JPS6324152A - Probe for eddy current flaw detection - Google Patents

Probe for eddy current flaw detection

Info

Publication number
JPS6324152A
JPS6324152A JP60277369A JP27736985A JPS6324152A JP S6324152 A JPS6324152 A JP S6324152A JP 60277369 A JP60277369 A JP 60277369A JP 27736985 A JP27736985 A JP 27736985A JP S6324152 A JPS6324152 A JP S6324152A
Authority
JP
Japan
Prior art keywords
eddy current
flaw detection
tube
current flaw
detection probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60277369A
Other languages
Japanese (ja)
Other versions
JPH0684954B2 (en
Inventor
Yoshihisa Shindo
進藤 嘉久
Shinji Yoshie
伸二 吉江
Masashi Morimoto
正史 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP60277369A priority Critical patent/JPH0684954B2/en
Publication of JPS6324152A publication Critical patent/JPS6324152A/en
Publication of JPH0684954B2 publication Critical patent/JPH0684954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To perform flaw detection as to whether a tube has a flaw as well as the operation of an inspection coil by inserting a probe for eddy current flaw detection into the tube and forming a magnetic circuit between the probe for eddy current flaw detection and the tube. CONSTITUTION:When the probe 10 for eddy current flaw detection is inserted into the tube (t), a magnetic circuit is formed between the probe 10 for eddy current flaw detection and a tube (t) and a flaw detection signal which indicates the electromagnetic variation of the tube due to the flaw is detected in this state through the inspection coil 2. Thus, a space where the large-sized, large- capacity coil 2 can be arranged is secured almost at the center part of a columnar yoke (k). The detection sensitivity to the flaw of the tube (t) is therefore increased by using the large-sized inspection coil 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は管に内挿して使用する7I!Jl流深傷用プロ
ーブに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a 7I! which is used by being inserted into a tube. Regarding the Jl-style deep wound probe.

〔従来の技術〕[Conventional technology]

従来、熱交換器に組込まれている伝熱管および、地中埋
設管のごとき管は、外面からの探傷検査は難しいので、
通常内挿型渦流探傷用プロ−ブを用いて管内面から定期
検査等を行っている。この場合、管が非磁性材料である
場合・は格別の不都合を生じないが、強磁性材料である
場合は、そのままでは高感度の探傷を行うことができな
い。それは管のi! 611率が大きく渦電流が管の内
表面近傍にのみ集中し、管の外表面にまで達せず管外表
面の探傷感度が低下するからである。そこで6■気飽和
により管の透tn率を低下せしめる目的で以下に示す磁
気回路を存する内挿型プローブが用いられている。
Conventionally, it is difficult to inspect heat transfer tubes built into heat exchangers and underground tubes from the outside.
Normally, periodic inspections are performed from the inside of the tube using an interpolated eddy current probe. In this case, if the tube is made of a non-magnetic material, no particular inconvenience will occur, but if the tube is made of a ferromagnetic material, high-sensitivity flaw detection cannot be performed as is. That's tube i! This is because the 611 ratio is large and the eddy current concentrates only near the inner surface of the tube and does not reach the outer surface of the tube, reducing the flaw detection sensitivity of the outer surface of the tube. Therefore, an interpolation type probe having a magnetic circuit as shown below is used for the purpose of reducing the permeability of the tube by air saturation.

第8図および第9図は従来の渦流探傷用プローブ50を
しめしており、第9図は第8図の■−■線におけく断面
図である。Lは管をしめし、54は円柱状継鉄であり、
その両端部には円筒状の永久磁石51a、51bを嵌着
しており、継鉄54の中央部には絶縁材53を介して検
査コイル52を取着けている。(例えば実開昭58−9
1155号) この内挿渦流探傷用プローブ50は管り内に挿入して探
傷を行うさいに、−点鎖線で示す磁気回路が形成される
。すなわち、渦流探傷用プロ、−ブ50の軸に垂直な方
向の断面積より若干小さい軸に垂直な方向の断面積をも
つ継鉄54を磁路の一部とし、一対の永久磁石51a、
51bより発した磁束が管tに入り、管を内の軸に垂直
な方向の断面上に分布して、管りを軸方向に磁気飽和し
、これにより管を内の磁束密度を確保している。第10
図および第11図は従来の渦流探傷用プローブ50によ
る渦電流の発生状態をしめている。上記の磁気飽和状態
において、検査コイル52に高周波信号を通じると管を
内には、第10圓に示す様に管tの周方向に渦をなす同
心円状の渦電流が発生し、管り内の磁気飽和用磁束密度
が高いと第11図に示した様に渦電流の管外表面近傍の
分布が増加して、傷に対する検出感度を確保している。
8 and 9 show a conventional eddy current flaw detection probe 50, and FIG. 9 is a cross-sectional view taken along the line ■-■ in FIG. L indicates a pipe, 54 is a cylindrical yoke,
Cylindrical permanent magnets 51a and 51b are fitted to both ends thereof, and an inspection coil 52 is attached to the center of the yoke 54 via an insulating material 53. (For example, 1986-9
No. 1155) When this interpolation eddy current flaw detection probe 50 is inserted into a pipe for flaw detection, a magnetic circuit shown by a dashed line is formed. That is, a yoke 54 having a cross-sectional area in a direction perpendicular to the axis that is slightly smaller than a cross-sectional area in a direction perpendicular to the axis of the eddy-current flaw detection professional bar 50 is used as part of the magnetic path, and a pair of permanent magnets 51a,
The magnetic flux emitted from 51b enters the tube t, distributes the tube on a cross section perpendicular to the inner axis, magnetically saturates the tube in the axial direction, and thereby secures the magnetic flux density inside the tube. There is. 10th
The figure and FIG. 11 show the state in which eddy current is generated by the conventional eddy current flaw detection probe 50. In the above magnetic saturation state, when a high frequency signal is passed through the test coil 52, a concentric eddy current is generated inside the tube, forming a vortex in the circumferential direction of the tube t, as shown in the 10th circle. When the magnetic flux density for magnetic saturation is high, the distribution of eddy currents near the outer surface of the tube increases as shown in FIG. 11, thereby ensuring detection sensitivity for flaws.

そして、渦流探傷用プローブ50の移動にともない、渦
電流の流路中に傷等の欠陥による管tの電磁気特性の変
化が存在すれば、渦電流の変化が生じ、これを検査コイ
ル52のインピーダンス変化としてとらえて、欠陥の存
無を検出している。第12図は管tの周方向において、
同一円周上に複数個の欠陥da、dbが存在しているこ
とをしめしている。
As the eddy current flaw detection probe 50 moves, if there is a change in the electromagnetic characteristics of the tube t due to a defect such as a flaw in the eddy current flow path, a change in the eddy current occurs, which is reflected by the impedance of the test coil 52. The presence or absence of a defect is detected by recognizing it as a change. In FIG. 12, in the circumferential direction of the tube t,
This indicates that a plurality of defects da and db exist on the same circumference.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の内挿渦流探傷用プローブ50
では慣用する永久磁石の強さおよび鉄心の飽和磁束密度
に制約があり、かつ寸法的に小型にすることの困難性も
あって、プローブ内の磁路断面積と管内の磁路の断面積
との比を大きくすることができず、管における磁束密度
を増加させることが困難であるため、強磁性材ギ4であ
りかつ管が小径厚肉管である場合の探傷にさいしては、
傷に対する検出感度に限界が生しる。検査コイル52に
よって管tに流れる渦′電流の流れが第1O図にしめす
ごとく管tの円周方向に向いているため、管もの全周を
一様に探傷することとなる。したがって第12図に示す
がごとく管tの円周方向において同一・円周上に複数個
の欠陥da=dbが存在する場合、円周方向の分解可能
が不充分で、これらの欠陥を分離、識別することが困難
であるという問題があった。なお、円周方向の分解能が
不十分であるということについては、非磁性管に対して
探傷を行ったさいにも生ずるものである。
However, the above-mentioned conventional interpolation eddy current probe 50
However, there are restrictions on the strength of the permanent magnets that are commonly used and the saturation magnetic flux density of the iron core, and there is also the difficulty of making the dimensions smaller, so the cross-sectional area of the magnetic path inside the probe and the cross-sectional area of the magnetic path inside the tube are Since it is difficult to increase the ratio of magnetic flux density in the tube, it is difficult to increase the magnetic flux density in the tube.
There is a limit to the detection sensitivity for scratches. Since the flow of the eddy current flowing through the tube t by the inspection coil 52 is directed in the circumferential direction of the tube t, as shown in FIG. 1O, the entire circumference of the tube is uniformly detected. Therefore, if there are multiple defects da=db on the same circumference in the circumferential direction of the tube t as shown in FIG. The problem was that it was difficult to identify. Note that insufficient resolution in the circumferential direction also occurs when flaw detection is performed on non-magnetic tubes.

本発明はこのような従来の問題を解決するものであり、
強磁性材料であり、かつ管が小径厚肉管であっても、欠
陥を高感度にて探傷しうるのみならず、管の円周方向に
おいて同一円周上に複数個の欠陥が存在する場合、これ
らの欠陥の分離、識別を可能ならしめる分解能を有する
優れた渦流探傷用プローブを提供する事を目的とするも
のである。
The present invention solves these conventional problems,
Even if the tube is made of ferromagnetic material and has a small diameter and thick wall, it is possible to detect defects with high sensitivity. The object of the present invention is to provide an excellent eddy current flaw detection probe having a resolution that enables separation and identification of these defects.

〔問題点を解決丈るための手段〕[Means for resolving problems]

本発明は上記目的を達成するために、第1の発明は、管
に内挿し中心部に設けた円柱状継鉄と扇形状断面からな
り磁化方向が中心軸に対して直角で該扇形の外周部には
それぞれ両磁極が着磁され継鉄の両側面に対称に接合し
た永久磁石と、永久磁石が接合していない継鉄の中央部
に配設した検査コイルからなり、第2の発明は、第1の
発明による構成のほかに渦流探傷用プローブの軸方向に
は回転駆動IIJ、構および軸方向移動機構を接続して
おり、さらにまた第3弁の発明は、第1の発明による構
成のほかに渦流探傷用プローブを複数とするとともに、
軸方向に連接し、各プローブ磁極方向を一定角度をもっ
て順次変化させ、軸方向移動機構と接続するようにした
ものである。
In order to achieve the above object, the present invention provides a first invention comprising a cylindrical yoke inserted into a pipe and provided at the center, and a fan-shaped cross section, the direction of magnetization being perpendicular to the central axis, and the outer periphery of the fan-shaped yoke. The second invention consists of a permanent magnet with both magnetic poles magnetized and symmetrically joined to both sides of the yoke, and an inspection coil disposed in the center of the yoke to which the permanent magnet is not joined. In addition to the configuration according to the first invention, a rotary drive IIJ, a mechanism, and an axial movement mechanism are connected to the axial direction of the eddy current flaw detection probe, and furthermore, the third valve invention has the configuration according to the first invention. In addition to using multiple eddy current probes,
The probes are connected in the axial direction, and the direction of each probe magnetic pole is sequentially changed at a certain angle, and is connected to an axial movement mechanism.

〔作用〕[Effect]

本発明は上記のような構成により次のような作用を有す
る。すなわち、第1の発明は、渦流探傷用プローブを管
に内挿すると渦流探傷用プローブと管との間に磁気回路
が形成され、検査コイルの作用とともに管における傷の
有無について探傷しうる。また、プローブ内の磁路の断
面積と管内の磁路の断面積との比を大きくすることによ
り管における磁束密度を増加させ、強磁性材料であり、
かつ管が小径厚肉管である場合の探傷にさいし、でも傷
を高感度にて探傷することができ、ことに、永久磁石が
接合していない継鉄の中央部には大型にして、容量が大
きい検査コイルを配設するスペースが確保できて、該大
型の検査コイルを用いることによって、管における傷に
対する検出感度を増大させることができる。
The present invention has the following effects due to the above configuration. That is, in the first invention, when the eddy current flaw detection probe is inserted into the tube, a magnetic circuit is formed between the eddy current flaw detection probe and the tube, and the presence or absence of flaws in the tube can be detected along with the action of the test coil. In addition, by increasing the ratio of the cross-sectional area of the magnetic path in the probe to the cross-sectional area of the magnetic path in the tube, the magnetic flux density in the tube is increased, and it is a ferromagnetic material.
In addition, when detecting flaws in small-diameter, thick-walled pipes, it is possible to detect flaws with high sensitivity. A space for arranging a large-sized test coil can be secured, and by using the large-sized test coil, detection sensitivity for flaws in the tube can be increased.

さらに、管における磁化方向を断面方向としており、管
には局部的な渦電流が生起されて、管の全周を一様に探
傷することにより、同一円周上に複数個の欠陥が存在す
る場合も、円周方向の分解能が増大するため、こられら
の欠陥の分離、識別が可能となる。
Furthermore, since the direction of magnetization in the tube is the cross-sectional direction, local eddy currents are generated in the tube, and by uniformly testing the entire circumference of the tube, it is possible to detect multiple defects on the same circumference. In this case, the increased circumferential resolution also makes it possible to separate and identify these defects.

また、第2の発明は、渦流探傷用プローブの軸方向には
回転駆動81構および軸方向移動機構を接続することに
よりプローブの作動を自動的にすることが可能となり、
搬送を自在化できるため、多数にして比較的長大な管の
多数の探傷を管の全周にわたり、もれなく効率よく行う
ことができる。
In addition, the second invention makes it possible to automatically operate the probe by connecting a rotational drive mechanism 81 and an axial movement mechanism to the axial direction of the eddy current flaw detection probe.
Since it can be transported freely, it is possible to perform flaw detection on a large number of comparatively long tubes all over the circumference of the tube efficiently.

さらにまた、第3の発明は、複数の渦流探傷用プローブ
の各プローブの角度を順次変化させて軸方向移動機構を
接続することにより、渦流探傷用プローブの回転駆動機
構を省略することができて、しかも管全面にわたりもれ
なく探傷を達成することができるので渦流探傷用プロー
ブの構造を簡易にさせることができる。
Furthermore, the third invention is capable of omitting the rotational drive mechanism of the eddy current flaw detection probes by sequentially changing the angle of each probe of the plurality of eddy current flaw detection probes and connecting the axial movement mechanism. Furthermore, since flaw detection can be performed over the entire surface of the tube, the structure of the eddy current flaw detection probe can be simplified.

〔実施例〕〔Example〕

以下、本発明の実施例を図面について詳細に述べる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、第1の発明の一実施例の構成をしめし、第2
図は第1図のI−1線における断面圓をしめすものであ
る。
FIG. 1 shows the configuration of an embodiment of the first invention, and FIG.
The figure shows a cross-sectional circle taken along line I-1 in FIG.

第1図および第2図において、tは管、10は渦流探傷
用プローブ、40は軸方向移動機構を兼ねるケーブルを
しめす。渦流探傷用プローブ10は中心部に設けた円柱
状継鉄k、永久磁石l、la、検査コイル2、絶縁材3
などからなり、管tに内挿し、て探傷を行う。永久磁石
1.1aの形状は、第2図においてしめすごとくその断
面は、扇形状をなし、継鉄にの円柱両側面に対称に接着
剤などを用いて接合している。
In FIGS. 1 and 2, t represents a tube, 10 represents an eddy current flaw detection probe, and 40 represents a cable that also serves as an axial movement mechanism. The eddy current flaw detection probe 10 includes a cylindrical yoke k provided at the center, permanent magnets l and la, a test coil 2, and an insulating material 3.
Flaw detection is performed by inserting it into the tube T. As shown in FIG. 2, the permanent magnet 1.1a has a fan-shaped cross section and is symmetrically bonded to both cylindrical sides of the yoke using an adhesive or the like.

継鉄にのほぼ中央部には!i!!縁材3上に検査コイル
2を配設している。
Almost in the center of the yoke! i! ! An inspection coil 2 is arranged on the edge material 3.

渦流探傷用プローブ10を管tに内挿すると1、渦流探
傷用プローブ10と管りの間に磁気回路が形成され、こ
の状態において検査コイル2を通じて欠陥による管の電
磁気的変化を示す探傷信号を検出する。かくして、永久
磁石1.1aが接合していない円柱状継鉄にのほぼ中央
部には大型にして、容量が大きい検査コイル2を配設す
るスペースが61保できるため、該大型の検査コイル2
を用いることによって、管【における傷に対する検出感
度を増大させることができる。
When the eddy current flaw detection probe 10 is inserted into the tube 1, a magnetic circuit is formed between the eddy current flaw detection probe 10 and the tube, and in this state, a flaw detection signal indicating electromagnetic changes in the tube due to defects is transmitted through the inspection coil 2. To detect. In this way, 61 spaces for arranging a large-sized, large-capacity test coil 2 can be maintained at approximately the center of the cylindrical yoke to which the permanent magnet 1.1a is not connected.
The detection sensitivity for flaws in the tube can be increased by using

第3図は第1図および第2図にしめした渦Ji、探傷用
プローブ10にもちいている永久磁石1.1aと継鉄に
および管tか、ろなる磁気回路を12めし、永久磁石1
.1aのそれぞれの磁化方向が中心軸に対して直角で1
、外周部において崖径方向にそれぞれ両fiB11.s
を有し、かつ、それぞれが逆方向の6Nhをしめずごと
く着石11されており、磁束は継鉄kを介して一点鎖線
にてしめしたように流れ、管の断面方向を磁化させてい
る。
Figure 3 shows the vortex Ji shown in Figures 1 and 2, the permanent magnet 1.1a used in the flaw detection probe 10, the yoke and the tube t, and the permanent magnet 1.
.. Each magnetization direction of 1a is perpendicular to the central axis and 1
, both fiB11. s
, and each of them is fixed with 6Nh in the opposite direction, and the magnetic flux flows as shown by the dashed line through the yoke k, magnetizing the cross-sectional direction of the tube. .

第3図において、渦流探傷用プローブ10のB部の磁束
密度Bp、伝熱管を内の磁束密度をBtとすれば B t = (123/ (x++i’z)l  HB
 pとなる。
In FIG. 3, if the magnetic flux density at part B of the eddy current flaw detection probe 10 is Bp, and the magnetic flux density inside the heat transfer tube is Bt, then B t = (123/ (x++i'z)l HB
It becomes p.

一方、第8回にしめず従来の渦流探傷用プローブ50に
おいては、継鉄54A部の断面積をSp、A部を通過す
る磁束の磁束密度をBp’、伝熱管tの軸に垂直な断面
積をStとすれば、伝熱管を内の磁束密度Bt’は B t ’ = (SA/S t)  ・Bp’である
On the other hand, in the 8th article, in the conventional eddy current flaw detection probe 50, the cross-sectional area of the yoke 54A section is Sp, the magnetic flux density of the magnetic flux passing through the A section is Bp', and the section perpendicular to the axis of the heat exchanger tube t. If the area is St, then the magnetic flux density Bt' inside the heat transfer tube is Bt' = (SA/St) ·Bp'.

したが9て、管tにおける磁化方向を従来の軸方向から
断面方向に変更させることにより、管りのけ路の断面積
と渦流探傷用プローブ内の磁路の断面積の比xz/(7
!++zz)を従来のSA/Stに比して大きくするこ
とができるため管における磁束密度を向上させている。
However, by changing the magnetization direction in the tube t from the conventional axial direction to the cross-sectional direction, the ratio of the cross-sectional area of the tube bypass path to the cross-sectional area of the magnetic path in the eddy current probe becomes xz/(7
! ++zz) can be made larger than that of conventional SA/St, improving the magnetic flux density in the tube.

上記の第1の発明の実施例にもとづく解析例による管内
磁束密度を従来の渦流探傷用プローブをもちいた管内磁
束密度を第13図および次の表にしめす。
The magnetic flux density inside the tube according to an analysis example based on the embodiment of the first invention described above and the magnetic flux density inside the tube using a conventional eddy current flaw detection probe are shown in FIG. 13 and the following table.

なお、上記表において供試管の材料は21/4Cr1M
o鋼であり、寸法は外径25.41m。
In addition, in the above table, the material of the test tube is 21/4Cr1M.
It is made of o steel and has an outer diameter of 25.41 m.

内径18.4富1である。The inner diameter is 18.4 and the thickness is 1.

第13図および上記表の解析例にても判明できるとおり
、本発明による方式によれば、管における磁束密度を向
上させることができ、強磁性材料であり、かつ小径厚肉
管である場合の探傷であっても、欠陥を高感度にて探傷
することができる。
As can be seen from the analysis examples in FIG. 13 and the table above, the method according to the present invention can improve the magnetic flux density in the tube, and is effective in improving the magnetic flux density in the tube, which is made of ferromagnetic material and has a small diameter and thick wall. Even in flaw detection, defects can be detected with high sensitivity.

また、第4図は第1図および第2図にしめした渦流探傷
用プローブ10をもちいて管むを探傷した場合に検査コ
イル2によって管tには局所的な渦電流が生起されてい
ることをしめしている。従って渦流探傷用プローブ10
の移動にともない、該渦電流中に欠陥が存在すると、欠
陥による管の電磁気的特性の変化によって検査コイルは
インピーダンス変化を詳細に1*出できる。従ってこの
検出したインピーダンス変化値をもとに図示を省略した
記録装置では欠陥に対する円周方向の分解能が増大し、
管の円周方向において同一円周上に複数個の欠陥が存在
する場合でも、これらの欠陥の分離、識別をすることが
可能である。
In addition, FIG. 4 shows that when a tube is tested using the eddy current flaw detection probe 10 shown in FIGS. 1 and 2, a local eddy current is generated in the tube t by the inspection coil 2. It shows. Therefore, the eddy current flaw detection probe 10
As the tube moves, if a defect exists in the eddy current, the test coil can produce a detailed impedance change of 1* due to the change in the electromagnetic properties of the tube due to the defect. Therefore, based on the detected impedance change value, the recording device (not shown) increases the circumferential resolution for defects.
Even when a plurality of defects exist on the same circumference in the circumferential direction of the tube, it is possible to separate and identify these defects.

第5図は、第2の発明の一実施例をしめす。FIG. 5 shows an embodiment of the second invention.

第5図において、10は渦流探傷用プローブをしめし、
42は減速機、41はモータ、5はスリップリングを、
さらに40は軸方向移動機構を兼ねるケーブルをしめす
In FIG. 5, 10 indicates an eddy current flaw detection probe,
42 is a reducer, 41 is a motor, 5 is a slip ring,
Furthermore, 40 indicates a cable that also serves as an axial movement mechanism.

これらは渦流探傷用プローブ10に接続され、渦流探傷
用プローブ10はモータ41の回転駆動力により減速機
42を介して回転運動を行い、かつ軸方向移動n溝を兼
ねるケーブル40により軸方向に移動する。
These are connected to an eddy current flaw detection probe 10, and the eddy current flaw detection probe 10 performs rotational movement via a reducer 42 by the rotational driving force of a motor 41, and is moved in the axial direction by a cable 40 that also serves as an axial movement n groove. do.

スリップリング5は軸の周りに回転している渦流探傷用
プローブ10の検査コイル2からの探傷信号を図示する
ことを省略した検査機器に伝達するものである。
The slip ring 5 transmits a flaw detection signal from the test coil 2 of the eddy current flaw detection probe 10 rotating around its axis to a test device (not shown).

このように、渦流探傷用プローブ10に回転駆動機構を
接続し、これを軸方向移動機構10とを接続することに
より、渦流探傷用プローブ10によって生ずる渦電流が
局所的であっても第7図に示すがごとく、渦電流の流れ
る範囲に比して広い領域をもつ斜線部分の様な欠陥dに
対しても同図中の一点鎖線のごとく順次探傷を行う事に
より、欠陥の軸方向及び円周方向の分布を知る事が出来
、かつ、/l!!lI流深傷用プロ探傷10の作動を自
動的にすることが可能となり、搬送を自立化できるため
、多数にして比較的長大な管の多数の探傷を管の全面に
わたり、もれなく効率よく行うことができる。
In this way, by connecting the rotation drive mechanism to the eddy current flaw detection probe 10 and connecting this to the axial movement mechanism 10, even if the eddy current generated by the eddy current flaw detection probe 10 is localized, As shown in the figure, even for the defect d, which is a hatched area with a wider area than the range in which the eddy current flows, flaw detection is carried out sequentially as shown by the dashed-dotted line in the same figure. You can know the distribution in the circumferential direction, and /l! ! It is possible to operate the 1I style professional flaw detection 10 for deep flaws automatically, and the transportation can be made independent, so it is possible to efficiently perform flaw detection on a large number of comparatively long pipes, covering the entire surface of the pipe. Can be done.

第6図は、第3の発明の一実施例をしめす。FIG. 6 shows an embodiment of the third invention.

第6図において、複数の渦流深傷用ブローブがスプリン
グ44をもってたわみ状態に対応しうるごと(軸方向に
一体的に連接しかつ端部においては軸方向移動機構を兼
ねるケーブル40と接続している。またそれぞれの渦流
探傷用プローブ10.10a、10b、10eの取付方
向は磁極方向を一定角度のずれθをもって順次進相させ
て配列している。第6図における実施例では角度のずれ
θは45″である。
In FIG. 6, a plurality of eddy current deep wound probes are connected to each other in the axial direction so as to be able to respond to the deflection state using a spring 44 (the probes are integrally connected in the axial direction, and the ends thereof are connected to a cable 40 which also serves as an axial movement mechanism). In addition, the mounting directions of the eddy current flaw detection probes 10, 10a, 10b, and 10e are arranged such that the magnetic pole direction is sequentially advanced with a certain angular deviation θ.In the embodiment shown in FIG. 6, the angular deviation θ is It is 45″.

このように、各渦流探傷用プローブ10.10a、10
b、IOCの角度を順次変化させて軸方向移動機構を兼
ねるケーブル40を接続することにより、渦流探傷用プ
ローブの回転駆動機構を省略することができて、しかも
管全面にわたりもれなく探傷を達成することができるの
で渦流探傷用プローブの構成を簡易にさせることができ
る。
In this way, each eddy current flaw detection probe 10.10a, 10
b. By sequentially changing the angle of the IOC and connecting the cable 40 which also serves as an axial movement mechanism, it is possible to omit the rotational drive mechanism of the eddy current flaw detection probe and to achieve flaw detection over the entire surface of the tube. Therefore, the configuration of the eddy current flaw detection probe can be simplified.

〔発明の効果〕 上記実施例により明らかなように、第1の発明によれば
、強磁性材料でありかつ小径厚肉管の探(筋に適用する
にあたり、欠陥を高感度で探傷することができるととも
に、管の円周方向において同一円周上に複数個の欠陥が
存在する場合でも、欠陥に対する周方向の分解能の増大
により、これらの欠陥の分離、識別が可能となる。
[Effects of the Invention] As is clear from the above embodiments, according to the first invention, defects can be detected with high sensitivity when applied to the detection of small-diameter, thick-walled pipes made of ferromagnetic material. In addition, even if a plurality of defects exist on the same circumference in the circumferential direction of the tube, the increased resolution of defects in the circumferential direction makes it possible to separate and identify these defects.

ことに、大型にして、容量が大きい検査コイルを用いる
ことによって、管における傷に対する検出感度を著しく
増大させることができる。
In particular, by using a large, high-capacity test coil, the detection sensitivity for flaws in the tube can be significantly increased.

第2の発明によれば、渦電流の流れる範囲に比して広い
領域をもつ欠陥に対しても、欠陥の軸方向及び周方向の
分布を知ることができて、渦流探傷用プローブの作動を
自動的にすることが可能となり搬送を自在化できるため
、多数にして比較的長大な管の探傷を効率よく行うこと
ができる。
According to the second invention, it is possible to know the distribution of defects in the axial direction and the circumferential direction even for defects having a wider area than the range in which the eddy current flows, and the operation of the eddy current flaw detection probe can be controlled. Since it can be done automatically and can be transported freely, flaw detection can be performed efficiently on a large number of relatively long pipes.

第3の発明によれば、渦流探傷用プローブの回転駆動機
構を省略することができて、しかも管全面にわたりもれ
なく探傷を達成することができるので渦流探傷用プロー
ブの構成を簡易にさせることができる。
According to the third invention, the rotational drive mechanism of the eddy current flaw detection probe can be omitted, and flaw detection can be performed over the entire surface of the tube, so the configuration of the eddy current flaw detection probe can be simplified. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の発明の一実施例に係る渦流探傷用プロー
ブの概略図、第2図は同断面画、第3図は同磁気回路図
、第4図は同渦電流をしめず説明図、第5図は第2の発
明)侮施例に係る渦流探傷用プローブの概略図、第6回
は第3の発明の一曲実施例に係る渦流探傷用プローブの
概略図、第7図は第5図および第6I211にしめす。 実施例に係る説明図、第8図は従来技術に係る〜渦流探
傷用プローブの概略図、第9図は同断面、図、第10図
は同渦電流をしめず説明図、第11図は管内磁束密度に
よる渦電流分布の変化をしめず説明図、第12図は従来
技術に係る分剤、識別が困難である欠陥をしめず説明図
、第130は本発明および従来技術に係る管内磁束密度
の比較をしめず説明図である。 1.1a −−−−−−一永久磁石 2  −−−−−−一検査コイル 10 −−−−−−一渦流探傷用ブローブ40 −−−
−−−−ケーブル 1  −−−−−−一管 R−−−−−−一継鉄
Fig. 1 is a schematic diagram of an eddy current flaw detection probe according to an embodiment of the first invention, Fig. 2 is a cross-sectional view thereof, Fig. 3 is a magnetic circuit diagram thereof, and Fig. 4 is a detailed explanation of the eddy current. Figure 5 is a schematic diagram of an eddy current flaw detection probe according to an embodiment of the second invention, Part 6 is a schematic diagram of an eddy current flaw detection probe according to an embodiment of the third invention, and Fig. 7 is shown in FIGS. 5 and 6I211. 8 is a schematic diagram of an eddy current flaw detection probe according to the prior art, FIG. 9 is a cross-sectional view of the same, FIG. 10 is an explanatory diagram without showing the eddy current, and FIG. Fig. 12 is an explanatory diagram showing the change in eddy current distribution due to the magnetic flux density in the tube, Fig. 12 is an explanatory diagram without showing defects that are difficult to identify, and Fig. 130 is the magnetic flux in the tube according to the present invention and the prior art. It is an explanatory diagram showing a comparison of densities. 1.1a -------One permanent magnet 2 ------One inspection coil 10 ------One eddy current flaw detection probe 40 ---
−−−−Cable 1 −−−−−−One pipe R−−−−−−One yoke

Claims (1)

【特許請求の範囲】 1、管に内挿し、中心部に設けた円柱状継鉄と扇形状断
面からなり磁化方向が中心軸に対して直角で該扇形の外
周部にはそれぞれ両磁極が着磁され継鉄の両側面に対称
に接合した永久磁石と、永久磁石が接合していない継鉄
の中央部に配設した検査コイルからなる渦流探傷用プロ
ーブ。 2、管に内挿し、中心部に設けた円柱状継鉄と扇形状断
面からなり磁化方向が中心軸に対して直角で該扇形の外
周部にはそれぞれ両磁極が着磁され継鉄の両側面に対称
に接合した永久磁石と、永久磁石が接合していない継鉄
の中央部に配設した検査コイルからなる渦流探傷用プロ
ーブにおいて、前記渦流探傷用プローブの軸方向には回
転駆動機構および軸方向移動機構を接続したことを特徴
とする渦流探傷用プローブ。 3、管に内挿し、中心部に設けた円柱状継鉄と扇形状断
面からなり磁化方向が中心軸に対して直角で該扇形の外
周部にはそれぞれ両磁極が着磁され継鉄の両側面に対称
に接合した永久磁石と、永久磁石が接合していない継鉄
の中央部に配設した検査コイルからなる渦流探傷用プロ
ーブにおいて、前記渦流探傷用プローブを複数とすると
ともに、軸方向に連接し、各プローブの磁極方向を一定
角度をもって順次変化させ、軸方向移動機構と接続した
ことを特徴とする渦流探傷用プローブ。
[Claims] 1. A cylindrical yoke inserted into a tube and provided at the center, consisting of a cylindrical yoke and a sector-shaped cross section, the direction of magnetization being perpendicular to the central axis, and both magnetic poles attached to the outer periphery of the sector. An eddy current flaw detection probe consisting of a permanent magnet symmetrically connected to both sides of a magnetized yoke, and an inspection coil placed in the center of the yoke where the permanent magnets are not connected. 2. It is inserted into the pipe and consists of a cylindrical yoke provided at the center and a fan-shaped cross section, the direction of magnetization is perpendicular to the central axis, and both magnetic poles are magnetized on the outer periphery of the sector, on both sides of the yoke. In an eddy current flaw detection probe consisting of a permanent magnet symmetrically bonded to a surface and a test coil disposed in the center of the yoke to which the permanent magnet is not bonded, the eddy current flaw detection probe has a rotary drive mechanism and a rotary drive mechanism in the axial direction. An eddy current flaw detection probe characterized by being connected to an axial movement mechanism. 3. It is inserted into the pipe and consists of a cylindrical yoke provided at the center and a fan-shaped cross section, the direction of magnetization is perpendicular to the central axis, and both magnetic poles are magnetized on the outer periphery of the fan, on both sides of the yoke. In an eddy current flaw detection probe consisting of a permanent magnet symmetrically bonded to a surface and an inspection coil disposed in the center of the yoke to which the permanent magnet is not bonded, the eddy current flaw detection probe is provided in a plurality and An eddy current flaw detection probe characterized by being connected to an axial movement mechanism that sequentially changes the magnetic pole direction of each probe at a certain angle.
JP60277369A 1985-12-10 1985-12-10 Eddy current flaw detection probe Expired - Lifetime JPH0684954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60277369A JPH0684954B2 (en) 1985-12-10 1985-12-10 Eddy current flaw detection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60277369A JPH0684954B2 (en) 1985-12-10 1985-12-10 Eddy current flaw detection probe

Publications (2)

Publication Number Publication Date
JPS6324152A true JPS6324152A (en) 1988-02-01
JPH0684954B2 JPH0684954B2 (en) 1994-10-26

Family

ID=17582562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60277369A Expired - Lifetime JPH0684954B2 (en) 1985-12-10 1985-12-10 Eddy current flaw detection probe

Country Status (1)

Country Link
JP (1) JPH0684954B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237186A (en) * 2009-03-11 2010-10-21 Sumitomo Chemical Co Ltd Eddy current flaw detection probe
JP2010261836A (en) * 2009-05-08 2010-11-18 Sumitomo Chemical Co Ltd Method for inspection of magnetic material pipe
CN109444258A (en) * 2018-12-21 2019-03-08 核动力运行研究所 A kind of small diameter tube vortex rotating detector
CN110441386A (en) * 2018-05-04 2019-11-12 苏州帝泰克检测设备有限公司 Defect of pipeline multidimensional detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891155U (en) * 1981-12-15 1983-06-20 住友金属工業株式会社 Eddy current flaw detection probe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891155U (en) * 1981-12-15 1983-06-20 住友金属工業株式会社 Eddy current flaw detection probe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237186A (en) * 2009-03-11 2010-10-21 Sumitomo Chemical Co Ltd Eddy current flaw detection probe
JP2010261836A (en) * 2009-05-08 2010-11-18 Sumitomo Chemical Co Ltd Method for inspection of magnetic material pipe
CN110441386A (en) * 2018-05-04 2019-11-12 苏州帝泰克检测设备有限公司 Defect of pipeline multidimensional detection device
CN109444258A (en) * 2018-12-21 2019-03-08 核动力运行研究所 A kind of small diameter tube vortex rotating detector

Also Published As

Publication number Publication date
JPH0684954B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
US5414353A (en) Method and device for nondestructively inspecting elongated objects for structural defects using longitudinally arranged magnet means and sensor means disposed immediately downstream therefrom
US4855676A (en) Ferromagnetic eddy current probe having transmit and receive coil assemblies
AU2005238857B2 (en) ID-OD discrimination sensor concept for a magnetic flux leakage inspection tool
JPH0664012B2 (en) Flux leakage probe for use in non-destructive testing
EP0594844A1 (en) Magnetic inspection probe for detecting flaws in ferromagnetic goods
CN108226277A (en) The outer detection probe of a kind of leakage field, electromagnetic acoustic and vortex composite pipeline
JPS6132619B2 (en)
WO2002033398A1 (en) Leakage magnetism detecting sensor of magnetic penetration apparatus
GB1567166A (en) Apparatus and method for the non-destructive testing of ferromagnetic material
JPS6324152A (en) Probe for eddy current flaw detection
JPH03505134A (en) Rotating head for scanning metal objects
JPS61130802A (en) Overcurrent probe with coil oppositely positioned while holding diameter
JPS637895Y2 (en)
JPH0338696Y2 (en)
JPS62130350A (en) Probe for eddy current flaw detection
JPS59226858A (en) Flaw detector
JPH03118465A (en) Detecting apparatus for defect inside tube
JPS62126345A (en) Probe for eddy current flaw detection
JPS63124957A (en) Method and probe for eddy current flaw detection
JPH04273055A (en) Insertion type eddy current detector for magnetic pipe
RU2102737C1 (en) Gear for intrapipe magnetic flaw detection of wall of steel pipe-lines
JPH0355099Y2 (en)
JPH06347448A (en) Eddy current flaw detection probe
JPS6298251A (en) Method and device for detecting corrosion of pipe
JPH08240568A (en) Eddy current flaw detection probe