JPH0640618B2 - Eco-Cancer - Google Patents
Eco-CancerInfo
- Publication number
- JPH0640618B2 JPH0640618B2 JP23588786A JP23588786A JPH0640618B2 JP H0640618 B2 JPH0640618 B2 JP H0640618B2 JP 23588786 A JP23588786 A JP 23588786A JP 23588786 A JP23588786 A JP 23588786A JP H0640618 B2 JPH0640618 B2 JP H0640618B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- tap coefficient
- echo
- received signal
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Filters That Use Time-Delay Elements (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Description
【発明の詳細な説明】 〔概要〕 エコーキャンセラにおいて、記憶回路から演算周期内に
古い順に読出した受信信号と対応する係数とを演算回路
に加えて演算周期内で使用する係数を更新した後、記憶
回路から読出した受信信号と組合せて記憶回路に書込む
と共に、演算回路で更新した係数と受信信号とを用いて
演算を行う様にして、演算回路の効率を向上させると共
に、記憶回路の動作速度を低下させる様にしたものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Outline] In an echo canceller, after a received signal read from a storage circuit in an arithmetic cycle in the oldest order and a corresponding coefficient are added to the arithmetic circuit to update a coefficient used in the arithmetic cycle, The efficiency of the arithmetic circuit is improved and the operation of the memory circuit is performed by writing to the memory circuit in combination with the received signal read from the memory circuit and performing the arithmetic operation using the coefficient and the received signal updated by the arithmetic circuit. It is designed to reduce the speed.
本発明はエコーキャンセラの改良に関するものである。 The present invention relates to an improved echo canceller.
第4図はエコーキャンセラを使用する回線構成図例を示
す。FIG. 4 shows an example of a line configuration diagram using an echo canceller.
図に示す様にA側とB側とは伝送路1,2によって接続
されているが、この伝送路は長距離伝送路、例えば衛星
回線である。今、A側からの信号xは伝送路1を介して
B側のハイブリッド回路4に加えられるが、ここでのイ
ンピーダンス不整合によりエコー信号yが生ずる。As shown in the figure, the A side and the B side are connected by transmission lines 1 and 2, which are long-distance transmission lines, for example, satellite lines. Now, the signal x from the A side is applied to the hybrid circuit 4 on the B side via the transmission line 1, but the echo signal y is generated due to the impedance mismatch here.
このエコー信号yは伝送路2を介して再びA側に戻って
通話妨害となるので、この様なエコー信号をできる丈け
抑圧する為に設けられたのがエコーキャンセラ5,6で
ある。Since the echo signal y returns to the A side again via the transmission line 2 and interferes with the call, the echo cancellers 5 and 6 are provided to sufficiently suppress such an echo signal.
エコーキャンセラ5はエコーを発生する部分(以下,エ
コー経路と云う)の伝送特性に近似した伝送特性を持
ち、A側からの信号xを取り込んで近似のエコー信号
(以下,擬似エコー信号と云う) を発生させて,実際のエコー信号yと逆相で化さするこ
とによりエコー信号がある程度打ち消されて減衰したエ
コー信号(以下,残留エコー信号と云う)eがA側に戻
る。The echo canceller 5 has a transmission characteristic close to the transmission characteristic of a portion that generates an echo (hereinafter referred to as an echo path), and takes in a signal x from the A side to approximate the echo signal (hereinafter referred to as a pseudo echo signal). Is generated and converted into a phase opposite to that of the actual echo signal y, the echo signal is canceled to some extent, and the attenuated echo signal (hereinafter referred to as residual echo signal) e returns to the A side.
この為、通話妨害の程度は改善されるが、このエコーキ
ャンセラの動作効率を高くすることが必要である。Therefore, although the degree of call interference is improved, it is necessary to increase the operation efficiency of this echo canceller.
尚、エコーキャンセラ6はB側に戻るエコー信号を抑圧
するためのものである。The echo canceller 6 is for suppressing the echo signal returning to the B side.
第5図はエコーキャンセラのブロック図、第6図はたた
み込み演算部の動作説明図を示す。FIG. 5 is a block diagram of the echo canceller, and FIG. 6 is an operation explanatory diagram of the convolution operation unit.
第5図に示す様にエコーキャンセラにはエコー経路のイ
ンパルス応答に対応する係数hiを記憶する係数記憶回
路8と,受信信号xnを記憶する受信信号記憶回路7と
があり、ここから読出された係数hiと受信信号xnと
のたたみ込み演算をたたみ込み演算部10で行うことによ
りエコー経路(図示せず)で生ずるエコー信号ynを抑
圧する擬似エコー信号 を発生する。As shown in FIG. 5, the echo canceller has a coefficient storage circuit 8 for storing the coefficient h i corresponding to the impulse response of the echo path and a reception signal storage circuit 7 for storing the reception signal x n. A pseudo echo signal for suppressing the echo signal y n generated in the echo path (not shown) by performing the convolution operation of the generated coefficient hi and the received signal x n in the convolution operation unit 10. To occur.
そして、加算器11で を求めることによりエコー信号を抑圧すると共に、抑圧
しきれなかった残留エコー信号enを用いて適応制御部
12,係数更新演算部9で通話中に自動的にhiをエコー
経路のインパルス応答に近づけ,即ち同定してエコー信
号を抑圧する様にしている。And with the adder 11 With suppressing the echo signal by determining the adaptive controller using a residual echo signal e n that can not be suppressed
12, and automatically h i during a call by the coefficient updating calculation unit 9 close to the impulse response of the echo path, i.e. identified in the manner to suppress the echo signal.
ここで、エコーキャンセラでは下記の式を用いてたたみ
こみ演算等が行われる。Here, the echo canceller performs a convolution calculation and the like using the following equation.
・たたみこみ演算(擬似エコー信号 の発生) ・加算(残留エコー信号enの算出) ・係数変更演算(hiの算出) 但し ここで、たたみ込み演算は第6図に示す様に受信信号記
憶回路7及び係数記憶回路8からの受信信号xn-i及び
係数hiを用いてフイルタ的な演算をするのでhiをタ
ップ係数,Nをタップ数と云う。・ Tampering operation (pseudo echo signal Occurrence of) - adding (Calculation of residual echo signal e n) And coefficient change operation (calculation of h i) However Here, since the convolution operation is a filter-like operation using the received signals x ni and the coefficients h i from the received signal storage circuit 7 and the coefficient storage circuit 8 as shown in FIG. 6, h i is a tap coefficient, N is called the number of taps.
又,(3)式においてnは時系列を表し,ある時刻(n+1)で
のhi(第6図に示す様に複数個のタップ係数のうちの
i番目の係数),即ち はその前の時刻nでの 即ちhiを用いて求められる。尚、Kn制御係数を示
す。Further, in the equation (3), n represents a time series, and h i at a certain time (n + 1) (i-th coefficient of a plurality of tap coefficients as shown in FIG. 6), that is, At time n before that That is, it is obtained using h i . The K n control coefficient is shown.
第7図は従来例のブロック図、第8図は第7図の動作説
明図を示す。第8図の左側の記号は第7図中の同じ信号
の部分の動作を示す。FIG. 7 shows a block diagram of a conventional example, and FIG. 8 shows an operation explanatory diagram of FIG. The symbols on the left side of FIG. 8 indicate the operation of the same signal portion in FIG.
以下、タップ数N=512 として第8図を参照しながら第
7図の動作を説明する。The operation of FIG. 7 will be described below with reference to FIG. 8 assuming that the number of taps N = 512.
先ず、入力する直列PCM 信号xnは直列/ 並列変換回路
(図示せず)で並列データに変換された後、xn-iに対
応する が受信信号記憶回路7及び係数記憶回路8内の対応する
アドレスに書込まれる。First, the input serial PCM signal x n is converted into parallel data by a serial / parallel conversion circuit (not shown) and then corresponds to x ni . Are written to the corresponding addresses in the reception signal storage circuit 7 and the coefficient storage circuit 8.
尚、この記憶回路から読出された信号xn-iはμ- Law
又はA - Lawで8ビットに圧縮されているので、演算を
容易にする為に乗算回路13内の伸張部分(図示せず)で
伸張して直線的な信号に変換されるとする。The signal x ni read from this memory circuit is
Alternatively, since it is compressed to 8 bits by A-Law, it is assumed that the signal is expanded by a decompression part (not shown) in the multiplication circuit 13 and converted into a linear signal in order to facilitate the calculation.
又、2つの記憶回路の読出し,書込みは独立に行えると
する。In addition, it is assumed that the two memory circuits can be read and written independently.
さて、演算開始信号が入力すると、上記の(1)式を演算
するために読出しアドレスが受信信号記憶回路7及び係
数記憶回路8に加えられ、ここから が読出されて乗算回路13で乗算され、加減算回路14を介
して演算結果がアキュムレータ15に格納されて が加減算回路の入力側に加えられる(第8図(a)- 〜
参照)。Now, when the calculation start signal is input, the read address is added to the reception signal storage circuit 7 and the coefficient storage circuit 8 in order to calculate the above equation (1). Is read and multiplied by the multiplication circuit 13, and the calculation result is stored in the accumulator 15 via the addition / subtraction circuit 14. Is added to the input side of the adder / subtractor circuit (Fig. 8 (a)-~
reference).
次に、上記と同じ様に2つの記憶回路7,8から が読出され、乗算回路13で乗算されて が得られ、これが加減算回路14で1つ前のアキュムレー
タ15の値(以下,ACCと省略する)と加算されて が得られ,アキュムレータ15に加えられるので、アキュ
ムレータ15の値はこの値に更新され再び加減算回路14に
加えられる。Next, from the two storage circuits 7 and 8 in the same manner as above. Is read out and multiplied by the multiplication circuit 13. Is obtained, and this is added with the value of the previous accumulator 15 (hereinafter, abbreviated as ACC) in the adder / subtractor circuit 14. Is obtained and added to the accumulator 15, the value of the accumulator 15 is updated to this value and added to the addition / subtraction circuit 14 again.
この演算を512 回繰り返すとアキュムレータ15に第8図
(a)- に示す様に擬似エコー が格納され、これが加減算回路14に加えられる。When this operation is repeated 512 times, the accumulator 15 is shown in FIG.
(a)-Pseudo echo as shown in Is stored, and this is added to the addition / subtraction circuit 14.
一方、端子SIN からエコー信号ynが加減算回路14の
(−)端子に加えられるので上記の(2)式の演算が行わ
れ、求められた残留エコー信号enはアキュムレータ1
5,出力レジスタ16を介して出力される(第8図(a)-
参照)。On the other hand, from the terminal SIN echo signal y n is addition and subtraction circuit 14 (-) since it is applied to the terminal operational in the above (2) is performed, the residual echo signal e n obtained accumulator 1
5, output through the output register 16 (Fig. 8 (a)-
reference).
次に、このenを利用してK算出回路12で上記(4)式に
よりKnの算出が行われる。Next, the calculation of K n is performed in the K calculation circuit 12 by using this e n by the equation (4).
更に、上記の(3)式により次の時刻のタップ係数 を求める為、乗算回路13内のセレクタ(図示せず)の動
作により再度,受信信号記憶回路7から読出されたxn
とKnが乗算されてKn・xnが加減算回路14に加えら
れる(第8図(b)- ,,参照)。Furthermore, the tap coefficient at the next time is calculated by the above equation (3). X n read from the received signal storage circuit 7 again by the operation of a selector (not shown) in the multiplication circuit 13 in order to obtain
K n is multiplied by K n · x n is applied to the adder circuit 14 (FIG. 8 (b) - see ,,).
ここでは、係数記憶回路8から再度,読出された が加えられているので加算されて がアキュムレータ15に格納されて係数記憶回路8の のアドレスの所に書込まれ係数が更新される(第8図
(b)- ,参照)。Here, it is read again from the coefficient storage circuit 8. Has been added, so it is added Is stored in the accumulator 15 and stored in the coefficient storage circuit 8. Is written at the address of and the coefficient is updated (Fig. 8
(b)-, see).
これを512 回繰り返して記憶さた係数を に更新すると共に、受信信号記憶回路に新しい信号x
n+1が入って元の最古の信号xn-511が捨てられるので、
再び上記の演算が繰り返される。This is repeated 512 times and the stored coefficient is And a new signal x is stored in the received signal storage circuit.
Since the oldest original signal x n-511 is thrown in with n + 1 entered,
The above calculation is repeated again.
尚、 を更新する際の とxn-iの読出しはたたみ込み演算の時と異なり1タイ
ムストロットずれるので、読出しアドレスのタイミング
がその様に送出される(第8図(b)- アドレス参照)。still, When updating Unlike the convolution operation, the reading of x and x ni is shifted by one time strobe, so the timing of the read address is sent out as such (see FIG. 8 (b) -address).
上記の様に(1)式を演算したら(2)式の演算を行い、それ
が終れば(3)式を演算すると云う様に逐次演算していく
ので、(1)式と(3)式で同じ信号xn-iと係数hiを2回
読出し転送しなければならず演算回路の使用効率が悪く
なる。As shown in the above, if formula (1) is calculated, formula (2) is calculated, and if it is completed, formula (3) will be calculated successively, so formulas (1) and (3) are calculated. Therefore , the same signal x ni and coefficient h i have to be read and transferred twice, which reduces the efficiency of use of the arithmetic circuit.
又、2つの記憶回路の動作は演算回路と同じ動作速度が
要求されるので消費電力が大きくなると云う2つの問題
点がある。Further, the two memory circuits are required to operate at the same operating speed as the arithmetic circuit, which causes two problems that power consumption increases.
上記の問題点は第1図に示す様に、時刻nより1サンプ
ル時刻だけ古い時刻(n−1)におけるi番目のタップ
係数 と時刻nよりiサンプル時刻だけ古い受信信号xn-iを
1ワードとして、Nタップ分の受信信号とタップ係数を
記憶するNワードの記憶部分と、該Nタップの中の最古
の受信データより1サンプル時刻だけ古い受信信号x
n-Nを記憶する専用レジスタ部分とを有する記憶回路
と、乗算回路と加減算回路を含む演算回路とを設け、 該演算回路は、該専用レジスタ部分から受信信号
xn-N,該記憶部分から最後尾のタップ係数 を読み出し、該読み出した受信信号及びタップ係数を用
いて最後尾タップ係数の更新演算を行って1サンプル時
刻だけ新しいタップ係数 を求め、 更新タップ係数 と次のサンプル時刻の受信信号xn-(N-2)を該記憶部分
に書き込むと同時に、該専用レジスタ部分の内容をx
n-(N-1)に更新し、更新タップ係数 と受信信号xn-(N-1)とを乗算して累積演算を開始する
と共に、Nワードの記憶部分のアドレスを1アドレス変
化し、再び、 (1) 該記憶回路から受信信号とタップ係数を読み出
し、(2) 読み出したタップ係数の更新及び更新タップ
係数と対応する受信信号を該記憶回路へ書き込み、(3)
更新したタップ係数と該記憶回路から読み出した更新
タップ係数に対応する受信信号との乗算累積を繰り返し
実行して、擬似エコーを生成し、エコーを含む信号から
擬似エコーを差し引くことによりエコーを消去する様に
した本発明のエコーキャンセラにより解決される。As shown in FIG. 1, the above problem is caused by the i-th tap coefficient at time (n-1) that is one sample time older than time n. And the received signal x ni that is older than the time n by i sample times as one word, a storage portion of N words that stores the received signals and tap coefficients for N taps, and 1 from the oldest received data in the N taps. Received signal x that is old by the sample time
A memory circuit having a dedicated register portion for storing nN and an arithmetic circuit including a multiplication circuit and an addition / subtraction circuit are provided, and the arithmetic circuit receives the received signal x nN from the dedicated register portion and the last tap from the memory portion. coefficient Is read out, the last tap coefficient is updated using the read received signal and tap coefficient, and a new tap coefficient is obtained only for one sample time. And update tap coefficient And the received signal x n- (N-2) at the next sample time is written to the storage portion, and at the same time, the content of the dedicated register portion is changed to x
Updated to n- (N-1) and updated tap coefficient And the received signal x n- (N-1) are multiplied to start the cumulative operation, the address of the storage portion of N words is changed by one address, and (1) the received signal from the storage circuit and the tap coefficient are changed again. And (2) update the read tap coefficient and the received signal corresponding to the updated tap coefficient to the memory circuit, (3)
Repeated multiplication and accumulation of the updated tap coefficient and the received signal corresponding to the updated tap coefficient read from the storage circuit generate a pseudo echo, and cancel the echo by subtracting the pseudo echo from the signal including the echo. This is solved by the echo canceller of the present invention.
本発明は下記の式により演算を行う様にした。 In the present invention, the calculation is performed by the following formula.
ここで、(1)′は上記の(1)式のnをn−1に置換したも
のである。 Here, (1) 'is obtained by substituting n-1 for n in the above formula (1).
この為、記憶回路20の受信信号記憶部分と係数記憶部分
とから古い信号xn-Nとそれに対応した係数 とを読出し、演算回路21の中の乗算回路でKn-1・xn-N
を求めた後,加減算回路で更に を加算して(1)′式の演算をして更新した を乗算回路と係数記憶部分に供給する。Therefore, the old signal x nN and the coefficient corresponding to the old signal x nN are stored in the received signal storage portion and the coefficient storage portion of the storage circuit 20. And are read out, and K n-1 · x nN is calculated by the multiplication circuit in the arithmetic circuit 21.
After obtaining Was added to calculate and update equation (1) ′. Is supplied to the multiplication circuit and the coefficient storage section.
次に、乗算回路は形成された を用いて、(2)′式の演算をxn-N+1について行った後に
再び(1)′式の係数変更演算を行う。Then the multiplier circuit was formed Is used to perform the operation of the equation (2) 'for x n -N + 1, and then the coefficient changing operation of the equation (1)' is performed again.
即ち、演算回路でたたみ込み演算と係数更新演算とを交
互に繰り返して を得た後、更に(3)′式を演算してエコー信号ynを消
去する様にした。That is, the convolution operation and the coefficient update operation are alternately repeated in the arithmetic circuit. After obtaining, the equation (3) 'is further calculated to eliminate the echo signal y n .
又、Knは(3)′式の実行後に算出する。Further, K n is calculated after executing the equation (3) ′.
この様な演算方法により受信信号と係数の読出し,転送
を一回ですませることができるので、演算回路の使用効
率が向上すると共に、記憶回路の動作速度を従来の1/2
にした。With such an arithmetic method, the received signal and coefficient can be read and transferred only once, which improves the operating efficiency of the arithmetic circuit and reduces the operating speed of the memory circuit to half that of the conventional method.
I chose
第2図は本発明の実施例のブロック図,第3図は第2図
の動作説明図で、第3図中の左側の記号は第2図中の同
じ記号の部分の動作を示す。又、全図を通じて同一記号
は同一対象物を示し、条件は従来例と同一とする。FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is a diagram for explaining the operation of FIG. 2. The symbols on the left side of FIG. 3 show the operations of the same symbols in FIG. In addition, the same symbols indicate the same objects throughout the drawings, and the conditions are the same as in the conventional example.
尚、受信信号記憶部分201,係数記憶部分202,レジスタ20
3,205 及びセレクタ204,206 は記憶回路20の、乗算回路
13,加減算回路14,アキュムレータ15,18,出力レジスタ
16,K算出回路17は演算回路21の構成部分である。In addition, the reception signal storage portion 201, the coefficient storage portion 202, the register 20
3, 205 and selectors 204, 206 are multiplication circuits of the memory circuit 20.
13, adder / subtractor 14, accumulators 15, 18, output register
The 16, K calculation circuit 17 is a component of the arithmetic circuit 21.
以下,N=512 として第3図を参照しながら第2図の動
作を説明する。The operation of FIG. 2 will be described below with reference to FIG. 3 with N = 512.
先ず、本発明は上記で説明した様に係数更新演算として を、たたみ込み演算として を演算することにより を求める。First, as described above, the present invention performs a coefficient update calculation. As a convolution operation By computing Ask for.
このため、i=511 の時のh511に対応する受信信号は
xn-512となるが,第2図の受信信号記憶部分201 と係
数記憶部分202 に示す様に とこれに対応してxn-511が1ワードとして書込まれて
いるので、レジスタ203 を設けてxn-512を書込むと共
に、これを使用する時と受信信号記憶部分201 の信号を
使用する時があるので、外部の制御回路(図示せず)の
制御で駆動されたセレクタ204 でセレクトする様にし
た。Therefore, the received signal corresponding to h 511 when i = 511 is x n-512 , as shown in the received signal storage portion 201 and the coefficient storage portion 202 in FIG. Since x n-511 is written as one word corresponding to this, a register 203 is provided to write x n-512, and when this is used and the signal of the received signal storage portion 201 is used. Therefore, the selector 204 driven by the control of an external control circuit (not shown) selects.
又、第3図- ,に示す様に とxn-512とは同時に乗算回路13に入力しなければなら
ないので、後者をレジスタ205 で遅延させている。Also, as shown in Fig. 3- Since x and x n-512 must be input to the multiplication circuit 13 at the same time, the latter is delayed by the register 205.
さて、レジスタ203 と係数記憶部分202 から読出された
xn-512と のうち前者とKn-1とを乗算回路13で乗算し、これと とを加減算回路14で加算して を求め,この中にあるエレクタ(図示せず)によりアキ
ュムレータ18に格納し、係数記憶部分202 の を に更新すると共に、乗算回路13に加える(第3図- 〜
,及び書込みアドレス,書込みクロック参照)。Now, x n-512 read from the register 203 and the coefficient storage unit 202 The former and K n-1 are multiplied by the multiplication circuit 13 and And are added by the adder / subtractor circuit 14 Is stored in the accumulator 18 by an erector (not shown) in the To To the multiplication circuit 13 as shown in FIG.
, And write address, write clock).
そして、更新された と受信信号記憶部分201 から読出された信号xn-511と
を乗算回路13で乗算した を加減算回路14で加算し,アキュムレータ15に格納し,
加減算回路14に加える(第3図- ,,,,参
照)。And updated The signal x n-511 read from the received signal storage portion 201 is multiplied by the multiplication circuit 13. Is added by the addition / subtraction circuit 14 and stored in the accumulator 15,
It is added to the adder / subtractor circuit 14 (see Fig. 3,-, ...).
次に、Kn-1・x511の乗算を乗算回路13で求め、これと とを加減算回路14で加算して を求め、アキュムレータ18に格納し、係数記憶部分202
の を に更新すると共に、乗算回路13に加える。そして、 と読出された信号xn-510とを乗算回路13で乗算した を加減算回路14で加算してアキュムレータ15に格納して
前の値と累積されて が演算される。Next, the multiplication circuit 13 finds the multiplication of K n-1 x 511 , and And are added by the adder / subtractor circuit 14 Is stored in the accumulator 18, and the coefficient storage portion 202
of To And is added to the multiplication circuit 13. And And the read signal x n-510 is multiplied by the multiplication circuit 13. Is added by the adder / subtractor circuit 14 and stored in the accumulator 15 and accumulated with the previous value. Is calculated.
これを繰り返すこと が算出された時に係数の更新も同時に終了している。そ
こで、 と端子SIN に加えられたエコー信号ynと減算して残留
エコー信号enを求め、その後Knを算出して上記の演
算を繰り返す。To repeat this At the same time, the update of the coefficient is completed when is calculated. Therefore, And subtracting the echo signal y n which is applied to the terminal SIN seeking residual echo signal e n, then calculates the K n repeats the above-described operation.
この様な演算を行うことにより演算回路を効率よく使用
することができると共に、記憶回路は高速動作を必要と
しない。By performing such an operation, the arithmetic circuit can be used efficiently, and the memory circuit does not need to operate at high speed.
以上詳細に説明した様に本発明は記憶回路からの1回の
信号の読出しでたたみ込み演算と係数更新演算が行われ
るので、演算回路を効率よく連続的に使用することがで
きると共に、記憶回路は高速動作を必要としないと云う
効果がある。As described in detail above, according to the present invention, since the convolution operation and the coefficient update operation are performed by reading the signal from the memory circuit once, the arithmetic circuit can be used efficiently and continuously, and at the same time, the memory circuit can be used. Has the effect of not requiring high speed operation.
第1図は本発明の原理ブロック図、 第2図は本発明の実施例のブロック図、 第3図は第2図の動作説明図、 第4図はエコーキャンセラを使用する回線構成例、 第5図はエコーキャンセラのブロック図、 第6図はたたみ込み演算部の動作説明図、 第7図は従来例のブロック図、 第8図は第7図の動作説明図を示す。 図において 13は乗算回路、 14は加減算回路、 15,18はアキュムレータ、 16は出力レジスタ、 17はK算出回路、 20は記憶回路、 21は演算回路、 203,205はレジスタ、 204,206はセレクタを示す。 FIG. 1 is a block diagram of the principle of the present invention, FIG. 2 is a block diagram of an embodiment of the present invention, FIG. 3 is an operation explanatory diagram of FIG. 2, and FIG. 4 is a line configuration example using an echo canceller, 5 is a block diagram of the echo canceller, FIG. 6 is an operation explanatory diagram of the convolution operation unit, FIG. 7 is a block diagram of a conventional example, and FIG. 8 is an operation explanatory diagram of FIG. In the figure, 13 is a multiplication circuit, 14 is an addition / subtraction circuit, 15 and 18 are accumulators, 16 is an output register, 17 is a K calculation circuit, 20 is a memory circuit, 21 is an arithmetic circuit, 203 and 205 are registers, and 204 and 206 are selectors. Indicates.
Claims (1)
用いた適応フイルタ演算により擬似エコーを発生し、エ
コーを含む信号から該擬似エコーを差し引いてエコーを
消去するエコーキャンセラにおいて、 時刻nより1サンプル時刻だけ古い時刻(n−1)にお
けるi番目のタップ係数 (i=0,1,・・N−1であるが、Nは正の整数)と
時間nよりiサンプル時刻だけ古い受信信号xn-iを1
ワードとして、Nタップ分の受信信号とタップ係数を記
憶するNワードの記憶部分と、 該Nタップの中の最古の受信データより1サンプル時刻
だけ古い受信信号xn-Nを記憶する専用レジスタ部分と
を有する記憶回路と、乗算回路と加減算回路を含む演算
回路とを設け、 該演算回路は、該専用レジスタ部分から受信信号
xn-N、該記憶部分から最後尾のタップ係数 を読み出し、該読み出した受信信号及びタップ係数を用
いて最後尾タップ係数の更新演算を行って1サンプル時
刻だけ新しいタップ係数 を求め、 更新タップ係数 と次のサンプル時刻の受信信号xn-(N-2)を該記憶部分
に書き込むと同時に、該専用レジスタ部分の内容をx
n-(N-1)に更新し、更新タップ係数 と受信信号xn-(N-1)とを乗算して累積演算を開始する
と共に、Nワードの記憶部分のアドレスを1アドレス変
化し、再び、 (1) 該記憶回路から受信信号とタップ係数を読み出
し、 (2) 読み出したタップ係数の更新及び更新タップ係数
と対応する受信信号を該記憶回路へ書き込み、 (3) 更新したタップ係数と該記憶回路から読み出した
更新タップ係数に対応する受信信号との乗算累積を繰り
返し実行して、 擬似エコーを生成し、エコーを含む信号から擬似エコー
を差し引くことによりエコーを消去する様に構成したこ
とを特徴とするエコーキャンセラ。1. An echo canceller for generating a pseudo echo by an adaptive filter calculation using a received signal (tap data) and a tap coefficient, and subtracting the pseudo echo from a signal including the echo to cancel the echo, and at 1 from time n. I-th tap coefficient at time (n-1) that is old by sample time (I = 0, 1, ... N-1 but N is a positive integer) and the received signal x ni that is older than the time n by i sample times is set to 1
As a word, a storage part of N words for storing reception signals and tap coefficients for N taps, and a dedicated register part for storing a reception signal x nN that is one sample time older than the oldest reception data in the N taps. a memory circuit having, an arithmetic circuit including a multiplier circuit and a subtraction circuit is provided, said operation circuit, the dedicated register portion from the received signal x nN, the tap coefficients of the last from the storage portion Is read out, the last tap coefficient is updated using the read received signal and tap coefficient, and a new tap coefficient is obtained only for one sample time. And update tap coefficient And the received signal x n- (N-2) at the next sample time is written to the storage portion, and at the same time, the content of the dedicated register portion is changed to x
Updated to n- (N-1) and updated tap coefficient And the received signal x n- (N-1) are multiplied to start the cumulative operation, the address of the storage portion of N words is changed by one address, and (1) the received signal from the storage circuit and the tap coefficient are changed again. (2) Update the read tap coefficient and the received signal corresponding to the updated tap coefficient in the memory circuit, and (3) Update the tap coefficient and the received signal corresponding to the updated tap coefficient read from the memory circuit. An echo canceller characterized in that it is configured to eliminate the echo by subtracting the pseudo echo from the signal containing the echo by repeatedly performing multiplication and accumulation with and.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23588786A JPH0640618B2 (en) | 1986-10-03 | 1986-10-03 | Eco-Cancer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23588786A JPH0640618B2 (en) | 1986-10-03 | 1986-10-03 | Eco-Cancer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6390226A JPS6390226A (en) | 1988-04-21 |
JPH0640618B2 true JPH0640618B2 (en) | 1994-05-25 |
Family
ID=16992714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23588786A Expired - Fee Related JPH0640618B2 (en) | 1986-10-03 | 1986-10-03 | Eco-Cancer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0640618B2 (en) |
-
1986
- 1986-10-03 JP JP23588786A patent/JPH0640618B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6390226A (en) | 1988-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2020804C (en) | Adaptive echo canceller | |
JP3135902B2 (en) | Automatic equalizer and semiconductor integrated circuit | |
JP2002152014A (en) | Hardware accelerator for coefficient adaptation on the basis of normal least mean square algorithm | |
US6279020B1 (en) | Programmable circuit for realizing a digital filter | |
JPH0514936B2 (en) | ||
US4062060A (en) | Digital filter | |
US4063082A (en) | Device generating a digital filter and a discrete convolution function therefor | |
JPH0640618B2 (en) | Eco-Cancer | |
US4020333A (en) | Digital filter for filtering complex signals | |
KR100248266B1 (en) | Tap coefficient renewal apparatus of fir adaptive digital filter | |
JPH0669759A (en) | Adaptive signal processor | |
Gay-Bellile et al. | Architecture of a programmable FIR filter co-processor | |
JPH06112854A (en) | Adaptive signal processing unit | |
JP2005149517A (en) | Product-sum computing element | |
JPH06216715A (en) | Digital filter | |
JPH03117206A (en) | Adaptive filter | |
JPH06181427A (en) | Digital filter | |
JPH10214261A (en) | Accumulated parallel arithmetic processing unit and method therefor | |
JPS6286912A (en) | Filter arithmetic control system | |
JPH088517B2 (en) | Echo canceller circuit | |
SU1631554A1 (en) | Device for computing fourier-galoiz transform | |
JPS58159018A (en) | Adaptive filter | |
JP2968718B2 (en) | Arithmetic unit | |
JPS59198020A (en) | Digital signal processor | |
JPH0467661B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |