low level are output,
(2) If the short circuit determination signal Sd is at the Low level (non-short circuit), the output stop signal Ps = High level and the feed stop signal Ms = High level are output. That is, if the welding state is not a short-circuited state when the torque excess signal Td = High level, both output and feeding of the output control circuit PM are stopped. On the other hand, when the welding state when the torque excess signal Td = High level is a short circuit state, the output of the output control circuit PM is continued and only the feeding is stopped. In this case, the short circuit is released by continuing the output, and the feeding is resumed after the short circuit is released.

図2は、アークスタート時に長期短絡が発生して送給負荷が増大したときの図1で上述した溶接電源PSの各信号のタイミングチャートである。同図は、本発明の実施の形態1に係る消耗電極アーク溶接電源の出力制御方法を示している。同図(A)は溶接電圧Vwを示し、同図(B)は溶接電流Iwを示し、同図(C)はモータ電流検出信号Imを示し、同図(D)はトルク超過信号Tdを示し、同図(E)は短絡判別信号Sdを示し、同図(F)は出力停止信号Psを示し、同図(G)は送給停止信号Msを示す。以下、同図を参照して説明する。   FIG. 2 is a timing chart of each signal of the welding power source PS described above with reference to FIG. 1 when a long-term short circuit occurs at the arc start and the feed load increases. This figure shows the output control method of the consumable electrode arc welding power source according to Embodiment 1 of the present invention. (A) shows the welding voltage Vw, (B) shows the welding current Iw, (C) shows the motor current detection signal Im, and (D) shows the torque excess signal Td. (E) shows the short circuit determination signal Sd, (F) shows the output stop signal Ps, and (G) shows the feed stop signal Ms. Hereinafter, a description will be given with reference to FIG.

時刻t1において溶接開始指令(図示なし)が外部から入力されると、同図(A)に示すように、溶接電圧Vwとして無負荷電圧が溶接ワイヤ・母材間に印加し、溶接ワイヤは遅い速度のスローダウン速度で送給されるので、同図(C)に示すように、定常溶接時よりも小さなモータ電流Imが通電する。   When a welding start command (not shown) is input from the outside at time t1, a no-load voltage is applied between the welding wire and the base material as the welding voltage Vw as shown in FIG. Since it is fed at a slow-down speed, a motor current Im smaller than that during steady welding is energized as shown in FIG.

時刻t2において溶接ワイヤが母材に到達し接触すると、同図(A)に示すように、溶接電圧Vwは低い値の短絡電圧値になり、同図(B)に示すように、溶接電流Iwが通電する。アークスタート時は溶接ワイヤの温度が低いためにアークに円滑に移行できずに数十msを超える長期短絡が発生しやすい。同図もこの場合である。時刻t2において送給速度が定常の送給速度に変化するので、同図(C)に示すように、モータ電流Imは増加する。さらに、同図(E)に示すように、短絡判別信号SdはHighレベルに変化する。短絡状態が継続されているので、ワイヤ先端が母材に押し付けられて突っ立ち送給負荷が増大し送給モータのトルク量が増大する。これに伴って、同図(C)に示すように、モータ電流Imが増大する。   When the welding wire reaches and comes into contact with the base metal at time t2, the welding voltage Vw becomes a low short-circuit voltage value as shown in FIG. 9A, and the welding current Iw is shown in FIG. Is energized. At the time of arc start, since the temperature of the welding wire is low, it is not possible to smoothly shift to the arc, and a long-term short circuit exceeding tens of ms is likely to occur. This is also the case in this figure. Since the feed speed changes to a steady feed speed at time t2, the motor current Im increases as shown in FIG. Further, as shown in FIG. 5E, the short circuit determination signal Sd changes to the high level. Since the short-circuit state is continued, the tip of the wire is pressed against the base material, and the feed load increases suddenly, increasing the torque amount of the feed motor. Accordingly, the motor current Im increases as shown in FIG.

時刻t3において、同図(C)に示すように、モータ電流Imが基準電流値Itを超えると、同図(D)に示すように、トルク超過信号TdがHighレベルになる。この時刻t3時点において、同図(E)に示すように、短絡判別信号SdがHighレベル(短絡)であるので、同図(F)に示すように、出力停止信号PsはLowレベル(出力継続)のままであり、同図(G)に示すように、送給停止信号MsはHighレベル(送給停止)になる。したがって、出力は継続されるので、同図(B)に示すように、溶接電流Iwの通電は継続される。他方、このままでは座屈のおそれがあるために、送給は停止させる。   At time t3, when the motor current Im exceeds the reference current value It as shown in FIG. 10C, the torque excess signal Td becomes High level as shown in FIG. At time t3, the short circuit determination signal Sd is at a high level (short circuit) as shown in FIG. 8E, and therefore the output stop signal Ps is at a low level (output continuation) as shown in FIG. ), And as shown in FIG. 5G, the feed stop signal Ms becomes High level (feed stop). Therefore, since the output is continued, the welding current Iw is continuously energized as shown in FIG. On the other hand, since there is a possibility of buckling in this state, feeding is stopped.

時刻t4において溶接電流Iwの通電によって、同図(A)に示すように、短絡が解除されてアークが発生すると、同図(E)に示すように、短絡判別信号SdがLowレベルに変化する。これに応動して、同図(G)に示すように、送給停止信号MsはLowレベルに戻るので、溶接ワイヤの送給が再開され、同図(C)に示すように、定常送給速度に対応したモータ電流Imが通電する。時刻t4以降、同図(A)及び(B)に示すように、定常の溶接電圧Vw及び溶接電流Iwが出力される。同図はパルスアーク溶接の場合であるので、パルス電圧が印加し、パルス電流が通電する。   When the welding current Iw is energized at time t4 and the short circuit is released and an arc is generated as shown in FIG. 5A, the short circuit determination signal Sd changes to the low level as shown in FIG. . In response to this, the feed stop signal Ms returns to the low level as shown in FIG. 5G, so that the feeding of the welding wire is resumed, and the steady feed as shown in FIG. A motor current Im corresponding to the speed is energized. After time t4, the steady welding voltage Vw and the welding current Iw are output as shown in FIGS. Since this figure is a case of pulse arc welding, a pulse voltage is applied and a pulse current is energized.

図3は、定常溶接中に長期短絡が発生したときの図1で上述した溶接電源PSの各信号のタイミングチャートである。同図は上述した図2と対応しており、同図(A)〜(G)の各信号名は同一である。以下、同図を参照して説明する。   FIG. 3 is a timing chart of each signal of the welding power source PS described above with reference to FIG. 1 when a long-term short circuit occurs during steady welding. This figure corresponds to FIG. 2 described above, and the signal names in FIGS. (A) to (G) are the same. Hereinafter, a description will be given with reference to FIG.

時刻t1において短絡が発生すると、同図(E)に示すように、短絡は判別信号SdがHighレベルになる。この短絡が長く続くとワイヤ先端が母材に突っ立った状態になるために送給負荷が増大し、同図(C)に示すように、モータ電流Imが増加する。時刻t2において、同図(C)に示すように、モータ電流Imが基準電流値Itを超えると、同図(D)に示すように、トルク超過信号TdがHighレベルになる。この時点における短絡判別信号SdはHighレベルであるので、同図(F)に示すように、出力停止信号PsはLowレベルのままであり、同図(G)に示すように、送給停止信号MsはHighレベルに変化する。したがって、溶接電源の出力は継続するので、同図(B)に示すように、溶接電流Iwの通電は継続される。他方、送給は停止するので、座屈は防止することができる。   When a short circuit occurs at time t1, as shown in FIG. 5E, the determination signal Sd becomes High level as shown in FIG. If this short circuit continues for a long time, the wire tip protrudes from the base material, so that the feeding load increases, and the motor current Im increases as shown in FIG. At time t2, when the motor current Im exceeds the reference current value It as shown in FIG. 8C, the torque excess signal Td becomes High level as shown in FIG. Since the short-circuit determination signal Sd at this time is at the high level, the output stop signal Ps remains at the low level as shown in FIG. 5F, and the feed stop signal as shown in FIG. Ms changes to a high level. Therefore, since the output of the welding power source is continued, the energization of the welding current Iw is continued as shown in FIG. On the other hand, since feeding stops, buckling can be prevented.

時刻t3において溶接電流Iwの通電によって長期短絡が解除されてアークが発生すると、同図(A)に示すように、溶接電圧Vwは短絡電圧値からアーク電圧値に変化し、同図(E)に示すように、短絡判別信号SdはLowレベルに変化する。これに応動して、同図(G)に示すように、送給停止信号MsがLowレベルに変化し、溶接ワイヤの送給が再開される。これ以降は定常溶接状態になり、同図(A)に示すように、定常の溶接電圧Vwが印可し、同図(B)に示すように、定常の溶接電流Iwが通電する。   When the arc is generated by releasing the long-term short-circuit by applying the welding current Iw at time t3, the welding voltage Vw changes from the short-circuit voltage value to the arc voltage value as shown in FIG. As shown, the short circuit determination signal Sd changes to the Low level. In response to this, as shown in FIG. 5G, the feed stop signal Ms changes to the Low level, and the feed of the welding wire is resumed. Thereafter, the welding state is in a steady state, and a steady welding voltage Vw is applied as shown in FIG. 9A, and a steady welding current Iw is applied as shown in FIG.

上述した実施の形態1によれば、アークスタート時、定常溶接時等において長期短絡が発生し送給負荷が増大した場合、この状態を判別して溶接電源の出力は継続したままで送給のみを停止する。これによって、溶接を強制終了することなく座屈を防止することができる。このために、溶接中断によってワークを溶接不良にすることなく、溶接ラインを停止することもない。長期短絡を起因とする座屈の発生回数は全座屈発生回数の中でかなりの比率を占めるので、溶接中断を回避できる効果は大きい。   According to the first embodiment described above, when a long-term short circuit occurs at the time of arc start, steady welding, etc., and the feeding load increases, this state is discriminated and only the feeding is performed while the output of the welding power source continues. To stop. Thus, buckling can be prevented without forcibly terminating welding. For this reason, the welding line is not stopped by welding interruption, and the welding line is not stopped. The number of occurrences of buckling due to a long-term short circuit occupies a considerable proportion of the total number of occurrences of buckling, so the effect of avoiding welding interruption is great.

[実施の形態2]
図4は、本発明の実施の形態2に係る極性切換短絡アーク溶接方法を実施するための溶接電源PSのブロック図である。同図において上述した図1と同一のブロックには同一符号を付してそれらの説明は省略する。以下、図1と異なるブロックについて説明する。
[Embodiment 2]
FIG. 4 is a block diagram of a welding power source PS for carrying out the polarity switching short-circuit arc welding method according to Embodiment 2 of the present invention. In the figure, the same blocks as those in FIG. 1 described above are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, a block different from FIG. 1 will be described.

アーク長超過判別回路ADは、電圧検出信号Vdの値が基準電圧値Vtを超えたときにHighレベルになるアーク長超過信号Adを出力する。これはアーク長が溶接電圧値に略比例することを利用している。上述したように、送給経路の送給負荷の増大又は溶着による送給負荷の増大に起因しても座屈が発生する。このような状態になると、送給が遅くなったり、停止したりしてアーク長が過大に長くなる。したがって、アーク長が基準アーク長よりも長くなったときは送給負荷が増大して座屈のおそれがあるときである。このような送給負荷の増大は上述したトルク超過信号Tdによっても検出することができる。しかし、送給経路の送給負荷が過渡的に増大したり、溶着が一時的に発生して送給負荷が一時的に増大することがある。このために、トルク超過判別回路TDの検出感度が高く(基準電流値Itを低くする)すると誤検出を起こすおそれが高くなる。他方、検出感度を低く(基準電流値Itを高くする)すると、座屈が発生する前に検出することができない場合が起きる。この問題を改善するために、本実施の形態では、トルク超過信号Tdとアーク長超過信号Adとの論理席(AND)を取り、検出精度の向上を図るものである。   The arc length excess determining circuit AD outputs an arc length excess signal Ad that becomes a high level when the value of the voltage detection signal Vd exceeds the reference voltage value Vt. This utilizes the fact that the arc length is approximately proportional to the welding voltage value. As described above, buckling also occurs due to an increase in the feeding load of the feeding path or an increase in the feeding load due to welding. In such a state, the arc length becomes excessively long because the feeding is delayed or stopped. Therefore, when the arc length becomes longer than the reference arc length, the feeding load increases and there is a risk of buckling. Such an increase in the feeding load can also be detected by the torque excess signal Td described above. However, the feeding load on the feeding path may increase transiently, or welding may temporarily occur and the feeding load may temporarily increase. For this reason, when the detection sensitivity of the torque excess discrimination circuit TD is high (the reference current value It is lowered), there is a high risk of erroneous detection. On the other hand, if the detection sensitivity is lowered (the reference current value It is increased), there is a case where the detection cannot be performed before buckling occurs. In order to improve this problem, in this embodiment, the logical seat (AND) of the torque excess signal Td and the arc length excess signal Ad is taken to improve the detection accuracy.

第2座屈防止回路ZP2は、トルク超過信号TdがHighレベル(トルク超過)になったときに、
(1)短絡判別信号SdがHighレベル(短絡)であれば出力停止信号Ps=Lowレベル及び送給停止信号Ms=Highレベルを出力し、その後に短絡判別信号SdがLowレベル(非短絡)になると出力停止信号Ps=Lowレベル及び送給停止信号Ms=Lowレベルを出力し、
(2)短絡判別信号SdがLowレベル(非短絡)であり、かつ、上記のアーク長超過信号AdがHighレベル(アーク長超過)であれば、出力停止信号Ps=Highレベル及び送給停止信号Ms=Highレベルを出力する。すなわち、トルク超過信号Td=Highレベルになったときに溶接状態がアーク長超過状態であるときは出力制御回路PM及び送給を共に停止する。他方、トルク超過信号Td=Highレベルになったときの溶接状態が短絡状態であるときは出力制御回路PMの出力は継続し、送給のみを停止する。この場合、出力を継続することによって短絡を解除し、短絡が解除された後は送給を再開する。
The second buckling prevention circuit ZP2 is configured such that when the torque excess signal Td becomes High level (torque excess),
(1) If the short circuit determination signal Sd is High level (short circuit), an output stop signal Ps = Low level and a feed stop signal Ms = High level are output, and then the short circuit determination signal Sd is Low level (non-short circuit). Then, the output stop signal Ps = Low level and the feed stop signal Ms = Low level are output,
(2) If the short circuit determination signal Sd is at the low level (non-short circuit) and the arc length excess signal Ad is at the high level (arc length excess), the output stop signal Ps = High level and the feed stop signal Ms = High level is output. That is, if the welding state is an arc length excess state when the torque excess signal Td = High level, both the output control circuit PM and the feeding are stopped. On the other hand, when the welding state when the torque excess signal Td = High level is a short circuit state, the output of the output control circuit PM is continued and only the feeding is stopped. In this case, the short circuit is released by continuing the output, and the feeding is resumed after the short circuit is released.

図5は、溶着が発生して送給負荷が増大したときの図4で上述した溶接電源PSの各信号のタイミングチャートである。同図は、本発明の実施の形態2に係る消耗電極アーク溶接電源の出力制御方法を示す。同図(A)は溶接電圧Vwを示し、同図(B)は溶接電流Iwを示し、同図(C)はモータ電流検出信号Imを示し、同図(D)はトルク超過信号Tdを示し、同図(E)は短絡判別信号Sdを示し、同図(F)は出力停止信号Psを示し、同図(G)は送給停止信号Msを示し、ッ同図(H)はアーク長超過信号Adを示す。以下、同図を参照して説明する。   FIG. 5 is a timing chart of each signal of the welding power source PS described above with reference to FIG. 4 when welding occurs and the feeding load increases. This figure shows an output control method of the consumable electrode arc welding power source according to Embodiment 2 of the present invention. (A) shows the welding voltage Vw, (B) shows the welding current Iw, (C) shows the motor current detection signal Im, and (D) shows the torque excess signal Td. (E) shows the short circuit determination signal Sd, (F) shows the output stop signal Ps, (G) shows the feed stop signal Ms, and (H) shows the arc length. The excess signal Ad is shown. Hereinafter, a description will be given with reference to FIG.

同図はパルスアーク溶接の場合である。時刻t1以前の期間中は、同図(A)に示すように、パルス電圧が印加し、同図(B)に示すように、パルス電流が通電する。時刻t1において溶着が発生して送給負荷が増大しアーク長が過大になる。この結果、同図(B)に示すように、パルス電圧が基準電圧値Vtを超えることになり、同図(H)に示すように、アーク長超過信号AdがHighレベルになる。   The figure shows the case of pulse arc welding. During the period before time t1, a pulse voltage is applied as shown in FIG. 5A, and a pulse current is applied as shown in FIG. At time t1, welding occurs, the feeding load increases, and the arc length becomes excessive. As a result, as shown in FIG. 5B, the pulse voltage exceeds the reference voltage value Vt, and as shown in FIG. 5H, the arc length excess signal Ad becomes High level.

時刻t2において、同図(C)に示すように、モータ電流Imが基準電流値Itを超えると、同図(D)に示すように、トルク超過信号TdがHighレベルになる。このために、同図(F)に示すように、出力停止信号PsはHighレベルになり出力を停止し、同図(G)に示すように、送給停止信号MsはHighレベルになり送給を停止する。上記は溶着の場合であるが、送給経路の送給負荷が増大する場合も同様である。   At time t2, when the motor current Im exceeds the reference current value It as shown in FIG. 8C, the torque excess signal Td becomes High level as shown in FIG. Therefore, the output stop signal Ps becomes High level and the output is stopped as shown in FIG. 5F, and the feed stop signal Ms becomes High level and the feed is stopped as shown in FIG. To stop. The above is the case of welding, but the same applies when the feeding load of the feeding path increases.

上述した実施の形態2によれば、送給モータのトルク量が基準値よりも超過したときに、短絡状態でなくかつアーク長が基準値よりも超過しているときにのみ出力及び送給を停止する。このために、座屈防止の制度が向上する。   According to the second embodiment described above, when the torque amount of the feeding motor exceeds the reference value, output and feeding are performed only when the short circuit state and the arc length exceed the reference value. Stop. This improves the buckling prevention system.

本発明の実施の形態1に係る溶接電源PSのブロック図である。It is a block diagram of welding power source PS concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る消耗電極アーク溶接電源の出力制御方法を示すタイミングチャートである。It is a timing chart which shows the output control method of the consumable electrode arc welding power supply which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る消耗電極アーク溶接電源の出力制御方法を示す図2とはことなるタイミングチャートである。3 is a timing chart different from FIG. 2 showing the output control method of the consumable electrode arc welding power source according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る溶接電源PSのブロック図である。It is a block diagram of welding power supply PS concerning Embodiment 2 of the present invention. 本発明の実施の形態2に係る消耗電極アーク溶接電源の出力制御方法を示すタイミングチャートである。It is a timing chart which shows the output control method of the consumable electrode arc welding power supply which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
AD アーク長超過判別回路
Ad アーク長超過信号
IM モータ電流検出回路
Im モータ電流検出信号
It 基準電流値
Iw 溶接電流
M 送給モータ
MC 送給モータ制御回路
Ms 送給停止信号
PM 出力制御回路
PS 溶接電源
Ps 出力停止信号
SD 短絡判別回路
Sd 短絡判別信号
TD トルク超過判別回路
Td トルク超過信号
VD 電圧検出回路
Vd 電圧検出信号
Vt 基準電圧値
Vw 溶接電圧
ZP 座屈防止回路
ZP2 第2座屈防止回路

DESCRIPTION OF SYMBOLS 1 Welding wire 2 Base material 3 Arc 4 Welding torch 5 Feeding roll AD Arc length excess discrimination circuit Ad Arc length excess signal IM Motor current detection circuit Im Motor current detection signal It Reference current value Iw Welding current M Feeding motor MC Feeding Motor control circuit Ms Feed stop signal PM Output control circuit PS Welding power supply Ps Output stop signal SD Short circuit determination circuit Sd Short circuit determination signal TD Torque excess determination circuit Td Torque excess signal VD Voltage detection circuit Vd Voltage detection signal Vt Reference voltage value Vw Welding Voltage ZP Buckling prevention circuit ZP2 Second buckling prevention circuit

Claims (2)

送給モータによって溶接ワイヤを送給すると共に溶接電源から溶接電圧・電流を供給して溶接を行い、溶接中に前記送給モータを流れるモータ電流が基準電流値を越えたときはトルク超過信号を出力し、このトルク超過信号に基づいて前記送給モータの送給及び前記溶接電源の出力を停止する消耗電極アーク溶接電源の出力制御方法において、
前記トルク超過信号が出力されたときの溶接状態が短絡状態であるときは、前記送給モータの送給は停止し前記溶接電源の出力は継続し、
前記トルク超過信号が出力されたときの溶接状態が短絡状態でないときは、前記送給モータの送給及び前記溶接電源の出力を停止する、ことを特徴とする消耗電極アーク溶接電源の出力制御方法。
Welding wire is fed by a feed motor and welding voltage / current is supplied from a welding power source to perform welding. When the motor current flowing through the feed motor exceeds the reference current value during welding, a torque excess signal is sent. In the output control method of the consumable electrode arc welding power source that outputs and stops the feeding of the feeding motor and the output of the welding power source based on the torque excess signal,
When the welding state when the torque excess signal is output is a short circuit state, the feeding of the feeding motor is stopped and the output of the welding power source is continued,
An output control method for a consumable electrode arc welding power source, wherein the feeding of the feeding motor and the output of the welding power source are stopped when the welding state when the torque excess signal is output is not a short circuit state .
前記トルク超過信号が出力されたときの溶接状態が短絡状態でない状態であり、かつ、アーク長が基準アーク長よりも長いときにのみ、前記送給モータの送給及び前記溶接電源の出力を停止する、ことを特徴とする請求項1記載の消耗電極アーク溶接電源の出力制御方法。

The feeding of the feeding motor and the output of the welding power source are stopped only when the welding state when the torque excess signal is output is not a short-circuited state and the arc length is longer than the reference arc length. The output control method for a consumable electrode arc welding power source according to claim 1.

JP2006248982A 2006-09-14 2006-09-14 Output control method for consumable electrode arc welding power supply Expired - Fee Related JP4875443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248982A JP4875443B2 (en) 2006-09-14 2006-09-14 Output control method for consumable electrode arc welding power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248982A JP4875443B2 (en) 2006-09-14 2006-09-14 Output control method for consumable electrode arc welding power supply

Publications (2)

Publication Number Publication Date
JP2008068283A true JP2008068283A (en) 2008-03-27
JP4875443B2 JP4875443B2 (en) 2012-02-15

Family

ID=39290341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248982A Expired - Fee Related JP4875443B2 (en) 2006-09-14 2006-09-14 Output control method for consumable electrode arc welding power supply

Country Status (1)

Country Link
JP (1) JP4875443B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149026A (en) * 2008-12-24 2010-07-08 Research Institute Of Innovative Technology For The Earth Polymeric membrane and utilization of the same
US10058947B2 (en) 2009-11-25 2018-08-28 Panasonic Intellectual Property Management Co., Ltd. Welding method and welding device
JP6833103B1 (en) * 2019-10-25 2021-02-24 三菱電機株式会社 Numerical control device, additional manufacturing device and control method of additional manufacturing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131073A (en) * 1980-03-18 1981-10-14 Matsushita Electric Ind Co Ltd Preventing circuit for buckling of wire for welding
JPS5820378A (en) * 1981-07-28 1983-02-05 Daihen Corp Consumable electrode arc welding controlling device
JPH01154874A (en) * 1987-12-11 1989-06-16 Osaka Denki Co Ltd Method and device for controlling welding wire feed of arc welding
JPH01181976A (en) * 1988-01-14 1989-07-19 Toyota Motor Corp Welding wire feed controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131073A (en) * 1980-03-18 1981-10-14 Matsushita Electric Ind Co Ltd Preventing circuit for buckling of wire for welding
JPS5820378A (en) * 1981-07-28 1983-02-05 Daihen Corp Consumable electrode arc welding controlling device
JPH01154874A (en) * 1987-12-11 1989-06-16 Osaka Denki Co Ltd Method and device for controlling welding wire feed of arc welding
JPH01181976A (en) * 1988-01-14 1989-07-19 Toyota Motor Corp Welding wire feed controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149026A (en) * 2008-12-24 2010-07-08 Research Institute Of Innovative Technology For The Earth Polymeric membrane and utilization of the same
US10058947B2 (en) 2009-11-25 2018-08-28 Panasonic Intellectual Property Management Co., Ltd. Welding method and welding device
US10850340B2 (en) 2009-11-25 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Welding device
JP6833103B1 (en) * 2019-10-25 2021-02-24 三菱電機株式会社 Numerical control device, additional manufacturing device and control method of additional manufacturing device
US11654510B2 (en) 2019-10-25 2023-05-23 Mitsubishi Electric Corporation Additive manufacturing apparatus

Also Published As

Publication number Publication date
JP4875443B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US10850340B2 (en) Welding device
JP4739641B2 (en) Power supply device for short-circuit arc welding and robot welding device
JP4875443B2 (en) Output control method for consumable electrode arc welding power supply
JP4620519B2 (en) Consumable electrode arc welding end control method
JP4490011B2 (en) Arc start control method
JP2012071310A (en) Method of detecting/controlling constriction in consumable electrode arc welding
JP2008200693A (en) Arc start control method for robot arc welding
JP4545483B2 (en) Welding power supply and welding equipment with current suddenly decreasing function when detecting constriction
JP3110295B2 (en) Control method of consumable electrode type AC arc welding machine
JP2007216303A (en) Arc start control method
JP2013132658A (en) Method of controlling arc start of consumable electrode arc welding
JP2002248572A (en) Arc start control method
JP4847082B2 (en) Welding power supply with current suddenly decreasing function when detecting constriction
JPH09271944A (en) Submerged arc welding method
JP2002178145A (en) Arc start control method and welding power source device
JP4341527B2 (en) Consumable electrode arc welding method
KR101106128B1 (en) Welding equipment for consumable electrode
JP2002178146A (en) Arc start control method
JP7429598B2 (en) arc welding power supply
JP4850638B2 (en) Polarity switching short-circuit arc welding method
JP2005144453A (en) Arc welding machine
JP2022185998A (en) Arc-welding power source
JPH08215846A (en) Arc welding equipment
JPH0623549A (en) Consumable electrode arc welding power unit
JPS60223660A (en) Arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees