JPH04210872A - Consumable electrode arc welding control method - Google Patents

Consumable electrode arc welding control method

Info

Publication number
JPH04210872A
JPH04210872A JP41001090A JP41001090A JPH04210872A JP H04210872 A JPH04210872 A JP H04210872A JP 41001090 A JP41001090 A JP 41001090A JP 41001090 A JP41001090 A JP 41001090A JP H04210872 A JPH04210872 A JP H04210872A
Authority
JP
Japan
Prior art keywords
welding
current
stick
signal
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41001090A
Other languages
Japanese (ja)
Other versions
JP3018504B2 (en
Inventor
Shoji Harada
原田 章二
Shunichi Ogawa
俊一 小川
Tomoyuki Kamiyama
智之 上山
Masuo Shibata
柴田 益男
Toshimitsu Doi
敏光 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2410010A priority Critical patent/JP3018504B2/en
Publication of JPH04210872A publication Critical patent/JPH04210872A/en
Application granted granted Critical
Publication of JP3018504B2 publication Critical patent/JP3018504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent sticking of a consumable electrode by unitary controlling both currents to change over to an anti-sticking current corresponding to its value at the time of completing welding by a welding current. CONSTITUTION:With control of consumable electrode arc welding, the feed voltage Wc of a consumable electrode feed electric motor WM is stopped by stop of an action command sill Ts at the time of completing welding and the unitary control of welding and the antisticking current is carried out by changing over from the welding current to the anti-sticking current corresponding to a welding current value. Consequently, since the proper anti-sticking current corresponding to welding conditions where the welding current value is determined is sent sticking and burn-back of the consumable electrode can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は、溶接電流を通電して溶
接した後に、アンチスチック電流を通電するとともに溶
接終了時の消耗電極(以下、ワイヤという)の先端に付
着する溶融球を小さくして次のアークスタートを良好に
するために、溶接電流とアンチスチック電流とを切換え
る消耗電極アーク溶接制御方法に関するものである。 [0002] 【従来の技術】従来技術の一つ(以下、従来技術1とい
う)を図1を参照して説明する。一般に、消耗電極アー
ク溶接制御方法においては、溶接終了時に、溶接開始終
了スイッチを押して、同図(A)に示すように、時刻t
fにおいて溶接動作指令信号Tsを停止して、同図(B
)に示すように、ワイヤ送給電動機(以下、ワイヤ送給
モータという)への送給電圧Wcを停止しても、ブレー
キ付き電動機であっても、電動機及び送給機構の慣性に
よってワイヤが過渡的に若干量送給されて、同図(C)
に示すように、徐々にワイヤ送給速度Wfが小さくなっ
て、時刻tl乃至t3において停止する。このワイヤ送
給モータへの送給電圧Wcを停止してから、ワイヤ送給
速度が零になって完全にワイヤ送給が停止するまでの過
渡的なワイヤ送給量は、ワイヤ送給モータ及び送給機構
が同一であっても、溶接時のワイヤ送給速度の大小、ワ
イヤの材質、ワイヤの直径、ワイヤガイドの曲率及び摩
擦状態等の多くの因子によって変化する。この過渡的な
ワイヤ送給量によって、ワイヤ先端1aが、被溶接物2
の溶融池2aに突込み、溶接欠陥が発生したり、ワイヤ
先端が溶融池に突立ち溶着する、いわゆるスチックして
しまって、次回のアークスタートが不能になったりする
。そこで、従来から、同図(B)に示すワイヤ送給モー
タへの送給電圧Weを停止した時刻tfから同図(D)
に示すように、タイマなどによって時間遅れ(以下、ア
ンチスチック期間という)Tri乃至Tr3を持たせて
、溶接電源の出力電圧(以下、溶接出力電圧という)E
t を停止して、この過渡的なワイヤ送給量を溶融する
アンチスチックが行われている。また、炭酸ガスアーク
溶接、MAG溶接等の定電圧特性の溶接電源を使用する
場合においては、アンチスチック期間を多い目にしてお
けば、ワイヤの停止後もワイヤが溶融してアーク長が大
になり、いわゆるアークの燃え上がりによってアーク電
圧が過渡的に大になって、溶接@源の無負荷電圧に近づ
いてアークが自動消滅する。したがって、定電圧特性の
溶接電源を使用する場合には、アークの燃え上がりによ
って、電極チップ先端4aと短くなったワイヤ先端1a
とが溶着する、いわゆるバーンバックの発生という問題
は起らないが、アークの燃え上がりによって、ワイヤ先
端に溶融球が発生し、この溶融球が大きくなると、次の
アークスタートが良好にできない。このように従来技術
1、すなわち溶接動作指令信号の停止時刻tf以後、同
図(E)に示すように、一定値の出力電流又は漸減する
出力電流又は階段的に減少する出力電流を通電して終了
させる方式では、アークの燃え上がり高さが大となり、
ワイヤ先端の溶融球が大になる問題点があった。そこで
、定電圧特性の電源において、粒径を小さくするために
、アンチスチック期間にパルス電流を重畳する方法(以
下、従来技術2という)が提案されている。 [0003]
[Industrial Application Field] The present invention applies a welding current to weld, then applies an anti-stick current and reduces the size of the molten ball that adheres to the tip of a consumable electrode (hereinafter referred to as wire) at the end of welding. The present invention relates to a consumable electrode arc welding control method that switches between welding current and anti-stick current in order to improve the next arc start. [0002] One of the prior art techniques (hereinafter referred to as prior art 1) will be explained with reference to FIG. 1. Generally, in the consumable electrode arc welding control method, at the end of welding, a welding start/end switch is pressed, and as shown in FIG.
The welding operation command signal Ts is stopped at f, and the welding operation command signal Ts is
), even if the supply voltage Wc to the wire feed motor (hereinafter referred to as wire feed motor) is stopped, even if the motor is equipped with a brake, the inertia of the motor and feed mechanism will cause the wire to (C)
As shown in the figure, the wire feeding speed Wf gradually decreases and stops at time tl to t3. The transient wire feeding amount from when the feeding voltage Wc to the wire feeding motor is stopped until the wire feeding speed becomes zero and the wire feeding completely stops is the amount of wire fed from the wire feeding motor and Even if the feeding mechanism is the same, it changes depending on many factors such as the wire feeding speed during welding, the material of the wire, the diameter of the wire, the curvature of the wire guide, and the state of friction. Due to this transient wire feeding amount, the wire tip 1a is
The wire may penetrate into the molten pool 2a, causing welding defects, or the tip of the wire may protrude into the molten pool and become welded, resulting in so-called stick, making it impossible to start the next arc. Therefore, conventionally, from the time tf when the feeding voltage We to the wire feeding motor shown in FIG.
As shown in , the output voltage of the welding power source (hereinafter referred to as welding output voltage) E is adjusted by providing time delays (hereinafter referred to as anti-stick period) Tri to Tr3 using a timer or the like.
Anti-stick is performed to melt this transient wire feed rate by stopping t. In addition, when using a welding power source with constant voltage characteristics such as carbon dioxide arc welding or MAG welding, if you allow a long anti-stick period, the wire will melt even after the wire has stopped, increasing the arc length. , the arc voltage increases transiently due to the so-called burning of the arc, approaches the no-load voltage of the welding @ source, and the arc automatically extinguishes. Therefore, when using a welding power source with constant voltage characteristics, the electrode tip tip 4a and the shortened wire tip 1a due to the burning of the arc.
Although the problem of so-called burnback, in which the wires and wires are welded together, does not occur, a molten ball is generated at the tip of the wire due to the burning of the arc, and if this molten ball becomes large, the next arc start cannot be performed properly. In this way, in Prior Art 1, after the stop time tf of the welding operation command signal, as shown in FIG. In the termination method, the height of the arc flares up,
There was a problem that the molten ball at the tip of the wire became large. Therefore, in order to reduce the particle size in a power supply with constant voltage characteristics, a method has been proposed in which a pulse current is superimposed on the anti-stick period (hereinafter referred to as prior art 2). [0003]

【発明が解決しようとする課題】アンチスチック時に、
図2の(E)に示すように、パルス電流Irを重畳する
従来技術2においては、特に、アルミニウムのMIGア
ク溶接方法においては、スティールにくらべて比熱及び
比重が小さく溶融しやすいために、小電流を使用して溶
接した場合には、溶融球が大きくなりやすく、又溶接電
流にパルス電流を重畳しているためにアンチスチック電
流Irの平均値が溶接電流値Iaよりも高くなるので、
溶接終端部分の溶接ビード幅すなわちクレータが大きく
なり、クレータ部分の凝固割れが発生しやすく、また、
薄板の溶接においては、溶接終端部分の溶は落ちも発生
しやすい。すなわち、従来技術2は、溶接電流値とアン
チスチック電流とが対応する一元制御が行われていない
ために、溶接電流値を定めた溶接条件に対応する適正な
アンチスチック電流、すなわち、まず第1に、ワイヤが
スチック及びバーンバックしないだけでなくバラツキの
少ない適正な突出長が残り、第2に、溶融球が大きくな
らないで、第3に、溶接終端部分に凝固割れ及び薄板の
溶接における溶接終端部分の溶は落ちを発生しないアン
チスチック電流を得ることができない問題点があった。 [0004]
[Problem to be solved by the invention] When anti-stick,
As shown in FIG. 2(E), in conventional technology 2 in which a pulsed current Ir is superimposed, in particular, in the MIG aku welding method for aluminum, the specific heat and specific gravity are smaller than steel and it is easy to melt. When welding using an electric current, the molten ball tends to become large, and since a pulse current is superimposed on the welding current, the average value of the anti-stick current Ir becomes higher than the welding current value Ia.
The weld bead width at the end of the weld, that is, the crater, becomes larger, and solidification cracking is more likely to occur in the crater area.
When welding thin plates, welding tends to occur at the end of the weld. In other words, in Prior Art 2, since there is no unified control in which the welding current value and the anti-stick current correspond to each other, the welding current value is determined to be an appropriate anti-stick current corresponding to the welding conditions for which the anti-stick current value is determined, that is, the first Second, the wire does not stick or burn back, and an appropriate protrusion length with little variation remains; second, the molten ball does not become large; and third, there is no solidification cracking at the weld end and the weld end when welding thin plates. There is a problem in that it is not possible to obtain an anti-stick current that does not cause melting of parts. [0004]

【課題を解決するための手段】本発明は、以上の問題点
を解決するために次の手段により構成される。請求項1
の発明は、略定電圧特性又は定電流特性の溶接電流を供
給して消耗電極を予め設定された略一定の速度で送給し
て溶接するか又は略定電流特性の溶接電源から溶接電流
を供給して消耗電極をアーク電圧が略一定値になるよう
な速度で送給した後(−アンチスチック電流を通電して
溶接を終了する消耗電極アーク溶接制御方法において、
溶接動作指令信号Tsの停止により、ワイヤ送給モータ
の送給電圧WCを停止し、溶接電流から溶接電流値に対
応したアンチスチック電流に切換えて通電した後に、そ
の通電を終了する溶接方法である。請求項2の発明は、
請求項1と同じ溶接制御方法において、溶接動作指令信
号Tsの停止により、ワイヤ送給モータの送給電圧Wc
を停止し、溶接電流から、アンチスチック電流のパルス
電流値又はベース電流値又はパルス幅又はパルス周波数
又はベース電流値又はこれらの2以上が溶接電流値と対
応した電流に切換えることにより、溶接電流とアンチス
チック電流とを一元制御する溶接制御方法である。請求
項3の発明は、溶接電流から、請求項2のアンチスチッ
ク電流が1パルス1溶滴移行をさせる電流に切換えるこ
とにより、溶接電流とアンチスチック電流とを一元制御
する溶接制御方法である。請求項4の発明は、溶接電流
値が大のときは、アンチスチック電流の通電終了までの
間に、アンチスチック電流の平均値を大から小に切換え
る(アンチスチック電流がパルス電流のときは、パルス
電流値、パルス幅、パルス周波数及びベース電流値の1
つ以上を切換える)ことにより、溶接電流とアンチスチ
ック電流とを一元制御する溶接制御方法である。請求項
5の発明は、アンチスチック電流が送給電圧WCを停止
した後の溶接出力電圧設定値又は溶接電圧検出値に対応
した電流(アンチスチック電流がパルス電流のときは、
パルス電流値、パルス幅、パルス周波数及びベース電流
値の1つ以上が溶接出力電圧設定値又は溶接電圧検出値
に対応した電流)に切換えることにより、溶接電流とア
ンチスチック電流とを一元制御する溶接制御方法である
。請求項6の発明は、溶接電流から、請求項2のアンチ
スチック電流のパルス電流値、パルス幅及びベース電流
値と対応した電流であり、かつ送給電圧の停止した後の
溶接電圧設定値又は溶接電圧検出値に対応したパルス周
波数の電流に切換えることにより、溶接電流とアンチス
チック電流とを一元制御する溶接電流制御方法である。 請求項7の発明は、溶接電流から、請求項2のアンチス
チック電流のパルス電流値、パルス周波数及びベス電流
値の1つ以上と溶接電流値と対応した電流であり、かつ
送給電圧の停止した後の溶接電圧設定値又は溶接電圧検
出値に対応したパルス幅の電流に切換えることにより、
溶接電流とアンチスチック電流とを一元制御する溶接電
流制御方法である。 [0005]
[Means for Solving the Problems] In order to solve the above problems, the present invention is constructed by the following means. Claim 1
According to the invention, a welding current having a substantially constant voltage characteristic or a constant current characteristic is supplied to feed a consumable electrode at a substantially constant speed set in advance for welding, or a welding current is supplied from a welding power source having a substantially constant current characteristic. In a consumable electrode arc welding control method in which the consumable electrode is supplied and the consumable electrode is fed at a speed such that the arc voltage becomes a substantially constant value (-)
This is a welding method in which the supply voltage WC of the wire feed motor is stopped by stopping the welding operation command signal Ts, the welding current is switched to an anti-stick current corresponding to the welding current value, and the energization is then terminated. . The invention of claim 2 is:
In the same welding control method as in claim 1, by stopping the welding operation command signal Ts, the feeding voltage Wc of the wire feeding motor is reduced.
By stopping the welding current and switching from the welding current to the pulse current value or base current value or pulse width or pulse frequency or base current value of the anti-stick current, or a current whose two or more correspond to the welding current value, the welding current and This is a welding control method that centrally controls the anti-stick current. The invention according to claim 3 is a welding control method in which the welding current and anti-stick current are centrally controlled by switching from the welding current to the current in which the anti-stick current according to claim 2 transfers one droplet per pulse. According to the fourth aspect of the invention, when the welding current value is large, the average value of the anti-stick current is switched from large to small until the anti-stick current is finished passing (when the anti-stick current is a pulse current, 1 of pulse current value, pulse width, pulse frequency and base current value
This is a welding control method that centrally controls the welding current and anti-stick current by switching two or more of the two. In the invention of claim 5, the anti-stick current is a current corresponding to the welding output voltage setting value or the welding voltage detection value after the supply voltage WC is stopped (when the anti-stick current is a pulse current,
Welding in which the welding current and anti-stick current are centrally controlled by switching to a current in which one or more of the pulse current value, pulse width, pulse frequency, and base current value corresponds to the welding output voltage setting value or welding voltage detection value This is a control method. The invention of claim 6 is a current that corresponds to the pulse current value, pulse width, and base current value of the anti-stick current of claim 2 from the welding current, and the welding voltage set value after the supply voltage is stopped, or This is a welding current control method that centrally controls welding current and anti-stick current by switching to a current with a pulse frequency corresponding to a detected value of welding voltage. The invention of claim 7 is a current that corresponds to one or more of the pulse current value, pulse frequency, and bass current value of the anti-stick current of claim 2 and the welding current value from the welding current, and the supply voltage is stopped. By switching to a current with a pulse width corresponding to the welding voltage setting value or welding voltage detection value after
This is a welding current control method that centrally controls welding current and anti-stick current. [0005]

【実施例】 (図3の説明) 図3(A)乃至(E)は、請求項2及び請求項3の溶接
制御方法を実施したときの動作説明図である。同図(A
)は、時刻t=tf  (横軸)において、溶接動作指
令信号Ts  (縦軸)を停止したときの説明図である
。同図(B)は、溶接動作指令信号Tsが停止になった
ときに、ワイヤ送給モータへの送給電圧Wc  (縦軸
)が停止したときの説明図である。同図(C)は、時刻
t=tfにおいて送給電圧Weが停止になったとき、電
動機及び送給機構の慣性によってワイヤが過渡的に若干
量送給されて、徐々にワイヤ送給速度Wf  (縦軸)
が小さくなって、時刻tl乃至t3おいて停止する説明
図である。同図(D)は、時刻t=trにおいて、溶接
動作指令信号Tsを停止するとともに、溶接出力電圧E
t  (縦軸)を溶接電圧平均値Ea2からアンチスチ
ック電圧平均値Er2に切換えた説明図である。同図(
E)は、時刻t=trにおいて、溶接電圧平均値Ea2
からアンチスチック電圧平均値Er2に切換えたことに
よって、溶接出力電流I(縦軸)が溶接電流値Ia2か
らアンチスチック電流Ir2に切換えられた説明図であ
る。このアンチスチック電流Ir2は、請求項1に示す
ように、溶接電流値Ia2に対応して一元制御される。 例えば、アンチスチック電流Ir2が請求項2に示すよ
うにパルス電流であるときは、アンチスチック電流Ir
2のパルス電流値Ip2又はパルス幅Tp2又はパルス
周波数f2=1/D2又はベース電流値Ib2又はこれ
らの2以上と溶接電流値Ia2とは対応し、例えば、溶
接電流値Ia2が大になると、パルス電流値Ip2及び
パルス幅Tp2の積も大になる。また、アンチスチック
電流Ir2は請求項3に示すように、1パルス1溶滴移
行をさせる電流とすれば、アンチスチック電流1゛r2
の間に溶滴移行がパルス電流と同期するようになり、ア
ンチスチック期間終了時においては、移行する溶滴波の
太きさが均一となるために、ワイヤ先端1aの溶融球1
bが、図5(Z)に示す従来技術1のように大粒になら
ないで、図5 (A)に示すように略ワイヤの直径程度
になり、かつ溶融球の大きさのバラツキも小さいために
、溶接チップ先端4aとワイヤ先端1a又は1bとのワ
イヤ突き出し長さLmもバラツキが小さくなり、次回の
アークスタートが極めて良好となる。 [0006]  (図4の説明) 図4(A)乃至(E)は、図4の溶接電流値Ialが図
3のIa2のときよりも相対的に犬であるときに、請求
項2乃至請求項4の溶接制御方法を実施したときの動作
説明図である。同図(A)乃至(C)は図3と同じなの
で説明は省略する。同図(D)は、時刻t=trにおい
て、溶接動作指令信号Tsを停止するとともに、溶接出
力電圧Et  (縦軸)を溶接電圧平均値Ealからア
ンチスチック電圧平均値Erlに切換え、さらに第1ア
ンチスチック期間Traが経過したときに、第1のアン
チスチック電圧平均値Erlよりも低い第2のアンチス
チック電圧平均値Er2に切換えた説明図である。同図
(E)は、時刻t=tfにおいて、溶接電圧平均値Ea
lから第1のアンチスチック電圧平均値Er2に切換え
ることによって、溶接出力電流(縦軸)が溶接電流値I
alから第1のアンチスチック電流Irlに切換えられ
、さらに第1アンチスチツク期間Traが経過したとき
に、第1のアンチスチック電流Irlから第2のアンチ
スチック@流Ir2に切換えられた説明図である。第1
又は第2又は両方のアンチスチック電流Irl及びIr
2は、請求項1に示すように、溶接電流値1alに対応
し、かつ、請求項4に示すように、平均値が大の第1の
アンチスチック電流Irlから平均値が小の第2のアン
チスチック電流Ir2に切換えられている。例えば、第
1及び第2のアンチスチック電流Irl及びIr2が請
求項2に示すようにパルス電流であるときは、第1のア
ンチスチック電流Irlのパルス電流値Ipl又はパル
ス幅Tpl又はパルス周波数fl=4/D1又はベース
電流値Ibl又はこれらの2以上と溶接電流値Ialと
は対応し、例えば、溶接電流値Ialが大になると、パ
ルス電流値Iplとパルス幅Tp2との積も大になる。 また、第2のアンチスチック電流Ir2は、前述した図
3の説明と同じなので省略する。なお、同図において、
Trbは第2アンチスチツクの通電期間であり、Ir3
は時刻t=tfのアンチスチック@流通電開始時刻から
時刻t=thのアンチスチック電流通電終了時刻までを
示す。 [0007]  (図6の説明) 図6は、溶接終了時の制御方法が次回の溶接開始時のア
ークスタートに及ぼす影響について調べた結果であって
、溶接電流値Ia  [A]  (横軸)とスパッタ発
生量[gr/so回アーク発生回数1との関係を、従来
技術1と従来技術2と本発明の制御方法とについて対比
したグラフである。アークスタートの試験条件は、アー
ク起動後3秒間アーク発生可能の状態にした後、10秒
間出力電圧を停止し、これを50回繰り返したときであ
る。このときの溶接電流値60乃至250 [A]にお
けるスパッタ発生量の総量[gr]は、曲線Z1に示す
従来技術1の方が、曲線Z2に示す従来技術2及び曲線
Aに示す本発明の制御方法よりも多い。従来技術1は本
発明の制御方法よりも溶接終了時の溶融球が大粒になっ
ているため次回の溶接開始時のアークスタートが困難に
なっていることを表わしている。 [0008]  (図7の説明) 図7は、溶接終了時の制御方法が溶接終端部分(以下、
クレータという)の割れの発生に及ぼす影響について調
べた結果であって、溶接電流値Ia  [A]  (横
軸)とクレータ割れ率CR[%]との関係を、従来技術
2と本発明の制御方法とについて対比したグラフである
。このクレータ割れ率CRは、 (クレータ割れの生じ
たビード数) / (20本の試験溶接ビード数) X
 100 [%1である。クレータ割れ率の試験条件は
、板厚6 [mml 、幅SO[mml 、長さ300
 [mmlのアルミニウム材A 5052材を被溶接物
として、溶接ビード幅が5 [mmlの略一定値になる
よう(−すなわち溶接入熱が一定になるように、溶接速
度を調整している。このとき、溶接@流値100 、2
00及び300 [A]の各電流値に対して溶接ビード
を各20本ずつ作成し、各20本毎の溶接ビードに対し
てクレータ割れを生じた数を、クレータ割れ率の評価に
している。同図に示すように、曲線Z2に示す従来技術
2においては、溶接電流にパルス電流を重畳しているた
めに、溶接電流値の増加に伴って、クレータの入熱が増
大して割れ率が増加している。これに対して、曲線Aに
示す本発明の制御方法においては、溶接電流値に対応さ
せてアンチスチック電流を一元制御して自動的に適正な
アンチスチック電流が得られているために、クレータ割
れ率は、溶接電流値の広範囲にわたって零であり、従来
技術2とは顕著な効果の差異がある。 [0009]  (図8の説明) 図8(Z)及び(A)は、それぞれ従来技術2及び本発
明の制御方法において、溶接@流値Ia  [A]  
(横軸)と板厚PT [mml  (縦軸)とに対して
、白丸印で示す溶は落ちなしの良好な溶接結果の得られ
る範囲とX印で示す溶は落ちが発生した不良な溶接結果
の得られる範囲とを示すグラフである。従来技術2の同
図(Z)に示すグラフにおいては、溶接電流値が50 
[A]では板厚2.5[mm1以上でないと溶は落ちが
発生してしまうのに対して、同図(A)に示すように、
本発明の制御方法においては、溶接電流値50 [A]
では板厚1.0 [mmlまで溶は落ちを発生しないで
良好な溶接結果が得られている。本発明の溶接制御方法
は、板厚1.0 [mmlの薄板の溶接において、溶接
終端部分の溶は落ちのない良好な溶接が可能である。 [0010]  (図9の説明) 図9は、請求項1乃至請求項6の溶接制御方法を実施す
る溶接装置の実施例のブロック図である。 [00111(構成の説明) 同図において、商用電源ACを入力として溶接電流及び
アンチスチック電流を、溶接出力制御回路PSから消耗
電極1の電極チップ4と被溶接物2との間に供給してア
ーク3を発生させる。消耗電極1はワイヤ送給モータW
Mにより回転するワイヤ送給ローラWRにより供給され
る。溶接電流設定回路IMは、ワイヤ送給モータWMの
ワイヤ送給速度により定まる溶接電流の平均値Iaを設
定するための溶接電流設定信号Imを出力する。ワイヤ
送給制御回路WCは、信号Imを入力としてワイヤ送給
モータWMに送給電圧Wcを出力する。送給電圧開閉回
路SW6は、溶接開始のために、溶接動作指令回路TS
から溶接動作指令信号Tsが入力されたときに、接点a
側に接続されて、送給電圧Wcをワイヤ送給モータWM
に供給し、次に溶接終了のために、溶接動作指令信号を
停止したときに送給電圧が停止する。送給速度比較回路
CMIは、ワイヤ送給モータWMの速度検出器WDから
出力された速度検出電圧Wdを、溶接電流設定回路IM
で設定された溶接電流設定信号Imと比較して、その差
の送給速度比較信号Cmlを出力する。溶接電流大小判
別回路CPIは、溶接電流設定信号Imが入力したとき
に、予め定めた電流値よりも大のとき、アンチスチック
(以下ASという)タイマ切換信号Cplを出力する。 AS開始回路N0T1は、溶接動作指令信号Tsを入力
して、信号Tsが停止したときに、AS開始信号NIL
を出力する。ASタイマ切換回路SWIは、AS開始信
号N11を、切換AS大電流タイマ信号Sla又は切換
AS小電流タイマ信号Slbとして出力する回路であっ
て、ASタイマ切換信号Cplが入力されたときにa接
点に切換わる。AS小電流タイマTMLは、信号Slb
が入力されたときに時限のカウントを開始して、時限の
カウント終了後に、AS小電流通電信号Tmlを出力す
る。AS大電流タイマTMHは、切換AS大電流タイマ
切換回路TMHは、切換AS大電流タイマ信号Slaが
入力されたとき時限のカウントを開始して、時限のカウ
ント終了後に、AS大電流通電信号Tmhを出力する。 AS切換小電流タイマTMJは、信号Tmhが入力され
たときに時限のカウントを開始して、時限のカウント終
了後に、AS切換小電流通電信号Tmjを出力する。A
S切換信号出力回路○R2は、AS小電流通電信号Tm
!又はAS大電流通電信号Tmh又はAS切換小電流通
電信号Tmjのいずれかが入力されたときにAStf作
信号○r2を出力する。溶接電圧設定回路VSIは、溶
接電圧設定信号VSIを出力する。AS高電圧設定回路
ASHは、AS高電圧設定信号Ashを出力する。AS
低電圧設定回路ASLは、AS低電圧設定信号Aslを
出力する。AS設定電圧切換回路SW2は、b接点のA
S低電圧設定信号Aslとa接点のAS高電圧設定信号
Ashとを切換えた切換AS@圧信号s2を出力する回
路であって、AS大電流通電信号Tmhが入力されたと
きにa接点に切換わる。設定電圧切換回路SW3は、b
接点の溶接電圧設定信号Vslとa接点の切換AS@圧
信号S2とを切換えて切換電圧設定信号S3を出力する
回路であって、AS動作信号○r2が入力されたときに
a接点に切換わる。AS電流を形成するパルス電流値設
定回路IPIは、溶接電流設定信号Imを入力として、
その信号Imに対応したパルス電流値信号Iplを出力
する。ベース電流設定回路IBIは、溶接電流設定信号
Imを入力として、その信号Imに対応したベース電流
設定信号Iblを出力する。パルス電流設定信号Ipl
、ベース電流設定信号Ibl、後述するパルス周波数信
号Vf1及びパルス幅周波数制御信号Dflのパルス幅
を、図示していない固定又は半固定又は可変調整器によ
って、1パルス1溶滴移行を行える値に設定することが
できる。 出力電圧比較回路CM2は、出力電圧検出回路VDの出
力電圧検出信号Vdと設定出力切換回路SW3の切換出
力設定信号S3とを比較して、その差の出力制御信号C
m2を出力する。ASfi流を制御するパルス周波数変
換回路VFIは、出力制御信号Cm2に対応してパルス
周期に相当するパルス周波数信号VHを出力する。パル
ス幅周波数信号発生回路DPIは、溶接電流設定信号I
mとパルス周波数信号Vflとが入力されたときに、パ
ルス幅周波数制御信号Dflを出力する。パルス・ベー
ス信号切換回路SW5は、パルス幅周波数制御信号Df
’lが入力されるごとに、ベース電流設定回路IBIて
設定されたベス電流信号1blと、パルス電流値設定回
路IPIで設定されたパルス電流値信号Iplとを切換
えてAS出力制御信号S5を出力する。溶接・AS出力
切換回路S〜v4は、b接点の出力制御信号C[[12
とa接点のAS出力制御信号S5とを切換えて、切換出
力制御信号S4を出力する回路であって、AS動作信号
○「2が入力されたときにa接点に切換わる。出力指令
回路○Iり1(ま、溶接動作指令信号Ts又はAS動作
信号○「2が入力されたときに、出力指令信号○r1を
溶接出力制御回路PSに入力する。 [0012]  (溶接開始時から溶接中の動作説明)
図9を参照して本発明の制御方法を実施する溶接装置の
溶接開始時から溶接中の動作について説明する。同図に
おいて、各切換回路SWI乃至SW5及び開閉回路SW
6は、各切換又は開閉回路に切換信号が入力されていな
いときは、各接点はb側に接続されている。溶接動作指
令回路TSから溶接動作指令信号Tsが出力されると、
送給電圧開閉回路SW6がa接点に接縫され、送給電圧
Wcが送給モータWMに供給されてワイヤ1が送給され
る。溶接動作指令信号Tsが出力されているときは、A
S開始回路N0T1は、AS開始信号Nflを出力しな
いので、AS動作信号○r2も出力されない。したがっ
て、溶接電圧設定信号Vslが、設定電圧切換回路S〜
■3のb接点を通じて出力電圧比較回路CM2に入力さ
れる。他方、溶接・AS出力切換回路SW4は、ASI
’]作信号○r2が出力されていないのでb接点に接続
されている。したがって、出力制御信号Cm2は溶接出
力制御回路PSに入力される。また、溶接動作指令信号
Tsは、出力指令回路○R1を通じて、出力指令信号O
rlが溶接出力制御回路PSに入力されるので、回路P
Sは、溶接電圧設定信号Vslに対応した図3(D)の
出力電圧Ea2を出力し、同図(E)の出力電流Ia2
を通電して溶接作業が行われる。 [0013]  (溶接電流小のときの溶接終了動作の
説明) 図9において、溶接電流が小のときは、溶接電流大小判
別回路CP1は、ASタイマ切換信号Cplを出力しな
いので、ASタイマ切換回路SW1はb接点に接続され
たままである。溶接を終了するために、図3(A)の時
刻t=trにおいて溶接動作指令信号Tsを停止すると
、送給電圧開閉回路SW6はb接点に復帰するために、
同図(B)に示すように、送給電圧〜vcが送給モータ
WMに供給されなくなるので、同図(C)に示すように
、ワイヤ送給速度Wfは送給モータWMの慣性により速
度が低下する。他方、溶接動作指令信号Tsが停止する
と、AS開始回路N0T1は、AS開始信号Nilを出
力し、ASタイマ切換回路SWIのb接点を通じてAS
小電流タイマTMLに入力される。このタイマTMLは
、AS小電流通電信号Tmlを出力し、AS切換信号出
力回路OR2はAS動作信号Or2を出力する。設定電
圧切換回路SW3は、この信号Or2によってa接点に
切換えられる。また、AS大電流タイマTMHには入力
信号がないので、AS大電流通電信号Tmhが出力され
ていないために、AS設定電圧切換回路SW2は、b接
点に接続されたままである。したがって、AS低電圧設
定回路ASLのAS低電圧設定信号Aslが、AS設定
電圧切換回路SW2及び設定電圧切換回路SW3及び出
力電圧比較回路CM2を通じて、パルス周波数変換回路
VFIに入力される。パルス電流値設定回路IPI及び
ベース電流設定回路IBIは、溶接電流設定信号Imに
それぞれ対応したパルス電流値信号Ipl及びベース電
流信号Iblをパルスベース信号切換回路SW5に入力
する。パルス幅周波数信号発生回路DPIは、パルス周
波数信号Vflと溶接電流設定信号1mとに対応したパ
ルス周波数及びパルス幅のパルス幅周波数制御信号Df
lを出力する。パルス・ベース信号切換回路SW5は、
パルス電流値信号Iplとベース電流信号Iblとをパ
ルス幅周波数制御信号Dflで定まるパルス周波数で切
換えて、図3(E)の波形を形成するAS出力制御信号
S5を出力する。溶接・AS出力切換回路SW4は、A
S動作信号Or2が入力されてa接点に接続されている
ので、AS出力制御信号S5は、溶接出力制御回路PS
に入力される。また、出力指令回路ORIは、溶接動作
指令信号Tsが停止されているが、AS動作信号Or2
が入力されているので、出力指令信号Orlを出力する
。この信号0「1が溶接出力制御回路PSに入力される
ので、回路PSは、AS出力制御信号S5に対応した図
3(E)のAS@S電流Ir2電して、クレータの縮小
及びワイヤ先端の溶融球の大粒化防止を行う。前述した
AS小電流タイマTMLの時限のカウントが終了すると
、AS小電流通電信号Tmlが停止する。 信号Tmlの停止によって、AS動作信号Or2が停止
し、出力指令信号Orlが停止するので、AS電流Ir
2が停止して全動作が終了し、溶接開始の待期状態に戻
る。 [0014]  (溶接電流大のときの溶接終了動作の
説明) 図9において、溶接電流が大のときは、溶接電流大小判
別回路CPIは、ASタイマ切換信号Cplを出力する
ので、ASタイマ切換回路SWIをa接点に切換える。 溶接を終了するために、図4(A)の時刻t=tfにお
いて、溶接動作指令信号Tsを停止すると、図3におい
て説明したように、送給電圧Wcが停止するとともに、
AS開始信号NilがASタイマ切換回路SW1のa接
点を通じてA、S大電流タイマTMHに入力される。こ
のタイマTMHは、AS大電流通電信号Tmhを出力し
、AS切換信号出力回路OR2はAS動作信号○[2を
出力する。 設定電圧切換回路SW3は、この信号○r2によってa
接点に切換えられる。また、AS設定電圧切換回路SW
2は、AS大電流通電信号Tmhによってa接点に切換
わる。したがって、AS高電圧設定回路ASHのAS高
電圧設定信号Ashが、AS設定電圧切換回路S〜■2
及び設定電圧切換回路SW3及び出力電圧比較回路CM
2を通じて、パルス周波数変換回路VFIに入力される
。以下、前述した溶接電流が小のときと同じ動作順序で
、AS出力制御信号S5を発生するが、溶接電流が大の
ときは、AS出力電圧の設定信号が、AS高電圧設定信
号Ashであるために、AS動作時の出力制御信号Cm
2は、溶接電流大のときの方が溶接電流小のときよりも
大であるので、パルス周波数信号Vflの周波数が高く
なり、その結果、ASW流のパルス周波数が、小電流の
図3(E)のAS@S電流Ir2ルス周波数よりも、大
電流の図4(E)のAS電流Irlのパルス周波数の方
が高くなり、したがってD2>Diになっている。次に
、AS大電流タイマTMHの時限のカウントが終了する
と、AS大電流通電信号Tmhの停止によって、AS設
定電圧切換回路SW2がb接点に復帰してAS高電圧設
定信号AshからAS低電圧設定信号Ashに切換わっ
た切換電圧設定信号S3を、出力電圧比較回路CM2を
通じてパルス周波数変換回路VFIに入力する。なお、
このとき、AS大電流タイマ信号Tmhが停止した時刻
t=tgからAS切換小電流タイマTMJが時限のカウ
ントを開始するが、時限のカウントを終了するまでは、
AS切換小電流通電信号Tmjを、AS切換信号出力回
路○R2に出力しているので、AS動作信号Or2は継
続して出力されている。上記のパルス周波数変換回路V
FIは、AS低電圧設定信号Aslに対応したパルス周
波数信号Vflを、パルス幅周波数信号発生回路DPI
に入力する。したがって、AS出力制御信号S5は、図
3(E)に示すAS@S電流Ir2様の周波数のパルス
信号に切換えられ、図4(E)のAS@流がIrlから
Ir2に切換わる。その切換によって、図4(E)のA
S@S電流Ir2電してワイヤ先端溶融球の大粒化の防
止を行った後に、前述したAS切換小電流タイマTMJ
の時限のカウントが終了すると、AS切換小電流通電信
号Tmjの停止によってAS動作信信号「2が停止し、
出力指令信号Orlが停止するので、AS電流Ir2が
停止して全動作が終了し、溶接開始の待期状態に戻る。 以上の図9の実施例においては、請求項1乃至請求項6
の溶接制御方法のすべてを実施することができるように
したが、この図9の実施例から一部の構成を削除又は固
定化又は兼用等の変化を行うことによって、請求項1乃
至請求項6の構成の1つ又は2つ以上を実施することが
できる。 (00151(図10の説明) 図10は、請求項1乃至請求項5及び請求項7を実施す
ることができる溶接装置の実施例のブロック図である。 図9の制御方法は、出力制御信号Cm2をパルス周波数
変換回路VFIに入力して、AS高電圧設定信号Ash
のAS期間TraとAS低電圧設定信号AShのAS期
期間rbとによって、パルス周波数信号Vflの周波数
を切換えて、例えば、図4(E)のASS電流Ir色I
r2とを切換える構成になっている。これに対して図1
0の制御方法は、溶接電流設定信号I[0をパルス周波
数変換回路VFIに入力しているので、パルス周波数信
号VIIは、AS高電圧設定信号AshとのAS期間T
raとAS低電圧設定信号AslのAS期間Trbとに
よって切換えていない。図10の制御方法は、出力制御
信号Cm2及びパルス周波数信号Vflを、パルス幅周
波数信号発生回路DPIに入力して、AS高電圧設定信
号AshのAS期間TraとAS低電圧設定信号Asl
のAS期期間raとによって、パルス幅を切換えて、例
えば、図11(E)のAS@S電流Ir3Ir2に切換
える構成になっている。 [0016]
Embodiment (Explanation of FIG. 3) FIGS. 3A to 3E are explanatory diagrams of operations when the welding control method of claims 2 and 3 is implemented. The same figure (A
) is an explanatory diagram when the welding operation command signal Ts (vertical axis) is stopped at time t=tf (horizontal axis). FIG. 2B is an explanatory diagram when the supply voltage Wc (vertical axis) to the wire feed motor is stopped when the welding operation command signal Ts is stopped. In the same figure (C), when the feeding voltage We is stopped at time t=tf, the wire is transiently fed by a small amount due to the inertia of the electric motor and the feeding mechanism, and the wire feeding speed Wf gradually increases. (vertical axis)
FIG. 12 is an explanatory diagram in which the value decreases and stops from time tl to t3. In the same figure (D), at time t=tr, the welding operation command signal Ts is stopped and the welding output voltage E
FIG. 6 is an explanatory diagram in which t (vertical axis) is switched from the welding voltage average value Ea2 to the anti-stick voltage average value Er2. Same figure (
E) is the welding voltage average value Ea2 at time t=tr
FIG. 3 is an explanatory diagram in which the welding output current I (vertical axis) is switched from the welding current value Ia2 to the anti-stick current Ir2 by switching from the welding current value Ia2 to the anti-stick voltage average value Er2. This anti-stick current Ir2 is centrally controlled in accordance with the welding current value Ia2. For example, when the anti-stick current Ir2 is a pulse current as shown in claim 2, the anti-stick current Ir2
2, the pulse current value Ip2 or the pulse width Tp2 or the pulse frequency f2=1/D2 or the base current value Ib2 or two or more of these correspond to the welding current value Ia2. For example, when the welding current value Ia2 becomes large, the pulse The product of current value Ip2 and pulse width Tp2 also becomes large. Further, as shown in claim 3, if the anti-stick current Ir2 is a current that causes one pulse to transfer one droplet, then the anti-stick current Ir2 is
During this period, the droplet transfer becomes synchronized with the pulse current, and at the end of the anti-stick period, the thickness of the transferring droplet wave becomes uniform, so that the molten ball 1 at the wire tip 1a
b does not become large as in prior art 1 shown in Fig. 5 (Z), but becomes approximately the diameter of a wire as shown in Fig. 5 (A), and the variation in the size of the molten spheres is small. Also, the variation in the wire protrusion length Lm between the welding tip tip 4a and the wire tip 1a or 1b becomes smaller, and the next arc start becomes extremely good. [0006] (Explanation of FIG. 4) FIGS. 4(A) to (E) show that when the welding current value Ial in FIG. 4 is relatively smaller than Ia2 in FIG. FIG. 6 is an explanatory diagram of the operation when the welding control method of item 4 is implemented. 3A to 3C are the same as FIG. 3, so the explanation will be omitted. In the same figure (D), at time t=tr, the welding operation command signal Ts is stopped, the welding output voltage Et (vertical axis) is switched from the welding voltage average value Eal to the anti-stick voltage average value Erl, and the first FIG. 7 is an explanatory diagram of switching to a second anti-stick voltage average value Er2 lower than the first anti-stick voltage average value Erl when the anti-stick period Tra has elapsed. In the same figure (E), at time t=tf, the welding voltage average value Ea
By switching from l to the first anti-stick voltage average value Er2, the welding output current (vertical axis) changes to the welding current value I
FIG. 12 is an explanatory diagram showing that when the first anti-stick current Irl is switched from al to the first anti-stick current Irl and the first anti-stick period Tra has elapsed, the first anti-stick current Irl is switched to a second anti-stick @ current Ir2. 1st
or the second or both antistick currents Irl and Ir
2 corresponds to the welding current value 1al as shown in claim 1, and as shown in claim 4, from the first anti-stick current Irl having a large average value to the second anti-stick current Irl having a small average value. The anti-stick current is switched to Ir2. For example, when the first and second anti-stick currents Irl and Ir2 are pulse currents as shown in claim 2, the pulse current value Ipl or pulse width Tpl or pulse frequency fl of the first anti-stick current Irl= 4/D1 or the base current value Ibl, or two or more of these correspond to the welding current value Ial. For example, when the welding current value Ial becomes large, the product of the pulse current value Ipl and the pulse width Tp2 also becomes large. Further, the second anti-stick current Ir2 is the same as the description of FIG. 3 described above, so a description thereof will be omitted. In addition, in the same figure,
Trb is the energization period of the second anti-stick, and Ir3
indicates the period from the anti-stick @ energization start time at time t=tf to the anti-stick current energization end time at time t=th. [0007] (Explanation of FIG. 6) FIG. 6 shows the results of investigating the influence of the control method at the end of welding on the arc start at the start of the next welding, and shows the welding current value Ia [A] (horizontal axis) It is a graph comparing the relationship between the amount of spatter generation [gr/so times] and the number of arc occurrences 1 for Prior Art 1, Prior Art 2, and the control method of the present invention. The arc start test conditions were as follows: after starting the arc, the arc could be generated for 3 seconds, then the output voltage was stopped for 10 seconds, and this was repeated 50 times. At this time, the total amount of spatter generated [gr] at a welding current value of 60 to 250 [A] is higher in conventional technology 1 shown by curve Z1, compared to conventional technology 2 shown in curve Z2, and control of the present invention shown in curve A. More than a method. In Prior Art 1, the molten spheres at the end of welding are larger than in the control method of the present invention, making it difficult to start the arc at the start of the next welding. [0008] (Description of FIG. 7) FIG. 7 shows that the control method at the end of welding is performed at the welding end portion (hereinafter referred to as
These are the results of an investigation into the influence of the welding current value Ia [A] (horizontal axis) on the occurrence of cracks (referred to as craters) and the relationship between the welding current value Ia [A] (horizontal axis) and the crater cracking rate CR [%]. This is a graph comparing methods. This crater cracking rate CR is (number of beads with crater cracking) / (number of 20 test weld beads)
100 [%1. The test conditions for the crater cracking rate were: plate thickness 6 [mmml], width SO [mmml], length 300
The welding speed is adjusted so that the welding bead width becomes a substantially constant value of 5 mml (i.e., the welding heat input is constant) using aluminum A 5052 material of 5 mml as the workpiece. When, welding @ flow value 100, 2
20 weld beads were created for each current value of 00 and 300 [A], and the number of crater cracks produced for each 20 weld beads was evaluated as the crater crack rate. As shown in the figure, in conventional technology 2 shown by curve Z2, since a pulse current is superimposed on the welding current, as the welding current value increases, the heat input to the crater increases and the cracking rate increases. It has increased. On the other hand, in the control method of the present invention shown in curve A, the anti-stick current is centrally controlled in accordance with the welding current value and an appropriate anti-stick current is automatically obtained. The rate is zero over a wide range of welding current values, and there is a significant difference in effect from Prior Art 2. [0009] (Description of FIG. 8) FIGS. 8 (Z) and (A) show welding @ flow value Ia [A] in the control method of Prior Art 2 and the present invention, respectively.
(horizontal axis) and plate thickness PT [mml (vertical axis), welding indicated by a white circle indicates a range in which a good welding result with no dropout can be obtained, and welding indicated by an X indicates a range in which a good welding result with dropout is obtained. It is a graph showing the range in which results can be obtained. In the graph shown in the same figure (Z) of conventional technology 2, the welding current value is 50
In [A], if the plate thickness is not 2.5 [mm1 or more, welding will occur, but as shown in the same figure (A),
In the control method of the present invention, welding current value 50 [A]
In this case, good welding results were obtained with no melt drop-off up to a plate thickness of 1.0 mm. The welding control method of the present invention enables good welding without melting at the welding end portion when welding a thin plate with a plate thickness of 1.0 mm. [0010] (Description of FIG. 9) FIG. 9 is a block diagram of an embodiment of a welding apparatus that implements the welding control method according to claims 1 to 6. [00111 (Explanation of configuration) In the figure, a commercial power supply AC is input, and welding current and anti-stick current are supplied from a welding output control circuit PS between the electrode tip 4 of the consumable electrode 1 and the workpiece 2. Generate arc 3. The consumable electrode 1 is the wire feed motor W
It is supplied by a wire feed roller WR rotated by M. The welding current setting circuit IM outputs a welding current setting signal Im for setting the average value Ia of the welding current determined by the wire feeding speed of the wire feeding motor WM. The wire feed control circuit WC receives the signal Im and outputs a feed voltage Wc to the wire feed motor WM. The supply voltage switching circuit SW6 is connected to a welding operation command circuit TS to start welding.
When the welding operation command signal Ts is input from the contact a
The feed voltage Wc is connected to the wire feed motor WM
The supply voltage is then stopped when the welding operation command signal is stopped to complete welding. The feed speed comparison circuit CMI converts the speed detection voltage Wd output from the speed detector WD of the wire feed motor WM into the welding current setting circuit IM.
The welding current setting signal Im is compared with the welding current setting signal Im, and a feeding speed comparison signal Cml corresponding to the difference is output. The welding current magnitude determination circuit CPI outputs an anti-stick (hereinafter referred to as AS) timer switching signal Cpl when the welding current setting signal Im is inputted and is larger than a predetermined current value. The AS start circuit N0T1 inputs the welding operation command signal Ts, and when the signal Ts stops, outputs the AS start signal NIL.
Output. The AS timer switching circuit SWI is a circuit that outputs the AS start signal N11 as the switching AS large current timer signal Sla or the switching AS small current timer signal Slb, and when the AS timer switching signal Cpl is input, the AS timer switching circuit SWI outputs the AS start signal N11 as the switching AS large current timer signal Sla or the switching AS small current timer signal Slb. Switch. The AS small current timer TML uses the signal Slb
When the time limit is input, a time limit count is started, and after the time limit count ends, an AS small current energization signal Tml is output. The AS large current timer TMH starts counting the time limit when the switching AS large current timer signal Sla is input, and after the counting of the time limit ends, the AS large current timer switching circuit TMH starts counting the AS large current energizing signal Tmh. Output. The AS switching small current timer TMJ starts counting the time limit when the signal Tmh is input, and outputs the AS switching small current energization signal Tmj after the time limit counting ends. A
S switching signal output circuit ○R2 is AS small current energization signal Tm
! Alternatively, when either the AS large current energization signal Tmh or the AS switching small current energization signal Tmj is input, the AStf operation signal ○r2 is output. The welding voltage setting circuit VSI outputs a welding voltage setting signal VSI. The AS high voltage setting circuit ASH outputs an AS high voltage setting signal Ash. A.S.
The low voltage setting circuit ASL outputs an AS low voltage setting signal Asl. The AS setting voltage switching circuit SW2 is connected to the A of the B contact.
This is a circuit that outputs a switching AS@pressure signal s2 that switches between the S low voltage setting signal Asl and the AS high voltage setting signal Ash of the a contact, and when the AS large current energization signal Tmh is input, the a contact is switched. Change. The setting voltage switching circuit SW3 is b
This is a circuit that outputs a switching voltage setting signal S3 by switching the welding voltage setting signal Vsl of the contact and the switching AS@pressure signal S2 of the a contact, and switches to the a contact when the AS operation signal ○r2 is input. . The pulse current value setting circuit IPI that forms the AS current receives the welding current setting signal Im as an input.
A pulse current value signal Ipl corresponding to the signal Im is output. The base current setting circuit IBI receives the welding current setting signal Im and outputs a base current setting signal Ibl corresponding to the signal Im. Pulse current setting signal Ipl
, the base current setting signal Ibl, the pulse width of the pulse frequency signal Vf1 and the pulse width frequency control signal Dfl, which will be described later, are set to values that allow one droplet to be transferred per pulse using a fixed, semi-fixed or variable adjuster (not shown). can do. The output voltage comparison circuit CM2 compares the output voltage detection signal Vd of the output voltage detection circuit VD and the switching output setting signal S3 of the setting output switching circuit SW3, and generates an output control signal C of the difference.
Output m2. The pulse frequency conversion circuit VFI that controls the ASfi flow outputs a pulse frequency signal VH corresponding to the pulse period in response to the output control signal Cm2. The pulse width frequency signal generation circuit DPI generates a welding current setting signal I.
When m and the pulse frequency signal Vfl are input, the pulse width frequency control signal Dfl is output. The pulse/base signal switching circuit SW5 has a pulse width frequency control signal Df.
Each time 'l is input, the base current signal 1bl set by the base current setting circuit IBI and the pulse current value signal Ipl set by the pulse current value setting circuit IPI are switched and the AS output control signal S5 is output. do. The welding/AS output switching circuit S~v4 outputs the output control signal C[[12
This circuit switches between the AS output control signal S5 of the a contact and outputs the switching output control signal S4, and switches to the a contact when the AS operation signal ○"2 is input. Output command circuit ○I 1 (well, when welding operation command signal Ts or AS operation signal ○"2 is input, output command signal ○r1 is input to welding output control circuit PS. [0012] (From the start of welding to Operation explanation)
Referring to FIG. 9, the operation of the welding apparatus implementing the control method of the present invention from the start of welding to during welding will be described. In the same figure, each switching circuit SWI to SW5 and the switching circuit SW
6, when no switching signal is input to each switching or opening/closing circuit, each contact is connected to the b side. When the welding operation command signal Ts is output from the welding operation command circuit TS,
The feed voltage switching circuit SW6 is sewn to the a contact, the feed voltage Wc is supplied to the feed motor WM, and the wire 1 is fed. When the welding operation command signal Ts is output, A
Since the S start circuit N0T1 does not output the AS start signal Nfl, the AS operation signal ○r2 is also not output. Therefore, the welding voltage setting signal Vsl changes from the setting voltage switching circuit S to
(2) It is input to the output voltage comparator circuit CM2 through the b contact of 3. On the other hand, the welding/AS output switching circuit SW4 is
'] Since the operation signal ○r2 is not output, it is connected to the b contact. Therefore, the output control signal Cm2 is input to the welding output control circuit PS. In addition, the welding operation command signal Ts is transmitted through the output command circuit ○R1 to the output command signal O.
Since rl is input to the welding output control circuit PS, the circuit P
S outputs the output voltage Ea2 shown in FIG. 3(D) corresponding to the welding voltage setting signal Vsl, and outputs the output current Ia2 shown in FIG. 3(E).
Welding work is performed by applying electricity. [0013] (Description of welding completion operation when the welding current is small) In FIG. 9, when the welding current is small, the welding current magnitude discrimination circuit CP1 does not output the AS timer switching signal Cpl, so the AS timer switching circuit SW1 remains connected to the b contact. In order to finish welding, when the welding operation command signal Ts is stopped at time t=tr in FIG. 3(A), the feed voltage switching circuit SW6 returns to the b contact.
As shown in the figure (B), since the feed voltage ~vc is no longer supplied to the feed motor WM, as shown in the figure (C), the wire feed speed Wf is reduced due to the inertia of the feed motor WM. decreases. On the other hand, when the welding operation command signal Ts stops, the AS start circuit N0T1 outputs the AS start signal Nil, and the AS starts through the b contact of the AS timer switching circuit SWI.
It is input to the small current timer TML. This timer TML outputs an AS small current energization signal Tml, and the AS switching signal output circuit OR2 outputs an AS operation signal Or2. The set voltage switching circuit SW3 is switched to the a contact point by this signal Or2. Further, since there is no input signal to the AS large current timer TMH, the AS large current energization signal Tmh is not output, and therefore the AS setting voltage switching circuit SW2 remains connected to the b contact. Therefore, the AS low voltage setting signal Asl of the AS low voltage setting circuit ASL is input to the pulse frequency conversion circuit VFI through the AS setting voltage switching circuit SW2, the setting voltage switching circuit SW3, and the output voltage comparison circuit CM2. The pulse current value setting circuit IPI and the base current setting circuit IBI input a pulse current value signal Ipl and a base current signal Ibl respectively corresponding to the welding current setting signal Im to the pulse base signal switching circuit SW5. The pulse width frequency signal generation circuit DPI generates a pulse width frequency control signal Df of a pulse frequency and pulse width corresponding to the pulse frequency signal Vfl and the welding current setting signal 1m.
Output l. The pulse/base signal switching circuit SW5 is
The pulse current value signal Ipl and the base current signal Ibl are switched at a pulse frequency determined by the pulse width frequency control signal Dfl to output an AS output control signal S5 forming the waveform shown in FIG. 3(E). Welding/AS output switching circuit SW4 is A
Since the S operation signal Or2 is input and connected to the a contact, the AS output control signal S5 is input to the welding output control circuit PS.
is input. Furthermore, although the welding operation command signal Ts is stopped in the output command circuit ORI, the AS operation signal Or2
is input, the output command signal Orl is output. Since this signal 0 "1 is input to the welding output control circuit PS, the circuit PS outputs the AS@S current Ir2 of FIG. 3(E) corresponding to the AS output control signal S5 to reduce the crater and the wire tip. When the time limit of the AS small current timer TML described above ends, the AS small current energization signal Tml stops. By stopping the signal Tml, the AS operation signal Or2 stops, and the output Since the command signal Orl stops, the AS current Ir
2 stops, all operations are completed, and the state returns to the standby state for starting welding. [0014] (Description of welding completion operation when the welding current is large) In FIG. 9, when the welding current is large, the welding current magnitude discrimination circuit CPI outputs the AS timer switching signal Cpl, so the AS timer switching circuit Switch SWI to a contact. In order to finish welding, at time t=tf in FIG. 4(A), when the welding operation command signal Ts is stopped, as explained in FIG. 3, the feed voltage Wc is stopped, and
The AS start signal Nil is input to the A, S large current timer TMH through the a contact of the AS timer switching circuit SW1. This timer TMH outputs an AS large current energization signal Tmh, and the AS switching signal output circuit OR2 outputs an AS operation signal ○[2. The setting voltage switching circuit SW3 is set to a by this signal ○r2.
Switched to contact. In addition, AS setting voltage switching circuit SW
2 is switched to the a contact point by the AS large current energization signal Tmh. Therefore, the AS high voltage setting signal Ash of the AS high voltage setting circuit ASH is
and setting voltage switching circuit SW3 and output voltage comparison circuit CM
2 to the pulse frequency conversion circuit VFI. Hereinafter, the AS output control signal S5 is generated in the same operation order as when the welding current is small as described above, but when the welding current is large, the AS output voltage setting signal is the AS high voltage setting signal Ash. Therefore, the output control signal Cm during AS operation
2 is larger when the welding current is large than when the welding current is small, so the frequency of the pulse frequency signal Vfl becomes higher, and as a result, the pulse frequency of the ASW flow is higher than that of Fig. 3 (E The pulse frequency of the large current AS current Irl in FIG. 4(E) is higher than the pulse frequency of the AS@S current Ir2 in ), and therefore D2>Di. Next, when the time limit of the AS large current timer TMH ends, the AS large current energization signal Tmh is stopped, and the AS setting voltage switching circuit SW2 returns to the b contact, and the AS low voltage is set from the AS high voltage setting signal Ash. The switching voltage setting signal S3 switched to the signal Ash is input to the pulse frequency conversion circuit VFI through the output voltage comparison circuit CM2. In addition,
At this time, the AS switching small current timer TMJ starts counting the time limit from time t=tg when the AS large current timer signal Tmh stops, but until the time limit counting ends,
Since the AS switching small current energization signal Tmj is output to the AS switching signal output circuit ○R2, the AS operation signal Or2 is continuously output. The above pulse frequency conversion circuit V
FI outputs a pulse frequency signal Vfl corresponding to the AS low voltage setting signal Asl to a pulse width frequency signal generation circuit DPI.
Enter. Therefore, the AS output control signal S5 is switched to a pulse signal with a frequency similar to the AS@S current Ir2 shown in FIG. 3(E), and the AS@ current in FIG. 4(E) is switched from Irl to Ir2. By switching, A in Fig. 4(E)
After applying the S@S current Ir2 to prevent the molten ball from becoming larger at the tip of the wire, the AS switching small current timer TMJ described above is applied.
When the time limit count ends, the AS operation signal "2" stops due to the stop of the AS switching small current energization signal Tmj,
Since the output command signal Orl is stopped, the AS current Ir2 is stopped, all operations are completed, and the state returns to the standby state for starting welding. In the embodiment shown in FIG. 9 above, claims 1 to 6
All of the welding control methods of the embodiment of FIG. One or more of the following configurations may be implemented. (00151 (Description of FIG. 10) FIG. 10 is a block diagram of an embodiment of a welding apparatus that can implement claims 1 to 5 and claim 7. The control method of FIG. Cm2 is input to the pulse frequency conversion circuit VFI, and the AS high voltage setting signal Ash
The frequency of the pulse frequency signal Vfl is switched by the AS period Tra and the AS period rb of the AS low voltage setting signal ASh, so that, for example, the ASS current Ir color I in FIG.
r2. In contrast, Figure 1
In the control method of 0, the welding current setting signal I [0 is input to the pulse frequency conversion circuit VFI, so the pulse frequency signal VII is the same as the AS period T with the AS high voltage setting signal Ash.
It is not switched by ra and the AS period Trb of the AS low voltage setting signal Asl. The control method of FIG. 10 inputs the output control signal Cm2 and the pulse frequency signal Vfl to the pulse width frequency signal generation circuit DPI, and sets the AS period Tra of the AS high voltage setting signal Ash and the AS low voltage setting signal Asl.
The configuration is such that the pulse width is switched depending on the AS period ra to switch to, for example, the AS@S current Ir3Ir2 shown in FIG. 11(E). [0016]

【発明の効果】本発明の制御方法によると、溶接電流値
とアンチスチック電流とが対応する一元制御が行われて
いるので、溶接電流値を定めた溶接条件に対応する適正
なアンチスチック電流を通電させることによって、まず
第1にワイヤがスチック及びバーンバックしないことは
もちろん、バラツキの小さい適正な突出長がアーク消滅
後に得られ、第2に、溶融球が大粒にならないで略ワイ
ヤの直径程度のバラツキの少ない大きさとなり、第3に
、溶接終端部分に凝固割れの発生がないという以上の3
つの重要な改善を同時に行うことができ、それによって
、次回の溶接開始時のアークスタートを瞬時に行うこと
ができるために、溶接開始時の入熱不足による溶融不良
、スパッタの発生等がない。また、年々重要性を増して
いる薄板溶接における溶接終端部分の溶は落ちの発生を
防止することができる。
[Effects of the Invention] According to the control method of the present invention, unified control is performed in which the welding current value and the anti-stick current correspond to each other. By energizing, firstly, the wire does not stick or burn back, and an appropriate protrusion length with small variations can be obtained after the arc extinguishes.Secondly, the molten sphere does not become large and has a diameter approximately equal to the diameter of the wire. Thirdly, there is no solidification cracking at the end of the weld.
Two important improvements can be made at the same time, and as a result, the arc can be started instantaneously at the start of the next welding, so there will be no melting failure or spatter caused by insufficient heat input at the start of welding. In addition, it is possible to prevent melt drop at the weld end portion in thin plate welding, which is becoming increasingly important year by year.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1の(A)乃至(E)は、従来技術1の制御
方法におけるそれぞれ溶接動作指令信号Ts、送給電圧
Wc、ワイヤ送給速度Wf 、溶接出力電圧Et及び溶
接出力電流■の時間的経過を示す図である。
1] (A) to (E) in FIG. 1 respectively show welding operation command signal Ts, feed voltage Wc, wire feed speed Wf, welding output voltage Et, and welding output current ■ in the control method of Prior Art 1; FIG.

【図2】図2の(A)乃至(C)及び(E)は、従来技
術2の制御方法における図1の(A)乃至(C)及び(
E)と同様の時間的経過を示す図である。
FIG. 2 shows (A) to (C) and (E) in FIG. 1 in the control method of Prior Art 2.
It is a figure showing the same time course as E).

【図3】図3の(A)乃至(E)は、本発明の制御方法
における設定溶接@流が小電流のときの図1の(、A)
乃至(E)と同様の時間的経過を示す図である。
[Fig. 3] (A) to (E) in Fig. 3 are (, A) in Fig. 1 when the set welding @ current is small in the control method of the present invention.
It is a figure showing the same time course as thru|or (E).

【図4】図4の(A)乃至(E)は、本発明の制御方法
における設定溶接電流が大電流のときの図1の(A)乃
至(E)と同様の時間的経過を示す図である。
FIG. 4 (A) to (E) in FIG. 4 are diagrams showing a time course similar to (A) to (E) in FIG. 1 when the set welding current is a large current in the control method of the present invention; It is.

【図5】図5の(Z)は、従来技術のワイヤ先端に大粒
の溶融球が付着することを示す説明図であり、図5の(
A)は、本発明の制御方法における小粒の溶融球が付着
することを示す説明図である。
FIG. 5 (Z) is an explanatory diagram showing that large molten spheres adhere to the tip of the wire in the prior art, and (Z) in FIG.
A) is an explanatory diagram showing the attachment of small molten spheres in the control method of the present invention.

【図6】図6は、溶接電流値Iaとスパッタ発生量SP
との関係を、従来技術1と従来技術2と本発明の制御方
法とについて対比したグラフである。
[Figure 6] Figure 6 shows welding current value Ia and spatter generation amount SP.
It is a graph comparing the relationship between the conventional technology 1, the conventional technology 2, and the control method of the present invention.

【図7】図7は、溶接電流値Iaとクレータ割れ率CR
との関係を、従来技術2と本発明の制御方法とについて
対比したグラフである。
[Figure 7] Figure 7 shows welding current value Ia and crater cracking rate CR
3 is a graph comparing the relationship between the conventional technique 2 and the control method of the present invention.

【図8】図8の(Z)及び(A)は、それぞれ従来技術
2及び本発明の制御方法において、溶接電流値■と板厚
PTとに対して、溶は落ちの発生した範囲と発生しない
範囲とを示すグラフである。
[Fig. 8] (Z) and (A) of Fig. 8 show the range in which melt drop occurred and the occurrence of welding with respect to the welding current value ■ and the plate thickness PT in the conventional technology 2 and the control method of the present invention, respectively. FIG.

【図9】図9は、本発明の制御方法を実施する溶接装置
の実施例のブロック図である。
FIG. 9 is a block diagram of an embodiment of a welding apparatus implementing the control method of the present invention.

【図10】図10は、本発明の制御方法を実施する溶接
装置の他の実施例のブロック図である。
FIG. 10 is a block diagram of another embodiment of a welding apparatus implementing the control method of the present invention.

【図11】図11は、図10の溶接装置によって、本発
明の制御方法を実施したときの図3の(E)に相当する
出力電流Iの時間的経過を示す図である。
11 is a diagram showing the time course of the output current I corresponding to (E) of FIG. 3 when the control method of the present invention is implemented using the welding apparatus of FIG. 10.

【符号の説明】[Explanation of symbols]

(図3及び図4の符号) Ts  溶接動作指令信号 Wc  送給電圧 wr  ワイヤ送給速度 El 溶接出力電圧 ■ 溶接出力電流 I at、  I a2  溶接電流値I rL、  
I r2.  I r3  アンチスチック電流tr 
 溶接動作指令信号を停止した時刻(溶接終了時)Ip
l、  Ip2  パルス電流値 Tpl、 Tp2  パルス幅 Ibl、  Ib2  ベース電流値 Di、D2  パルス周期(DI =1/fl 、D2
=1/f2でfl及びf2はパルス周波数) Eal。 E rl。 a2 r2 溶接電圧平均値 アンチスチック電圧平均値 rl T r2゜ r3 アンチスチック期間
(Symbols in FIGS. 3 and 4) Ts Welding operation command signal Wc Feed voltage wr Wire feed speed El Welding output voltage ■ Welding output current I at, I a2 Welding current value I rL,
Ir2. I r3 Anti-stick current tr
Time when welding operation command signal is stopped (when welding is completed) Ip
l, Ip2 Pulse current value Tpl, Tp2 Pulse width Ibl, Ib2 Base current value Di, D2 Pulse period (DI = 1/fl, D2
= 1/f2 where fl and f2 are pulse frequencies) Eal. E rl. a2 r2 Welding voltage average value Anti-stick voltage average value rl T r2゜r3 Anti-stick period

【手続補正書】[Procedural amendment]

【提出日】平成3年7月3日[Submission date] July 3, 1991

【手続補正1】[Procedural amendment 1]

【補正対象書類名】明細書[Name of document subject to amendment] Specification

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction details]

【図2】図2は、従来技術2の制御方法における図1の
(A)乃至(C)及び(E)と同様の時間的経過を示す
図である。
FIG. 2 is a diagram showing the same time course as (A) to (C) and (E) of FIG. 1 in the control method of Prior Art 2;

【手続補正2】[Procedural amendment 2]

【補正対象書類名】明細書[Name of document subject to amendment] Specification

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction details]

【図5】図5は、従来技術のワイヤ先端に大粒の溶融球
が付着することを示す説明図及び本発明の制御方法にお
ける小粒の溶融球が付着することを示す説明図である。
FIG. 5 is an explanatory diagram showing that large molten spheres adhere to the tip of a wire in the prior art and an explanatory diagram showing that small molten spheres adhere to the control method of the present invention.

【手続補正3】[Procedural amendment 3]

【補正対象書類名】明細書[Name of document subject to amendment] Specification

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction details]

【図8】図8は、従来技術2及び本発明の制御方法にお
いて、溶接電流値■と板厚PTとに対して、溶は落ちの
発生した範囲と発生しない範囲とを示すグラフである。
FIG. 8 is a graph showing the range in which melt drop occurs and the range in which it does not occur with respect to the welding current value ■ and the plate thickness PT in the control method of Prior Art 2 and the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】消耗電極送給電動機に送給電圧を供給して
送給する消耗電極に、溶接電流を通電して溶接した後に
、前記送給電圧の停止後の慣性による消耗電極の送給量
を溶融するアンチスチック電流を通電して溶接を終了す
る消耗電極アーク溶接制御方法において、溶接終了時の
動作指令信号の停止によって消耗電極送給電動機の前記
送給電圧を停止し、前記溶接電流から前記溶接電流値に
対応したアンチスチック電流に切換えることにより前記
溶接電流と前記アンチスチック電流とを一元制御する消
耗電極アーク溶接制御方法。
[Claim 1] After welding by applying a welding current to a consumable electrode that is supplied by supplying a supply voltage to a consumable electrode feeding motor, the consumable electrode is fed by inertia after the supply voltage is stopped. In a consumable electrode arc welding control method in which welding is completed by passing an anti-stick current that melts the welding amount, the supply voltage of the consumable electrode supply motor is stopped by stopping the operation command signal at the end of welding, and the welding current is A consumable electrode arc welding control method, wherein the welding current and the anti-stick current are centrally controlled by switching from the welding current value to the anti-stick current corresponding to the welding current value.
【請求項2】溶接電流値に対応したアンチスチック電流
が、パルス電流値、パルス幅、パルス周波数及びベース
電流値の1つ以上と前記溶接電流値とが対応した電流で
ある請求項1の消耗電極アーク溶接制御方法。
2. The consumption according to claim 1, wherein the anti-stick current corresponding to the welding current value is a current to which the welding current value corresponds to one or more of a pulse current value, a pulse width, a pulse frequency, and a base current value. Electrode arc welding control method.
【請求項3】溶接電流値に対応したアンチスチック電流
が、1パルス1溶滴移行をさせる電流である請求項2の
消耗電極アーク溶接制御方法。
3. The consumable electrode arc welding control method according to claim 2, wherein the anti-stick current corresponding to the welding current value is a current that causes one droplet to transfer per pulse.
【請求項4】溶接電流値に対応したアンチスチック電流
が、前記溶接電流値が大のとき、前記送給電圧の停止か
らアンチスチック電流の通電終了までの間に、アンチス
チック電流の平均値を大から小に切換えた電流である請
求項1の消耗電極アーク溶接制御方法。
4. When the welding current value is large, the anti-stick current corresponding to the welding current value is equal to the average value of the anti-stick current between the stop of the supply voltage and the end of the anti-stick current application. 2. The consumable electrode arc welding control method according to claim 1, wherein the current is switched from high to low.
【請求項5】溶接電流値に対応したアンチスチック電流
が、送給電圧の停止した後の溶接出力電圧値に対応した
電流である請求項1の消耗電極アーク溶接制御方法。
5. The consumable electrode arc welding control method according to claim 1, wherein the anti-stick current corresponding to the welding current value is a current corresponding to the welding output voltage value after the supply voltage is stopped.
【請求項6】溶接電流値に対応したアンチスチック電流
が、パルス電流値、パルス幅及びベース電流値の1つ以
上と溶接電流値とが対応した電流であり、かつ、送給電
圧の停止した後の溶接電圧出力値に対応したパルス周波
数の電流である請求項2の消耗電極アーク溶接制御方法
[Claim 6] The anti-stick current corresponding to the welding current value is a current in which the welding current value corresponds to one or more of the pulse current value, pulse width, and base current value, and the anti-stick current corresponds to the welding current value, and the anti-stick current corresponds to the welding current value, and 3. The consumable electrode arc welding control method according to claim 2, wherein the current has a pulse frequency corresponding to a subsequent welding voltage output value.
【請求項7】溶接電流値に対応したアンチスチック電流
が、パルス電流値、パルス周波数及びベース電流値の1
つ以上と溶接電流値とが対応した電流であり、かつ、送
給電圧の停止した後の溶接電圧出力値に対応したパルス
幅の電流である請求項2の消耗電極アーク溶接制御方法
7. The anti-stick current corresponding to the welding current value is one of the pulse current value, pulse frequency and base current value.
3. The consumable electrode arc welding control method according to claim 2, wherein the current has a pulse width corresponding to the welding voltage output value after the supply voltage is stopped.
JP2410010A 1990-12-10 1990-12-10 Consumable electrode arc welding control method Expired - Lifetime JP3018504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410010A JP3018504B2 (en) 1990-12-10 1990-12-10 Consumable electrode arc welding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410010A JP3018504B2 (en) 1990-12-10 1990-12-10 Consumable electrode arc welding control method

Publications (2)

Publication Number Publication Date
JPH04210872A true JPH04210872A (en) 1992-07-31
JP3018504B2 JP3018504B2 (en) 2000-03-13

Family

ID=18519248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410010A Expired - Lifetime JP3018504B2 (en) 1990-12-10 1990-12-10 Consumable electrode arc welding control method

Country Status (1)

Country Link
JP (1) JP3018504B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062669A (en) * 2001-08-29 2003-03-05 Daihen Corp Method for completing consumable two-electrode arc welding and method for controlling its completion
JP2006305584A (en) * 2005-04-27 2006-11-09 Daihen Corp Method for controlling completion of consumable electrode arc welding
JP2007313513A (en) * 2006-05-23 2007-12-06 Daihen Corp Method of controlling completion of welding of consumable electrode arc welding
WO2011024380A1 (en) * 2009-08-28 2011-03-03 パナソニック株式会社 Arc welding method and arc welding device
JP2015003333A (en) * 2013-06-21 2015-01-08 株式会社ダイヘン Arc start quality tendency presentation device
JP2015107512A (en) * 2013-12-05 2015-06-11 株式会社ダイヘン Antistick control method
JP2018069337A (en) * 2016-10-26 2018-05-10 ヒュンダイ ウエルディング シーオー.,エルティディ. Burn-back treatment control device and method in arc-welding time
WO2019208317A1 (en) * 2018-04-27 2019-10-31 株式会社ダイヘン Arc end adjustment device, welding system, arc end adjustment method, and computer program
CN114833431A (en) * 2022-06-13 2022-08-02 唐山松下产业机器有限公司 Pulse welding burn-back control method and device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062669A (en) * 2001-08-29 2003-03-05 Daihen Corp Method for completing consumable two-electrode arc welding and method for controlling its completion
JP2006305584A (en) * 2005-04-27 2006-11-09 Daihen Corp Method for controlling completion of consumable electrode arc welding
JP4620519B2 (en) * 2005-04-27 2011-01-26 株式会社ダイヘン Consumable electrode arc welding end control method
JP2007313513A (en) * 2006-05-23 2007-12-06 Daihen Corp Method of controlling completion of welding of consumable electrode arc welding
US9050677B2 (en) 2009-08-28 2015-06-09 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding apparatus
WO2011024380A1 (en) * 2009-08-28 2011-03-03 パナソニック株式会社 Arc welding method and arc welding device
JP5141826B2 (en) * 2009-08-28 2013-02-13 パナソニック株式会社 Arc welding method and arc welding apparatus
JP2015003333A (en) * 2013-06-21 2015-01-08 株式会社ダイヘン Arc start quality tendency presentation device
JP2015107512A (en) * 2013-12-05 2015-06-11 株式会社ダイヘン Antistick control method
JP2018069337A (en) * 2016-10-26 2018-05-10 ヒュンダイ ウエルディング シーオー.,エルティディ. Burn-back treatment control device and method in arc-welding time
WO2019208317A1 (en) * 2018-04-27 2019-10-31 株式会社ダイヘン Arc end adjustment device, welding system, arc end adjustment method, and computer program
JP2019188460A (en) * 2018-04-27 2019-10-31 株式会社ダイヘン Arc end adjusting device, welding system, arc end adjusting method, and computer program
TWI694887B (en) * 2018-04-27 2020-06-01 日商達誼恆股份有限公司 Arc end adjustment device, welding system, arc end adjustment method and computer program
CN114833431A (en) * 2022-06-13 2022-08-02 唐山松下产业机器有限公司 Pulse welding burn-back control method and device

Also Published As

Publication number Publication date
JP3018504B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
JP4291257B2 (en) Short-circuit arc welder and control method thereof
US5670071A (en) MAG arc welding apparatus
JP2009208137A (en) Plasma mig welding method
JPH04210872A (en) Consumable electrode arc welding control method
JPH0580308B2 (en)
JPH0655268A (en) Welding robot
JPS58215278A (en) Metal arc welding method and its device
JP2010207855A (en) Method of controlling arc start for two-electrode arc welding
KR102493386B1 (en) A method for controlling a welding process with a consumable electrode and a welding device having a controller of this type
JP2000079479A (en) Method for controlling current waveform in consumable electrode gas shielded arc welding and its welding equipment
JPH07155948A (en) Method for controlling arc start of pulse mag welding
JP2990767B2 (en) Consumable electrode arc welding method and welding device
JPH05200548A (en) Nonconsumable arc welding method and equipment
JPH06218546A (en) Consumable electrode type pulse arc welding equipment
JP3762476B2 (en) Pulse arc welding end method and welding apparatus
JPS6255472B2 (en)
JPH0613145B2 (en) Power source for arc welding
JP4252636B2 (en) Consumable electrode gas shield arc welding method
JP2002248571A (en) Laser irradiation arc start control method
JPH03297560A (en) Method for starting ac arc
JP2705208B2 (en) Pulse arc welding machine
US20220161350A1 (en) Multiple welding method
JP3082268B2 (en) Pulse MAG welding end control method
JPH04270069A (en) Method for controlling arc start of pulse mag welding
JPS5893574A (en) Method and device for pulse arc welding

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

EXPY Cancellation because of completion of term