JPH0949825A - Eddy-current flaw detecting probe - Google Patents

Eddy-current flaw detecting probe

Info

Publication number
JPH0949825A
JPH0949825A JP7219796A JP21979695A JPH0949825A JP H0949825 A JPH0949825 A JP H0949825A JP 7219796 A JP7219796 A JP 7219796A JP 21979695 A JP21979695 A JP 21979695A JP H0949825 A JPH0949825 A JP H0949825A
Authority
JP
Japan
Prior art keywords
flaw detection
probe
cores
eddy current
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7219796A
Other languages
Japanese (ja)
Inventor
Ryoichi Yamaguchi
良一 山口
Yoshiaki Watanabe
芳哲 渡辺
Yutaka Harada
豊 原田
Sumisato Shimone
純理 下根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENSHIRYOKU ANZEN SYST KENKYUS
GENSHIRYOKU ANZEN SYST KENKYUSHO KK
GENSHIRYOKU ENG KK
Original Assignee
GENSHIRYOKU ANZEN SYST KENKYUS
GENSHIRYOKU ANZEN SYST KENKYUSHO KK
GENSHIRYOKU ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENSHIRYOKU ANZEN SYST KENKYUS, GENSHIRYOKU ANZEN SYST KENKYUSHO KK, GENSHIRYOKU ENG KK filed Critical GENSHIRYOKU ANZEN SYST KENKYUS
Priority to JP7219796A priority Critical patent/JPH0949825A/en
Publication of JPH0949825A publication Critical patent/JPH0949825A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the peripheral-direction defect detecting ability of a bobbin coil type probe to the same degree as that of the peripheral-direction defect detecting ability of a multicoil type probe without sacrificing the axial-direction defect detecting property of the probe and, at the same time, to improve the defect detecting ability of the probe in a thin tube by incorporating a mutual induction system in the probe. SOLUTION: In an eddy-current flaw detecting probe, exciting coils 6 and 7 wound in the peripheral direction so that the coils 6 and 7 can be directed in the same direction are arranged in parallel with each other. Numerous main cores 10 each of which is formed in an E-shape by forming two recessed grooves 8 and 9 on the surface of a small piece of a ferromagnetic material are formed and, at the same time, the cores 10 are buried at regular intervals in the peripheral surface of the main body 4 of the flaw detecting section of the probe and detection coils 15 are formed by using the central processing sections 11 of the cores 10 as winding cores. In addition, the central projecting sections 11 are joined to magnetic field converging cores 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は原子力発電所の熱交
換器の細管等の検査において、細管に発生したクラック
等の欠陥を検出するための渦電流探傷プローブに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detection probe for detecting a defect such as a crack generated in a thin tube in an inspection of a thin tube of a heat exchanger of a nuclear power plant.

【0002】[0002]

【従来の技術】熱交換器内細管のように、細管の外側か
らの探傷が困難な場合はプローブを細管内部に挿入して
探傷するが、そのための内挿型プローブとして最も汎用
的なプローブは、高速探傷が可能で、曲管部への挿入性
も良好なボビンコイル型プローブである。このボビンコ
イル型プローブは、導線を円筒状探傷部の周方向に巻い
てコイルを形成したものであるために、細管中に発生す
る渦電流は細管の周方向に流れる。
2. Description of the Related Art When it is difficult to detect flaws from the outside of a thin tube, such as a thin tube inside a heat exchanger, the probe is inserted inside the thin tube to detect flaws. It is a bobbin coil type probe that enables high-speed flaw detection and has good insertability into a curved pipe section. In this bobbin coil type probe, a conductor wire is wound in the circumferential direction of the cylindrical flaw detection portion to form a coil, so that an eddy current generated in the thin tube flows in the circumferential direction of the thin tube.

【0003】また、細管中に軸方向渦電流を誘起させる
ことを目的とし、パンケーキ型コイルを使用したものも
ある。その1つとして、細管内周を螺旋状に走査する回
転コイル型プローブは、1個のコイルで細管内をくまな
く走査するため不感帯あるいは感度低下領域は存在せ
ず、また軸方向、周方向のクラックに対しても同程度の
感度を有している。
There is also a pancake type coil for the purpose of inducing an axial eddy current in a thin tube. As one of them, the rotating coil type probe which scans the inner circumference of the thin tube spirally scans the inside of the thin tube with one coil, so that there is no dead zone or sensitivity lowering area. It has the same sensitivity to cracks.

【0004】これに対し、直線走査でコイルをプローブ
外周に配列させたマルチコイル型プローブもあり、この
マルチコイル型プローブは細管に対し局所的ではある
が、軸方向の渦電流を誘起するため周方向クラックの検
出が比較的容易である。
On the other hand, there is also a multi-coil type probe in which coils are arranged on the outer circumference of the probe by linear scanning, and this multi-coil type probe is local to the thin tube, but it induces an eddy current in the axial direction. Directional cracks are relatively easy to detect.

【0005】以上は自己誘導型と呼ばれるものでコイル
のインピーダンス変化を検出するものであるが、励起コ
イルと検出コイルの両者を備え、検出コイルに励起され
る電圧を検出する相互誘導型と呼ばれる方式のものも一
部で使用されいる(例えば特開昭63−298052号
公報参照)。
The above is a so-called self-induction type which detects a change in the impedance of the coil. A method called a mutual induction type in which both the excitation coil and the detection coil are provided and the voltage excited in the detection coil is detected. Some of them are also used (see, for example, JP-A-63-298052).

【0006】[0006]

【発明が解決しようとする課題】しかしながら前記ボビ
ンコイル型プローブでは、細管中にクラックが周方向に
存在する場合、細管中に誘起した渦電流が細管に対し周
方向であるため、クラックと渦電流とは平行となり、ク
ラックが微少であれば渦電流はクラックの影響を受けに
くい。従ってボビンコイル型プローブでは周方向クラッ
クに対し検出感度が低くなるという欠点を有している。
However, in the above bobbin coil type probe, when a crack exists in the circumferential direction in the thin tube, the eddy current induced in the thin tube is in the circumferential direction with respect to the thin tube, so that the crack and the eddy current are generated. Are parallel to each other, and if the cracks are minute, the eddy current is not easily affected by the cracks. Therefore, the bobbin coil type probe has a drawback that the detection sensitivity for circumferential cracks is low.

【0007】一方、回転コイル型プローブでは、プロー
ブが螺旋状に管内を走査するため一本の細管を探傷する
のに要する時間が長くなる。これはコイル径をピッチと
して螺旋走査を行うためであり、通常そのピッチは1〜
5mmであることによる。
On the other hand, in the rotary coil type probe, since the probe spirally scans the inside of the tube, it takes a long time to detect a flaw in one thin tube. This is because spiral scanning is performed with the coil diameter as the pitch, and the pitch is usually 1 to
Because it is 5 mm.

【0008】また、マルチコイル型プローブでは、コイ
ルによる渦電流はコイル中心で最大でありコイルから離
れるほど弱くなる。このためコイル間の中心において渦
電流強度は最小になり、従って検出感度が低下する。す
なわち、このマルチコイル型プローブではコイル形状や
設置角度を変更しても、コイルはプローブの全周をカバ
ーする必要があるため、必然的にある程度以上の大きさ
となり、その間隙には不感帯もしくは感度低下領域が存
在する。この不感帯もしくは感度低下領域においては、
軸方向のクラックや、微少な周方向クラックを見落とす
可能性があるため、結果として検出限界が低下するとい
う欠点を有している。
Further, in the multi-coil type probe, the eddy current due to the coil is maximum at the center of the coil and becomes weaker as the distance from the coil increases. Therefore, the intensity of the eddy current is minimized at the center between the coils, and the detection sensitivity is reduced. In other words, in this multi-coil type probe, even if the coil shape and installation angle are changed, the coil must cover the entire circumference of the probe, so the size inevitably becomes larger than a certain amount, and the dead zone or the sensitivity in the gap. There are areas of degradation. In this dead zone or in the area of reduced sensitivity,
There is a possibility that axial cracks and minute circumferential cracks may be overlooked, resulting in a decrease in detection limit.

【0009】さらに、前記相互誘導型プローブにおいて
は、欠陥信号は検出コイルの出力電圧変化分として検出
されるが、仮に細管が無欠陥であっても検出コイルには
出力電圧が存在する。従って微少な欠陥であれば電圧変
化分も微小であり欠陥検出は難しくなる。
Further, in the mutual induction type probe, the defect signal is detected as a change in the output voltage of the detection coil, but even if the thin tube is not defective, the output voltage exists in the detection coil. Therefore, if the defect is small, the amount of change in voltage is also small and it becomes difficult to detect the defect.

【0010】本発明は上記の如き実状に対処し軸方向欠
陥の検出性を損なうことなく周方向の微少欠陥の検出性
を向上させた渦電流探傷プローブの提供を目的とするも
のである。
An object of the present invention is to provide an eddy current flaw detection probe which copes with the above situation and improves the detectability of minute defects in the circumferential direction without impairing the detectability of axial defects.

【0011】[0011]

【課題を解決するための手段】すなわち、上記課題を解
決する本発明の渦電流探傷プローブの特徴は、円筒状ま
たは円柱状に形成された探傷部本体と、略E字状の強磁
性体からなり、凸部を外方に向け且つ並列状態で上記探
傷部本体の周面に周方向にほぼ等間隔で埋設された多数
の主コアと、これら主コアの2条の溝に夫々嵌め込むよ
うに上記探傷部本体に対し周方向に巻回された互いにほ
ぼ平行な1対の励起コイルと、上記主コアの中央の凸部
を巻芯として巻回された該主コアと同数の検出コイル
と、主コアの上記中央凸部の先端に固定され、その表面
が探傷部本体の周面付近に位置決めされた上記主コアと
同数の磁場収束コアとを備えたところにある。
That is, the feature of the eddy current flaw detection probe of the present invention for solving the above-mentioned problems is that the flaw detection unit main body formed in a cylindrical shape or a cylindrical shape and a substantially E-shaped ferromagnetic material are used. In such a manner that a plurality of main cores are embedded in the circumferential surface of the flaw detection unit main body at substantially equal intervals in the circumferential direction with the convex portions facing outward and in a parallel state, and the main cores are fitted into the two grooves of the main cores, respectively. A pair of excitation coils wound around the flaw detection unit body in the circumferential direction and substantially parallel to each other; and a number of detection coils wound around the central convex portion of the main core as a core. The main core is provided with the same number of magnetic field converging cores as the main core fixed to the tip of the central convex portion and the surface of which is positioned near the peripheral surface of the flaw detection unit body.

【0012】また、上記本発明の探傷プローブにおい
て、上記磁場収束コアが、探傷部本体の周方向に形成さ
れた軸部と、この軸部の両端から上記探傷部本体の軸方
向上下に夫々突出した突起部とを有して、略H字状に形
成されることも可能である。
Further, in the flaw detection probe of the present invention, the magnetic field converging core is provided with a shaft portion formed in the circumferential direction of the flaw detection portion main body and from both ends of the shaft portion in the axial direction up and down direction of the flaw detection portion main body, respectively. It is also possible to form it into a substantially H-shape by having a protrusion.

【0013】さらに、上記探傷部本体において、磁場収
束コアが前記励起コイルより外周側に備えられ、かつ検
出コイルが上記励起コイルより中心側に備えられること
も好適である。
Further, in the flaw detection unit body, it is also preferable that the magnetic field converging core is provided on the outer peripheral side of the excitation coil and the detection coil is provided on the central side of the excitation coil.

【0014】[0014]

【作用】上記本発明による渦電流探傷プローブにおいて
は、細管中に周方向の渦電流を発生させると同時に、軸
方向の渦電流を発生させることも可能なため、細管中の
微少な軸方向、周方向両方の欠陥を検出できる。
In the eddy current flaw detection probe according to the present invention, it is possible to generate an eddy current in the axial direction at the same time as generating an eddy current in the circumferential direction in the thin tube. Both circumferential defects can be detected.

【0015】また実施例で詳述するように、原理的に自
己バランスするため、無欠陥時の0出力からのずれを検
知すればよく、このため細管内の微少欠陥に起因する出
力電圧変動の検出が容易である。さらに回転コイル型プ
ローブと異なり、螺旋走査をしないため検査速度が速く
なる。
Further, as described in detail in the embodiments, since the principle is self-balancing, it is only necessary to detect the deviation from 0 output when there is no defect. Therefore, the fluctuation of the output voltage due to the minute defect in the thin tube is detected. Easy to detect. Further, unlike the rotating coil type probe, the inspection speed is increased because the spiral scanning is not performed.

【0016】[0016]

【実施例】以下に図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明による一実施例の渦電流探傷
プローブの探傷部本体を示す一部切り欠き断面図、図2
は図1のX−X′線断面図、図3は本発明による実施例
プローブの正面図、図4は同プローブの主コアを示す分
解斜視図、図5は同プローブの主コア部を示す縦断面図
であり、図3において、1はプローブ、2は挿入性を良
くするための円錐状ガイド、3はセンタリング用バネ、
4は円筒状の探傷部本体、5はフレキシブルチューブを
示している。
FIG. 1 is a partially cutaway sectional view showing a flaw detection unit body of an eddy current flaw detection probe according to an embodiment of the present invention, and FIG.
1 is a sectional view taken along line XX ′ in FIG. 1, FIG. 3 is a front view of a probe according to the present invention, FIG. 4 is an exploded perspective view showing a main core of the probe, and FIG. 5 is a main core portion of the probe. FIG. 3 is a longitudinal sectional view, in FIG. 3, 1 is a probe, 2 is a conical guide for improving insertability, 3 is a centering spring,
Reference numeral 4 indicates a cylindrical flaw detection unit main body, and 5 indicates a flexible tube.

【0018】上記探傷部本体4には、略E字状をなす強
磁性体の多数の主コア10が、図1、図2に示すように
それらの凸部11〜13を夫々外方に向けた並列状態で
上記探傷部本体4の周面に周方向に等間隔で埋設されて
いる。
A large number of E-shaped ferromagnetic main cores 10 are provided in the flaw detection unit main body 4, and their convex portions 11 to 13 are directed outward as shown in FIGS. Further, they are embedded in the circumferential surface of the flaw detection unit main body 4 in a parallel state at equal intervals in the circumferential direction.

【0019】上記主コア10の2条の溝8、9には、1
対の励起コイル6、7が互いに平行して、上記探傷部本
体4の周方向に同じ向きで巻回されている。この励起コ
イル6、7の位置は、図1、図2に示すように、後述す
る磁場収束コア16よりもプローブ1の中心側に設定さ
れている。
The two grooves 8 and 9 of the main core 10 have 1
The pair of excitation coils 6 and 7 are wound in parallel with each other in the same direction in the circumferential direction of the flaw detection unit body 4. As shown in FIGS. 1 and 2, the positions of the excitation coils 6 and 7 are set closer to the center of the probe 1 than the magnetic field converging core 16 described later.

【0020】また、上記主コア10の中央の凸部11の
先端には、図4にも示すように、平面視略H字形状の磁
性体または強磁性体からなる磁場収束コア16が固定さ
れている。この磁場収束コア16と主コア10の上下の
凸部12、13とは、その外周面が夫々同一円周面上に
なるよう、また探傷部本体4の周面とも同一円周面上に
なるよう形成されている。そして、磁場収束コア16と
上下部凸部12、13の外面は、図2に示すように探傷
部本体4の周面に合わせて円弧状に形成されている。
Further, as shown in FIG. 4, a magnetic field converging core 16 made of a magnetic material or a ferromagnetic material having a substantially H-shape in plan view is fixed to the tip of the convex portion 11 at the center of the main core 10. ing. The magnetic field converging core 16 and the upper and lower convex portions 12 and 13 of the main core 10 have outer circumferential surfaces that are on the same circumferential surface, and are also on the same circumferential surface as the circumferential surface of the flaw detection unit body 4. Is formed. The outer surfaces of the magnetic field converging core 16 and the upper and lower convex portions 12 and 13 are formed in an arc shape so as to match the peripheral surface of the flaw detection unit body 4 as shown in FIG.

【0021】さらに、図2、図4、図5に夫々示すよう
に、上記主コア10の中央凸部11には検出コイル15
が周囲に巻かれており、検出コイル15は励起コイル
6、7よりもプローブ中心側に配置されている。なお、
この検出コイル15と上記磁場収束コア16とは、8個
ある主コア10全部に対して設けられている。
Further, as shown in FIGS. 2, 4 and 5, the detection coil 15 is provided on the central convex portion 11 of the main core 10.
Is wound around and the detection coil 15 is arranged closer to the probe center side than the excitation coils 6 and 7. In addition,
The detection coil 15 and the magnetic field converging core 16 are provided for all eight main cores 10.

【0022】しかして、上記本発明実施例のプローブを
金属製の細管Kへ挿入すると、図6に示すように、1対
の励起コイル6、7が直面する部分A,A′では同じ向
きの周方向の電流が流れる。また磁場収束コア16が直
面する部分Bでは励起コイル6、7による周方向の電流
がわずかに流れる。
When the probe of the embodiment of the present invention is inserted into the metal capillary K, however, as shown in FIG. 6, the portions A and A'confronted by the pair of excitation coils 6 and 7 have the same orientation. A current flows in the circumferential direction. Further, in the portion B facing the magnetic field converging core 16, a slight amount of current in the circumferential direction flows due to the excitation coils 6 and 7.

【0023】また、主コア10の上部凸部12および下
部凸部13が直面する部分C,C′では隣り合うコアの
同凸部12、13にかけ電流が蛇行する。すなわち本発
明の渦電流プローブでは上記蛇行によってC,C′部分
に軸方向の電流成分が発生するため、細管の周方向欠陥
に対しても感度が向上し、かつA,A′部分の周方向電
流も主コア10の存在により充分流れているため軸方向
欠陥に対しても高感度である。
In the portions C and C'confronted by the upper convex portion 12 and the lower convex portion 13 of the main core 10, the electric current meanders between the convex portions 12 and 13 of the adjacent cores. That is, in the eddy current probe of the present invention, an axial current component is generated in the C and C'portions due to the above meandering, so that the sensitivity is improved even for the circumferential defect of the thin tube and the circumferential direction of the A and A'portions. Since the current flows sufficiently due to the presence of the main core 10, it is highly sensitive to axial defects.

【0024】一方、図7に示すように、細管が無欠陥で
あれば軸方向磁束は上記凸部12から下部凸部13(ま
たはその逆方向)へ流れ、中央凸部11を通過する径方
向磁束はほとんど0となる。従って検出コイル15の出
力電圧値もほぼ0である。
On the other hand, as shown in FIG. 7, if the thin tube is defect-free, the axial magnetic flux flows from the convex portion 12 to the lower convex portion 13 (or the opposite direction) and passes through the central convex portion 11 in the radial direction. The magnetic flux is almost zero. Therefore, the output voltage value of the detection coil 15 is almost zero.

【0025】他方、図8に示すように、細管内に周方向
欠陥K1 がある場合、渦電流は周方向欠陥を迂回するた
め、その結果として図示の如き径方向磁束が発生する。
この径方向磁束は磁場収束コア16を経由して中央凸部
11へ流入し、従って検出コイル15に起電力が発生す
る。よって欠陥検出が可能となる。
On the other hand, as shown in FIG. 8, when there is a circumferential defect K 1 in the narrow tube, the eddy current bypasses the circumferential defect, and as a result, the radial magnetic flux as shown in the figure is generated.
This radial magnetic flux flows into the central convex portion 11 via the magnetic field converging core 16, and thus an electromotive force is generated in the detection coil 15. Therefore, the defect can be detected.

【0026】従って本発明の渦電流プローブにおいては
細管が無欠陥のときは1対の励起コイル6、7が自己バ
ランスして検出コイル15の出力が原理的に0であり、
細管に欠陥があるときは検出コイルの出力電圧はほぼ0
から所定の値まで上昇する。このため出力変動の測定が
容易で、従来の相互誘導式プローブよりも検出性が向上
する。
Therefore, in the eddy current probe of the present invention, when the capillary is defect-free, the pair of excitation coils 6 and 7 self-balance, and the output of the detection coil 15 is 0 in principle.
When there is a defect in the thin tube, the output voltage of the detection coil is almost zero.
To a predetermined value. Therefore, the output fluctuation can be easily measured, and the detectability is improved as compared with the conventional mutual induction probe.

【0027】なお、本実施例では磁場収束コア16は、
図4に示す如く探傷部本体4の周方向に形成された軸部
16bと、この軸部16bの両端から上記探傷部本体4
の軸方向上下に夫々突出した突起部16aとを有する略
H型であるが、これは上記突起部16aの存在により軸
方向磁束を曲げて周方向磁束となし、これにより周方向
磁束を全体的に増加せしめ、その結果として軸方向渦電
流を増加させるためである。
In this embodiment, the magnetic field converging core 16 is
As shown in FIG. 4, a shaft portion 16b formed in the circumferential direction of the flaw detection unit body 4 and the flaw detection unit body 4 from both ends of the shaft portion 16b.
Is substantially H-shaped with the protrusions 16a projecting upward and downward in the axial direction, the axial magnetic flux is bent by the presence of the protrusions 16a into a circumferential magnetic flux. This is to increase the axial eddy current as a result.

【0028】主コア10は本実施例では探傷部本体4の
外周に45°毎に、計8個設置してあるが、等間隔であ
ればより多数の配置は差し支えない。また主コア10の
凸部11〜13や柱状部14の断面は本実施例では四角
形であるが円形など他の形状も採用することが可能であ
る。
In the present embodiment, a total of eight main cores 10 are installed on the outer circumference of the flaw detection unit main body 4 at an angle of 45 °, but a larger number of main cores 10 may be arranged at equal intervals. Further, although the cross sections of the convex portions 11 to 13 and the columnar portion 14 of the main core 10 are quadrangular in this embodiment, other shapes such as a circle can be adopted.

【0029】次に、本発明の第2実施例を説明する。図
9は本発明による他の実施例の渦電流探傷プローブの探
傷部本体を示す一部切り欠き断面図、図10は図9のX
−X′線断面図、図11は同プローブの主コアを示す分
解斜視図、図12は同プローブの主コア部を示す縦断面
図である。
Next, a second embodiment of the present invention will be described. 9 is a partially cutaway sectional view showing a main body of a flaw detection portion of an eddy current flaw detection probe according to another embodiment of the present invention, and FIG.
-X 'line sectional drawing, FIG. 11 is an exploded perspective view showing the main core of the probe, and FIG. 12 is a vertical sectional view showing the main core portion of the probe.

【0030】この第2実施例のプローブの構成は先の実
施例とほぼ同様であるが、磁場収束コア16の形状が長
方形状であること、励起コイル6、7の外周面はコア1
0の上下部凸部12、13と同一面上にあることが上記
第1実施例との相違点である。なお、他の同じ構成部分
は同一符号を付すことにより説明を省略する。
The structure of the probe of the second embodiment is almost the same as that of the previous embodiment except that the magnetic field converging core 16 has a rectangular shape and the outer peripheral surfaces of the excitation coils 6 and 7 are the core 1.
0 is located on the same plane as the upper and lower convex portions 12 and 13, which is a difference from the first embodiment. The other same components are denoted by the same reference numerals and the description thereof will be omitted.

【0031】長方形状である磁場収束コア16には、第
1実施例の如き軸方向渦電流を増加させるための突起1
6aはないが、この突起16aがないために励起コイル
6、7を第1実施例に比べより探傷部本体4の外周側に
配置し、検出コイル15とこれら励起コイル6、7との
距離を大きくすることが可能である。このため励起コイ
ル6、7から検出コイル15へ直接リークする磁束を低
減することが可能となり、その結果検出コイル15の無
欠陥時の出力電圧がより0へ近づき、またリーク磁束と
して消費されていた分が細管へ印加されるようになるた
め、細管中の渦電流を増加させるメリットを有してい
る。
The rectangular magnetic field converging core 16 has protrusions 1 for increasing the axial eddy current as in the first embodiment.
Although there is no 6a, since the projections 16a are not provided, the excitation coils 6 and 7 are arranged closer to the outer peripheral side of the flaw detection unit body 4 than in the first embodiment, and the distance between the detection coil 15 and these excitation coils 6 and 7 is increased. It can be increased. For this reason, it is possible to reduce the magnetic flux that directly leaks from the excitation coils 6 and 7 to the detection coil 15, and as a result, the output voltage of the detection coil 15 when there is no defect becomes closer to 0 and is consumed as the leakage magnetic flux. Since the component is applied to the thin tube, it has an advantage of increasing the eddy current in the thin tube.

【0032】以上、本発明の実施例を説明したが、第
1、第2各実施例ともに隣り合う磁場収束コア16間の
距離は0.5mmであるが、より近づいていても構わな
い。また主コア10と各コイル間にはマイラーフィルム
やポリイミドフィルム等の絶縁体を介在させることが検
出性向上に有効である。
Although the embodiments of the present invention have been described above, the distance between the adjacent magnetic field converging cores 16 in both the first and second embodiments is 0.5 mm, but they may be closer. Further, it is effective to improve the detectability by interposing an insulator such as a mylar film or a polyimide film between the main core 10 and each coil.

【0033】[0033]

【発明の効果】以上の説明のごとく、本発明による渦電
流探傷プローブにおいては、細管中に周方向の渦電流を
発生させると同時に、軸方向の渦電流を発生させること
も可能なため、細管中の微少な軸方向、周方向両方の欠
陥を検出でき、また原理的に自己バランスするため、無
欠陥時の0出力からのずれを検知すればよく、このため
細管内の微少欠陥に起因する出力電圧変動の検出が容易
であり、さらに回転コイル型プローブと異なり、螺旋走
査をしないため検査速度が速く、これにより作業員の負
担を軽減するとの顕著な効果を奏するものである。
As described above, in the eddy current flaw detection probe according to the present invention, it is possible to generate an eddy current in the axial direction at the same time as generating an eddy current in the circumferential direction in the thin tube. Since it is possible to detect small defects in both the axial direction and the circumferential direction, and in principle, self-balance, it is sufficient to detect the deviation from 0 output when there is no defect, which is caused by the minute defects in the thin tube. The output voltage fluctuation can be easily detected, and unlike the rotating coil type probe, the spiral scanning is not performed, so that the inspection speed is high, which has the remarkable effect of reducing the burden on the worker.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第1実施例の渦電流探傷プローブ
の探傷部本体を示す一部切り欠き断面図である。
FIG. 1 is a partially cutaway sectional view showing a flaw detection unit body of an eddy current flaw detection probe according to a first embodiment of the present invention.

【図2】図1のX−X′線断面図である。FIG. 2 is a sectional view taken along line XX ′ in FIG.

【図3】同実施例による渦電流探傷プローブの正面図で
ある。
FIG. 3 is a front view of an eddy current flaw detection probe according to the embodiment.

【図4】同実施例による渦電流探傷プローブの主コア部
を示す分解斜視図である。
FIG. 4 is an exploded perspective view showing a main core portion of the eddy current flaw detection probe according to the embodiment.

【図5】同実施例による渦電流探傷プローブの主コア部
を示す縦断面図である。
FIG. 5 is a vertical sectional view showing a main core portion of the eddy current flaw detection probe according to the embodiment.

【図6】同実施例による渦電流探傷プローブが細管中に
誘起する渦電流を示した図である。
FIG. 6 is a view showing an eddy current induced in a thin tube by the eddy current flaw detection probe according to the example.

【図7】同実施例による渦電流探傷プローブにおいて、
細管が無欠陥であるときの主コア部の磁束の流れを示す
断面図である。
FIG. 7 shows an eddy current flaw detection probe according to the same embodiment,
It is sectional drawing which shows the flow of the magnetic flux of the main core part when a thin tube is defect-free.

【図8】同実施例による渦電流探傷プローブにおいて、
細管に欠陥がある時の主コア部の磁束の流れを示す断面
図である。
FIG. 8 shows an eddy current flaw detection probe according to the same embodiment,
It is sectional drawing which shows the flow of the magnetic flux of the main core part when there is a defect in a thin tube.

【図9】本発明による第2実施例の渦電流探傷プローブ
の探傷部本体を示す一部切り欠き断面図である。
FIG. 9 is a partially cutaway sectional view showing a flaw detection unit body of an eddy current flaw detection probe according to a second embodiment of the present invention.

【図10】図9のX−X′線断面図である。10 is a sectional view taken along line XX ′ of FIG.

【図11】同実施例による渦電流探傷プローブの主コア
部を示す分解斜視図である。
FIG. 11 is an exploded perspective view showing a main core portion of the eddy current flaw detection probe according to the embodiment.

【図12】同実施例による渦電流探傷プローブの主コア
部を示す縦断面図である。
FIG. 12 is a vertical cross-sectional view showing a main core portion of an eddy current flaw detection probe according to the example.

【符号の説明】[Explanation of symbols]

1 プローブ 2 ガイド 3 センタリング用バネ 4 探傷部本体 5 フレキシブルチューブ 6、7 励起コイル 8、9 凹溝 10 主コア 11 中央凸部 12 上部凸部 13 下部凸部 14 主コアの柱状部 15 検出コイル 16 磁場収束コア 16a 突起部 16b 軸部 DESCRIPTION OF SYMBOLS 1 probe 2 guide 3 centering spring 4 flaw detection part main body 5 flexible tube 6, 7 excitation coil 8, 9 concave groove 10 main core 11 central convex portion 12 upper convex portion 13 lower convex portion 14 main core columnar portion 15 detection coil 16 Magnetic field converging core 16a Protrusion 16b Shaft

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 芳哲 京都府相楽郡精華町大字南稲八妻小字大谷 123番地 株式会社原子力安全システム研 究所内 (72)発明者 原田 豊 大阪市西区土佐堀一丁目3番7号 株式会 社原子力エンジニアリング内 (72)発明者 下根 純理 大阪市西区土佐堀一丁目3番7号 株式会 社原子力エンジニアリング内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshinori Watanabe 123 Otani, Minami-Ina-Yatsuma-Fuji, Seika-cho, Soraku-gun, Kyoto Prefectural Institute for Nuclear Safety Systems (72) Inventor Yutaka Harada Hajime Tosabori, Nishi-ku, Osaka City 3-3 No. 7 in Nuclear Engineering Co., Ltd. (72) Inventor Junri Shimane 1-3-7 Tosabori, Nishi-ku, Osaka City In Nuclear Engineering Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 円筒状または円柱状に形成された探傷部
本体と、略E字状の強磁性体からなり、凸部を外方に向
け且つ並列状態で上記探傷部本体の周面に周方向にほぼ
等間隔で埋設された多数の主コアと、これら主コアの2
条の溝に夫々嵌め込むように上記探傷部本体に対し周方
向に巻回された互いにほぼ平行な1対の励起コイルと、
上記主コアの中央の凸部を巻芯として巻回された該主コ
アと同数の検出コイルと、主コアの上記中央凸部の先端
に固定され、その表面が探傷部本体の周面付近に位置決
めされた上記主コアと同数の磁場収束コアとを備えたこ
とを特徴とする渦電流探傷プローブ。
1. A cylindrical or columnar flaw detection unit main body and a substantially E-shaped ferromagnetic body, with the convex portions facing outward and arranged in parallel with each other to surround the circumferential surface of the flaw detection unit main body. A large number of main cores embedded in the direction substantially at equal intervals, and
A pair of substantially parallel excitation coils wound in the circumferential direction around the flaw detection unit body so as to fit in the grooves of the strip,
The same number of detection coils as the main core wound around the central convex portion of the main core as a winding core, and fixed to the tip of the central convex portion of the main core, the surface of which is near the peripheral surface of the flaw detection unit body. An eddy current flaw detection probe comprising the positioned main cores and the same number of magnetic field converging cores.
【請求項2】 上記磁場収束コアが、探傷部本体の周方
向に形成された軸部と、この軸部の両端から上記探傷部
本体の軸方向上下に夫々突出した突起部とを有して、略
H字状に形成されてなる請求項1記載の渦電流探傷プロ
ーブ。
2. The magnetic field converging core has a shaft portion formed in the circumferential direction of the flaw detection unit main body, and projections projecting vertically from both ends of the shaft portion in the axial direction of the flaw detection unit main body. The eddy current flaw detection probe according to claim 1, wherein the eddy current flaw detection probe is formed in a substantially H shape.
【請求項3】 上記探傷部本体において、磁場収束コア
が前記励起コイルより外周側に備えられ、かつ検出コイ
ルが上記励起コイルより中心側に備えられた請求項1ま
たは2記載の渦電流探傷プローブ。
3. The eddy current flaw detection probe according to claim 1, wherein in the flaw detection unit main body, a magnetic field converging core is provided on the outer peripheral side of the excitation coil, and a detection coil is provided on the central side of the excitation coil. .
JP7219796A 1995-08-04 1995-08-04 Eddy-current flaw detecting probe Pending JPH0949825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7219796A JPH0949825A (en) 1995-08-04 1995-08-04 Eddy-current flaw detecting probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7219796A JPH0949825A (en) 1995-08-04 1995-08-04 Eddy-current flaw detecting probe

Publications (1)

Publication Number Publication Date
JPH0949825A true JPH0949825A (en) 1997-02-18

Family

ID=16741173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7219796A Pending JPH0949825A (en) 1995-08-04 1995-08-04 Eddy-current flaw detecting probe

Country Status (1)

Country Link
JP (1) JPH0949825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517694A (en) * 2005-11-30 2009-04-30 ゼネラル・エレクトリック・カンパニイ Pulsed eddy current pipeline inspection system and method
CN110400645A (en) * 2019-07-30 2019-11-01 清华大学 Combined type crosses ball detection sensor and its detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517694A (en) * 2005-11-30 2009-04-30 ゼネラル・エレクトリック・カンパニイ Pulsed eddy current pipeline inspection system and method
CN110400645A (en) * 2019-07-30 2019-11-01 清华大学 Combined type crosses ball detection sensor and its detection method
CN110400645B (en) * 2019-07-30 2020-12-22 清华大学 Combined ball passing detection sensor and detection method thereof

Similar Documents

Publication Publication Date Title
US4471658A (en) Electromagnetic acoustic transducer
KR100671630B1 (en) On-line flaw detection method of magnetic leak detector and strip of magnetic flaw detector
US6310476B1 (en) Eddy current flaw detector
KR870002113B1 (en) Electromagnetism checking device of a strong-magnetic tube
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
US6452384B1 (en) Scanning head for eddy-current testing, method for processing a scanning head for an eddy-current test method
JP5203342B2 (en) Eddy current flaw detection probe and eddy current flaw detection test apparatus using the same
JPH0949825A (en) Eddy-current flaw detecting probe
CN110333284B (en) Series type plane eddy current sensor
JPH06186207A (en) Eddy-current flaw detecting probe
JP5259511B2 (en) Remote field eddy current testing probe
JP6601226B2 (en) Magnetic flux leakage flaw detector
JPH08240568A (en) Eddy current flaw detection probe
JPH08313494A (en) Eddy current test equipment probe
JPH10318988A (en) Eddy current flaw detection probe
JPH03105245A (en) Remote field type probe for eddy current flaw detection
JPH08226913A (en) Eddy-current flaw detector
JPH10160710A (en) Division-type flaw-detecting sensor and flaw detecting method for conductive tube
JPS6324152A (en) Probe for eddy current flaw detection
JPH0639331Y2 (en) Eddy current flaw detection coil
JP2002162388A (en) Eddy current detector for welded pipe
JP2006284506A (en) Probe for detecting eddy current flaw
JPH10239282A (en) Eddy current flaw-detecting probe
JPS609718Y2 (en) Flaw detection coil device
JP2003215106A (en) Magnetic leakage detecting sensor and magnetic flaw detector

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040309

Free format text: JAPANESE INTERMEDIATE CODE: A02