JPH0639331Y2 - Eddy current flaw detection coil - Google Patents

Eddy current flaw detection coil

Info

Publication number
JPH0639331Y2
JPH0639331Y2 JP4367089U JP4367089U JPH0639331Y2 JP H0639331 Y2 JPH0639331 Y2 JP H0639331Y2 JP 4367089 U JP4367089 U JP 4367089U JP 4367089 U JP4367089 U JP 4367089U JP H0639331 Y2 JPH0639331 Y2 JP H0639331Y2
Authority
JP
Japan
Prior art keywords
coil
detection
flaw detection
eddy current
detection coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4367089U
Other languages
Japanese (ja)
Other versions
JPH02135856U (en
Inventor
康浩 相川
彰 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4367089U priority Critical patent/JPH0639331Y2/en
Publication of JPH02135856U publication Critical patent/JPH02135856U/ja
Application granted granted Critical
Publication of JPH0639331Y2 publication Critical patent/JPH0639331Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、金属製の条材,管材,棒材等、細長い被検査
材の外表面部を高精度に探傷するための渦流探傷用検出
コイルに関する。
[Detailed Description of the Invention] [Industrial field of application] The present invention is a detection for eddy current flaw detection for highly accurate flaw detection on the outer surface of an elongated inspected material such as a metal strip, pipe, and rod. Regarding coils.

〔従来の技術〕[Conventional technology]

従来、貫通形の励磁コイルを使用した相互誘導形渦流探
傷の検出コイルとしてプルーブ形コイルを使用する場
合、円筒形,矩形,あるいはパンケーキ状形態の検出コ
イルを、コイル軸を探傷面に平行あるいは垂直に設置し
て使用していた。しかし、平行に設置した場合には、コ
イルの径方向の大きさのために励磁コイルと被検査材の
ギャップを大きく取る必要があり、垂直に設置した場合
には、上記ギャップは小さくてすむが、検出コイルの径
方向位置によって探傷感度が異なるために複数個の検出
コイルを互に被検査材の周方向に一部がラップするよう
に被検査材の長手方向に交互に位置をずらせて配置する
必要があった。
Conventionally, when a probe coil is used as a detection coil for mutual induction type eddy current flaw detection using a through-type excitation coil, a detection coil having a cylindrical shape, a rectangular shape, or a pancake shape is used. It was installed vertically and used. However, when installed in parallel, it is necessary to make a large gap between the exciting coil and the material to be inspected due to the size of the coil in the radial direction, and when installed vertically, the above gap can be small. Since the flaw detection sensitivity varies depending on the radial position of the detection coil, a plurality of detection coils are arranged alternately in the longitudinal direction of the inspection material so that some of the detection coils overlap each other in the circumferential direction of the inspection material. Had to do.

第5図は従来法において検出コイル軸を探傷面に平行に
とった一例,第6図は従来法において検出コイル軸を検
出コイルを探傷面に垂直にとった一例を示す図である。
これにおいて1は被検査材,2は検出コイル,3は励磁コイ
ルである。
FIG. 5 is a diagram showing an example in which the detection coil axis is parallel to the flaw detection surface in the conventional method, and FIG. 6 is a diagram showing an example in which the detection coil axis is perpendicular to the flaw detection surface in the conventional method.
In this, 1 is a material to be inspected, 2 is a detection coil, and 3 is an exciting coil.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

従来法によりコイル軸を探傷面に対して平行に設置した
場合には、コイルの径方向の大きさのために励磁コイル
と被検査材のギャップを大きく取る必要が生じて感度低
下を招いていた。また、垂直に設置した場合には、検出
コイルを交互にずらして配置する必要から、被検査材周
方向同一位置の欠陥に検出時間差を生じ、また、被検査
材長手方向に占める検出コイルの領域が長くなるため端
部不感帯が長くなる等の不具合を生じていた。
When the coil axis was installed parallel to the flaw detection surface by the conventional method, it was necessary to make a large gap between the exciting coil and the material to be inspected due to the size of the coil in the radial direction, resulting in a decrease in sensitivity. . When installed vertically, the detection coils need to be staggered alternately, which causes a detection time difference between defects at the same position in the circumferential direction of the inspection material, and the area of the detection coil in the longitudinal direction of the inspection material. As a result, the problem that the end dead zone becomes long occurs.

この考案は従来技術のかかる問題点を解決するためにな
されたものであり、被検査材を励磁コイルとのギャップ
および検出コイルの長手方向幅を小さくし、検出精度の
向上を計った渦流探傷用検出コイルを提供しようとする
ものである。
The present invention has been made to solve the problems of the prior art. For the eddy current flaw detection, the gap between the material to be inspected and the longitudinal direction of the detection coil is made small to improve the detection accuracy. It is intended to provide a detection coil.

〔問題を解決するための手段〕[Means for solving problems]

本考案に係る渦流探傷用検出コイルは、貫通形の励磁コ
イルを使用した相互誘導形渦流探傷に用いられる検出コ
イルにおいて、線路を矩形状に折り曲げつつフラットに
捲回し、該矩形の向い合う辺に相当する部位をそれぞれ
被検査材に対向する面とは反対側に折り曲げたコイルを
複数個用意し、各コイルの折曲を行なっていない部位の
線路を被検査材の周方向に倣わせ、各コイルの折曲を行
なった部位を互いに隣り合せて被検査材の探傷面に添っ
て連続配置したことを特徴とする。
The detection coil for eddy current flaw detection according to the present invention is a detection coil used for mutual induction type eddy current flaw detection using a through-type excitation coil. Prepare a plurality of coils in which the corresponding parts are respectively bent on the side opposite to the surface facing the material to be inspected, and make the line of the part where each coil is not bent follow the circumferential direction of the material to be inspected. It is characterized in that the bent portions of the coil are arranged next to each other and continuously along the flaw detection surface of the material to be inspected.

〔作用〕[Action]

貫通形励磁コイルと矩形フラット検出コイルとを組合せ
て用いた場合、探傷面と励磁コイル内壁とのギャップを
最小にすることができることは云うまでもないが、欠陥
位置を検出コイルのセンタから左右にずらした場合の欠
陥の周方向位置と検出度の関係は検出コイルに円形コイ
ルを用いた場合よりブロードであり、両端を折り曲げて
周方向巻線部分のみ探傷面に対向するようにして周方向
に連続的に配置し、それぞれの検出コイルに検出された
欠陥信号を加算するようにすれば、個々の検出コイルの
センタより欠陥がずれた場合の感度低下は、隣接する検
出コイルにより検出された欠陥信号によって補填される
ので周方向の感度変化が殆んど解消される。また、フラ
ットコイルは指向性が弱いので種々の欠陥に対して有効
であるという利点もある。
It goes without saying that when using a combination of a through-type excitation coil and a rectangular flat detection coil, the gap between the flaw detection surface and the inner wall of the excitation coil can be minimized, but the defect position can be moved from the center of the detection coil to the left and right. The relationship between the circumferential position of the defect and the degree of detection when displaced is broader than when a circular coil is used as the detection coil, and both ends are bent so that only the circumferential winding part faces the flaw detection surface in the circumferential direction. If they are arranged consecutively and the defect signals detected by the respective detection coils are added, the sensitivity decrease when the defects are deviated from the center of the individual detection coils is the same as the defects detected by the adjacent detection coils. Since it is compensated by the signal, the sensitivity change in the circumferential direction is almost eliminated. Further, since the flat coil has a weak directivity, it has an advantage that it is effective against various defects.

〔実施例〕〔Example〕

第1図は、本考案による検出コイルの展開図である。巻
線は矩形状に折り曲げつつフラットに成形される。第2
図は鋼管の探傷に本考案を適用した例であり、外径50.8
mmの鋼管を被検査材1とし、両端を折り曲げた6個のフ
ラットコイルを周方向に連続配置して検出コイル2を構
成している。これにおいて、検出コイル2と探傷面のギ
ャップは4mm、探傷面と励磁コイル3の内壁とのギャッ
プは7mmであり、ともに小さい値となっている。
FIG. 1 is an exploded view of a detection coil according to the present invention. The winding is bent flat into a rectangular shape. Second
The figure shows an example in which the present invention is applied to flaw detection of a steel pipe.
A steel pipe of mm is used as the material to be inspected 1, and six flat coils whose both ends are bent are continuously arranged in the circumferential direction to form the detection coil 2. In this case, the gap between the detection coil 2 and the flaw detection surface is 4 mm, and the gap between the flaw detection surface and the inner wall of the exciting coil 3 is 7 mm, both of which are small values.

この検出コイル2を用いて、図に示さない磁気飽和コイ
ルにより磁気飽和を行い透磁率の変動に伴うノイズを消
去した状態で鋼管の探傷を行った。この結果、φ0.8mm
の貫通ドリルホールに対するSN比として15を得た。ちな
みに、前述した第5図に示したコイルを用いて同一ドリ
ルホールを探傷した場合のSN比は8である。
Using this detection coil 2, magnetic saturation was carried out by a magnetic saturation coil (not shown), and the steel pipe was flaw-detected in a state in which noise due to variations in magnetic permeability was eliminated. As a result, φ0.8 mm
An S / N ratio of 15 was obtained for the through drill hole. By the way, the SN ratio is 8 when the same drill hole is detected using the coil shown in FIG.

第3図は第2図の1個の検出コイルについてφ0.8mmの
貫通ドリルホールをコイルセンターから左右にずらせた
場合の検出度の変化を示したグラフである。このグラフ
より検出コイルの端部における感度低下は−2dBであ
り、小さいことがわかる。
FIG. 3 is a graph showing the change in the degree of detection when the through-drilling hole of φ0.8 mm is displaced left and right from the coil center for the one detection coil in FIG. It can be seen from this graph that the sensitivity decrease at the end of the detection coil is -2 dB, which is small.

第4図は第2図のごとく検出コイルを6個組合せ、各々
のコイルよりの検出信号が加算されるように構成し、φ
0.8mmの貫通ドリルホールの周方向位置と検出度の関係
を示したもので、周方向の感度が同一であることがわか
る。このように本考案による検出コイルを用いれば、極
めて高精度な探傷が可能となる。
FIG. 4 shows a structure in which six detection coils are combined as shown in FIG. 2 and the detection signals from the respective coils are added.
The relationship between the circumferential position of the 0.8 mm through-drill hole and the detectability is shown, and it can be seen that the sensitivity in the circumferential direction is the same. Thus, by using the detection coil according to the present invention, it is possible to perform flaw detection with extremely high accuracy.

〔考案の効果〕[Effect of device]

この考案を用いれば上記のごとく探傷面と励磁コイルと
のギャップを最小にできるので検出精度上有利になる
が、特に検出コイルの冷却を必要とする熱間探傷におい
て冷却機構を組込んでも上記ギャップを探傷に支障のな
い範囲に取ることができて有利となる。また、検出コイ
ルを周方向に連続配置でき、周方向の感度むらをおさえ
ることが可能となる。
If this device is used, the gap between the flaw detection surface and the exciting coil can be minimized as described above, which is advantageous in terms of detection accuracy.However, even if a cooling mechanism is incorporated in a hot flaw detection that requires cooling of the detection coil, the above gap can be reduced. Is advantageous because it can be taken within a range that does not interfere with flaw detection. Further, the detection coils can be continuously arranged in the circumferential direction, and it becomes possible to suppress the sensitivity unevenness in the circumferential direction.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による検出コイルの展開面であり、第2
図は鋼管の探傷に本考案を適用した例を示す断面図であ
る。 第3図は本考案による検出コイルの周方向検出特性を示
すグラフであり、第4図は本考案による6個の検出コイ
ルを周方向に連続配置した場合の周方向検出特性を示す
グラフである。 第5図は検出コイル軸を探傷面に平行にする従来の検出
コイルの断面図であり、第6図は検出コイル軸を探傷面
に垂直にする従来の検出コイルの部分断面図である。 1:被検査材、2:検出コイル 3:励磁コイル
FIG. 1 is a developed surface of a detection coil according to the present invention, and FIG.
The figure is a sectional view showing an example in which the present invention is applied to flaw detection of a steel pipe. FIG. 3 is a graph showing a circumferential direction detection characteristic of a detection coil according to the present invention, and FIG. 4 is a graph showing a circumferential direction detection characteristic when six detection coils according to the present invention are continuously arranged in the circumferential direction. . FIG. 5 is a sectional view of a conventional detection coil whose detection coil axis is parallel to the flaw detection surface, and FIG. 6 is a partial sectional view of a conventional detection coil whose detection coil axis is perpendicular to the flaw detection surface. 1: Inspected material, 2: Detection coil 3: Excitation coil

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】貫通形の励磁コイルを使用した相互誘導形
渦流探傷に用いられる検出コイルにおいて、線路を矩形
状に折り曲げつつフラットに捲回し、該矩形の向い合う
辺に相当する部位をそれぞれ被検査材に対向する面とは
反対側に折り曲げたコイルを複数個用意し、各コイルの
折曲を行なっていない部位の線路を被検査材の周方向に
倣わせ、各コイルの折曲を行なった部位を互いに隣り合
せて被検査材の探傷面に添って連続配置したことを特徴
とする渦流探傷用検出コイル。
1. In a detection coil used for mutual induction type eddy current flaw detection using a through-type excitation coil, a line is bent into a rectangular shape and wound flat, and portions corresponding to opposite sides of the rectangle are respectively covered. Prepare a plurality of coils that are bent on the side opposite to the surface facing the inspection material, bend the lines of the parts of each coil that are not bent in the circumferential direction of the inspection material, and bend each coil. The detection coil for eddy current flaw detection is characterized in that the above-mentioned parts are arranged next to each other and continuously along the flaw detection surface of the material to be inspected.
JP4367089U 1989-04-14 1989-04-14 Eddy current flaw detection coil Expired - Lifetime JPH0639331Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4367089U JPH0639331Y2 (en) 1989-04-14 1989-04-14 Eddy current flaw detection coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4367089U JPH0639331Y2 (en) 1989-04-14 1989-04-14 Eddy current flaw detection coil

Publications (2)

Publication Number Publication Date
JPH02135856U JPH02135856U (en) 1990-11-13
JPH0639331Y2 true JPH0639331Y2 (en) 1994-10-12

Family

ID=31556282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4367089U Expired - Lifetime JPH0639331Y2 (en) 1989-04-14 1989-04-14 Eddy current flaw detection coil

Country Status (1)

Country Link
JP (1) JPH0639331Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577684Y2 (en) * 1992-10-28 1998-07-30 原電子測器株式会社 Eddy current flaw detection coil device
JP6984975B2 (en) * 2017-10-30 2021-12-22 矢崎エナジーシステム株式会社 Corrosion diagnosis method and corrosion diagnosis device

Also Published As

Publication number Publication date
JPH02135856U (en) 1990-11-13

Similar Documents

Publication Publication Date Title
KR100671630B1 (en) On-line flaw detection method of magnetic leak detector and strip of magnetic flaw detector
US4808924A (en) Circumferentially compensating eddy current probe with alternately polarized transmit coils and receiver coils
JPH06331602A (en) Method and equipment for checking structural defect of long magnetic material nondestructively
WO2011086414A1 (en) Eddy current measuring sensor and inspection method using this eddy current measuring sensor
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
JPH0639331Y2 (en) Eddy current flaw detection coil
JP4192708B2 (en) Magnetic sensor
JPS6011493Y2 (en) Electromagnetic induction detection device
JPH07294490A (en) Magnetic flaw detection method with excellent diagonal flaw detection performance
JPH072967U (en) Eddy current probe with opposite diameter coils
JPH03105245A (en) Remote field type probe for eddy current flaw detection
JPS61198055A (en) Insertion type probe for eddy current examination
JP2003215106A (en) Magnetic leakage detecting sensor and magnetic flaw detector
JP2002055083A (en) Eddy current flaw detection probe
JPH10160710A (en) Split type flaw detection sensor and conductive tube flaw detection method
JP2591188B2 (en) Electromagnetic characteristic detection method and device
JPS63107849U (en)
JP2577684Y2 (en) Eddy current flaw detection coil device
JPH0355099Y2 (en)
SU1007052A1 (en) Induction sensor
SU1427284A1 (en) Transfer variable-induction pickup for non-destructive check
JPS6015020B2 (en) Electromagnetic induction detection device using orthogonal crossed magnetic fields
JP2002162388A (en) Eddy current flaw detector for welded pipes
JPS58843Y2 (en) Eddy current flaw detector
JPH0949825A (en) Eddy current flaw detection probe