JP2010261836A - Method for inspection of magnetic material pipe - Google Patents

Method for inspection of magnetic material pipe Download PDF

Info

Publication number
JP2010261836A
JP2010261836A JP2009113360A JP2009113360A JP2010261836A JP 2010261836 A JP2010261836 A JP 2010261836A JP 2009113360 A JP2009113360 A JP 2009113360A JP 2009113360 A JP2009113360 A JP 2009113360A JP 2010261836 A JP2010261836 A JP 2010261836A
Authority
JP
Japan
Prior art keywords
yoke
permanent magnet
probe
defect
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009113360A
Other languages
Japanese (ja)
Other versions
JP5169983B2 (en
Inventor
Mitsuo Hashimoto
光男 橋本
Hisakazu Mori
久和 森
Hidehiko Suetsugu
秀彦 末次
Toyokazu Tada
豊和 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009113360A priority Critical patent/JP5169983B2/en
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to US13/203,795 priority patent/US8928315B2/en
Priority to SG2011063443A priority patent/SG174227A1/en
Priority to EP10713254.0A priority patent/EP2406623B1/en
Priority to PCT/JP2010/054621 priority patent/WO2010104213A1/en
Priority to CN201080011030.2A priority patent/CN102348972B/en
Priority to KR1020117023713A priority patent/KR101679446B1/en
Publication of JP2010261836A publication Critical patent/JP2010261836A/en
Application granted granted Critical
Publication of JP5169983B2 publication Critical patent/JP5169983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect inspection method of a magnetic material pipe for accurately detecting a defect of the magnetic material pipe, and the defect of the magnetic material pipe in a baffle portion provided outside the magnetic material pipe. <P>SOLUTION: The defect inspection method of the magnetic material pipe uses a probe. In the probe, permanent magnets are mounted around a central part of a columnar yoke so as to have the magnetization direction in the axial direction of the yoke. The permanent magnets are mounted around the yoke on both sides so as to have the magnetization direction in the radial direction of the yoke and cause a magnetic pole on the yoke side to be different. A detection coil is disposed on the permanent magnet in the central part. A flaw is inspected within the magnetic material pipe by an eddy current. Additionally, the flaw is inspected by a multiple frequency method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁性体管の欠陥を精度良く検査する方法に関する。   The present invention relates to a method for accurately inspecting a defect of a magnetic tube.

金属材料の検査方法の一つとして渦流探傷法が挙げられる。オーステナイト系ステンレス鋼、チタン、銅合金などの非磁性体管の検査では、内挿型の渦流探傷用プローブを用いた渦流探傷が広く行われている。
炭素鋼、フェライト系ステンレス鋼、フェライト相とオーステナイト相の二相からなる二相ステンレス鋼などの磁性体管の検査においては、非磁性体管の渦流探傷用プローブでは渦電流が表面しか流れないこと、透磁率の局部的な変動に起因するノイズが検出能に悪影響を及ぼすことから精度良く欠陥の探傷ができない。
One of the inspection methods for metal materials is the eddy current flaw detection method. In the inspection of non-magnetic pipes such as austenitic stainless steel, titanium, and copper alloy, eddy current flaw detection using an interpolated eddy current flaw detection probe is widely performed.
In the inspection of magnetic tubes such as carbon steel, ferritic stainless steel, and dual-phase stainless steel consisting of two phases of ferrite phase and austenite phase, eddy currents should flow only on the surface with eddy current flaw detection probes for non-magnetic tubes. Since the noise caused by local fluctuations in the magnetic permeability adversely affects the detectability, it is impossible to detect defects with high accuracy.

二相ステンレス伝熱管の渦流探傷用プローブとして、円柱状ヨークの中央部の周囲に検出コイルを配置し、その両側のヨークの周囲に、磁化方向がヨークの半径方向であって、ヨーク側の磁極が相異なるように永久磁石を装着したプローブが知られている(例えば、非特許文献1参照。)
このプローブを用いることによって二相ステンレス管などの弱磁性体管の渦流探傷は可能であるが、炭素鋼などの強磁性体管の小さい欠陥を探傷するには不十分であり、強磁性体管の小さい欠陥をもより精度良く検査できる方法が望まれている。
As a probe for eddy current flaw detection of a duplex stainless steel heat transfer tube, a detection coil is arranged around the central part of a cylindrical yoke, the magnetization direction is the yoke radial direction around the yokes on both sides thereof, and the magnetic pole on the yoke side There are known probes equipped with permanent magnets so that they are different from each other (for example, see Non-Patent Document 1).
By using this probe, eddy current flaw detection of weak magnetic pipes such as duplex stainless steel pipes is possible, but it is not sufficient for flaw detection of small defects in ferromagnetic pipes such as carbon steel. Therefore, there is a demand for a method capable of inspecting even a small defect with higher accuracy.

非破壊検査 第42巻 第9号 520〜526頁 平成5年Nondestructive Inspection Vol.42, No.9, 520-526, 1993

本発明は、磁性体管の欠陥を精度良く検査する方法、更には磁性体管の外部に設けられたバッフルプレート、管板、支持具など(以下、単にバッフルと称する)の部分の磁性体管の欠陥をも精度良く検査する方法を提供することを目的とする。   The present invention provides a method for accurately inspecting a defect in a magnetic tube, and further, a magnetic tube in a portion of a baffle plate, a tube plate, a support, etc. (hereinafter simply referred to as a baffle) provided outside the magnetic tube. It is an object of the present invention to provide a method for accurately inspecting defects of the above.

本発明者は、磁性体管の渦流探傷方法について鋭意検討した結果、円柱状ヨークの中央部の周囲に検出コイルを配置し、その両側のヨークの周囲に、磁化方向がヨークの半径方向であって、ヨーク側の磁極が相異なるように永久磁石を装着したプローブの中央部に、更に磁化方向がヨークの軸方向になるように永久磁石を装着したプローブを用いて、磁性体管内を渦流探傷することによって、磁性体管の欠陥を精度良く検査できること、更に多重周波数法によって渦流探傷することによって、外部に設けられたバッフルの部分の磁性体管の欠陥をも精度良く検査できることを見出し、本発明に至った。   As a result of intensive investigations on the eddy current flaw detection method for the magnetic tube, the present inventor has arranged a detection coil around the central portion of the cylindrical yoke, and the magnetization direction around the yokes on both sides is the radial direction of the yoke. Using a probe with a permanent magnet attached at the center of the probe with a permanent magnet attached so that the magnetic poles on the yoke side are different, the eddy current flaw detection is performed inside the magnetic tube. It is found that the defect of the magnetic pipe can be inspected with high accuracy, and further, the defect of the magnetic pipe in the baffle portion provided outside can be inspected with high accuracy by conducting the eddy current flaw detection by the multi-frequency method. Invented.

すなわち本発明は、(1)円柱状ヨークの中央部の周囲に永久磁石を、その磁化方向がヨークの軸方向になるように装着し、その両側のヨークの周囲に永久磁石を、その磁化方向がヨークの半径方向であって、ヨーク側の磁極が相異なるように装着し、中央部の永久磁石の上に検出コイルを配置してなるプローブを用いて、磁性体管内を渦流探傷することを特徴とする磁性体管の欠陥検査方法、および(2)多重周波数法によって渦流探傷することを特徴とする上記(1)の磁性体管の欠陥検査方法である。   That is, the present invention is (1) mounting a permanent magnet around the central part of a cylindrical yoke so that the magnetization direction is the axial direction of the yoke, and placing the permanent magnet around the yokes on both sides, Eddy current flaw detection in a magnetic tube using a probe that is mounted so that the yoke side magnetic poles are different and the detection coil is arranged on the permanent magnet in the center. A feature of the defect inspection method for a magnetic tube, and (2) a defect inspection method for a magnetic tube according to (1) above, wherein eddy current flaw detection is performed by a multi-frequency method.

本発明の方法によって、磁性体管の欠陥を精度良く検査でき、更には磁性体管の外部に設けられたバッフルの部分の磁性体管の欠陥をも精度良く検査することができる。   According to the method of the present invention, defects in the magnetic tube can be inspected with high accuracy, and further defects in the magnetic tube in the baffle portion provided outside the magnetic tube can be inspected with high accuracy.

本発明のプローブの一実施態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows one embodiment of the probe of this invention. 本発明のプローブの永久磁石取り付け方法の模式図である。It is a schematic diagram of the permanent magnet attachment method of the probe of this invention. 本発明のプローブの永久磁石取り付け方法の模式図である。It is a schematic diagram of the permanent magnet attachment method of the probe of this invention. 本発明のプローブの永久磁石取り付け方法の模式図である。It is a schematic diagram of the permanent magnet attachment method of the probe of this invention. 本発明のプローブの回路図である。It is a circuit diagram of the probe of the present invention. 多重周波数法を説明するための図である。It is a figure for demonstrating the multi-frequency method. 実施例1の結果を示す図である。It is a figure which shows the result of Example 1. 実施例1の他の結果を示す図である。It is a figure which shows the other result of Example 1. 実施例3の結果を示す図である。It is a figure which shows the result of Example 3. 実施例3の他の結果を示す図である。It is a figure which shows the other result of Example 3. 実施例3の他の結果を示す図である。It is a figure which shows the other result of Example 3. 実施例3の他の結果を示す図である。It is a figure which shows the other result of Example 3.

以下、図面を参照して本発明を詳細に説明する。図1は本発明のプローブの一実施態様を示す断面模式図である。
円柱状ヨーク1の中央部の周囲に永久磁石2が、その磁化方向がヨークの軸方向になるように装着されている。図では左側にN極、右側にS極になるように装着されている。
永久磁石2の両側のヨークの周囲に永久磁石3および永久磁石4が、その磁化方向がヨークの半径方向であって、ヨーク側の磁極が永久磁石3および永久磁石4で異なるように装着されている。図では永久磁石3はヨーク側がS極、外側がN極、永久磁石4はヨーク側がN極、外側がS極になるように装着されている。
中央部の永久磁石2の上に検出コイル5が配置されている。その両側には内側励磁コイル6が配置されている。
プローブの両端部にはガイド7、8が設けられている。ヨーク1の略中心部に空気導入孔9、および両端部に空気導入孔から半径方向に延びる複数の空気噴射孔10が設けられている。
なお、コイルの導線およびその取り出し孔は図示されていない。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic sectional view showing an embodiment of the probe of the present invention.
A permanent magnet 2 is mounted around the central portion of the columnar yoke 1 so that the magnetization direction is the axial direction of the yoke. In the figure, it is mounted so that the N pole is on the left side and the S pole is on the right side.
Permanent magnets 3 and 4 are mounted around the yokes on both sides of the permanent magnet 2 such that the magnetization direction is the radial direction of the yoke and the magnetic poles on the yoke side are different between the permanent magnet 3 and the permanent magnet 4. Yes. In the figure, the permanent magnet 3 is mounted so that the yoke side is the south pole and the outside is the north pole, and the permanent magnet 4 is mounted so that the yoke side is the north pole and the outside is the south pole.
A detection coil 5 is disposed on the permanent magnet 2 in the center. Inner excitation coils 6 are arranged on both sides thereof.
Guides 7 and 8 are provided at both ends of the probe. An air introduction hole 9 is provided at a substantially central portion of the yoke 1, and a plurality of air injection holes 10 extending in the radial direction from the air introduction hole are provided at both ends.
Note that the coil conductors and their extraction holes are not shown.

ヨークとしては、炭素鋼、低合金鋼などの高透磁率金属が用いられる。
永久磁石としては、例えば、ネオジム磁石などの高性能永久磁石が用いられる。中央部に装着する永久磁石2としては、ヨークの軸方向の長さが約5〜10mmのリング状のものが用いられる。永久磁石2の両側に装着される永久磁石3および永久磁石4としては、ヨークの軸方向の長さが約5〜30mm、好ましくは約10〜30mmのリング状のものが用いられる。永久磁石3および永久磁石4は長い方が、探傷精度が向上するが、約30mmを超えてもそれに見合った効果は得られない。なお、永久磁石3および永久磁石4のヨークの半径方向の大きさ、厚さは探傷する磁性体管の大きさに合わせて変更される。
As the yoke, a high permeability metal such as carbon steel or low alloy steel is used.
As the permanent magnet, for example, a high-performance permanent magnet such as a neodymium magnet is used. As the permanent magnet 2 attached to the center portion, a ring-shaped one having a length in the axial direction of the yoke of about 5 to 10 mm is used. As the permanent magnet 3 and the permanent magnet 4 mounted on both sides of the permanent magnet 2, a ring-shaped one having an axial length of about 5 to 30 mm, preferably about 10 to 30 mm is used. The longer the permanent magnet 3 and the permanent magnet 4, the better the flaw detection accuracy, but even if it exceeds about 30 mm, an effect commensurate with it cannot be obtained. The size and thickness of the permanent magnet 3 and the permanent magnet 4 in the radial direction of the yoke are changed in accordance with the size of the magnetic substance tube to be detected.

半径方向の磁化を有するリング状の永久磁石は製作コストがかかるため、通常、図2−Aに示すように、四分割等の分割形状にして円柱状ヨークの周囲に装着し使用される。該1/4周分割の永久磁石を円柱状ヨークに装着するときは図2−Bに示す如くダミーの鉄片あるいは装着する永久磁石とは磁化方向が逆の永久磁石を間に挟むことにより対面の永久磁石の反発力が解消されて容易に装着が可能となる。円柱状ヨークへの永久磁石の装着方法は特に限定されないが、接着剤、例えばアクリル系接着剤を用いて接着して装着される。一対の永久磁石を装着後、ダミーの鉄片もしくは装着した永久磁石とは磁化方向が逆の永久磁石を取り除いて、この位置に、円柱状ヨークとの接触面に接着剤を塗布したもう一対の永久磁石を装入し、対面する永久磁石を万力等で接着剤が接着効果を奏するまで挟み保持することにより容易に円柱状ヨークに永久磁石を装着することができる。また、別法として図2−Cに示すように、円柱状ヨークの周囲に接着剤を介して半径方向に磁化を有する永久磁石を並べ、この永久磁石を覆うように、磁化方向が逆になったダミーの永久磁石を、隣り合う永久磁石にまたがって配置する場合には、反発力が緩和され、万力等を用いて固定しなくても、容易に円柱状ヨークに永久磁石を接着し得る。ダミーの永久磁石は接着剤が効果を発現した後、取り除けばよい。   Since a ring-shaped permanent magnet having a magnetization in the radial direction is expensive to manufacture, it is usually used by being mounted around a cylindrical yoke in a divided shape such as a quadrant as shown in FIG. When the quarter-turn divided permanent magnet is mounted on the cylindrical yoke, as shown in FIG. 2-B, a permanent magnet having a magnetization direction opposite to that of the dummy iron piece or the mounted permanent magnet is sandwiched. Since the repulsive force of the permanent magnet is eliminated, it can be easily mounted. A method for attaching the permanent magnet to the columnar yoke is not particularly limited, but the permanent magnet is attached using an adhesive, for example, an acrylic adhesive. After mounting the pair of permanent magnets, remove the permanent magnets whose magnetization direction is opposite to that of the dummy iron pieces or the mounted permanent magnets, and apply another adhesive to the contact surface with the cylindrical yoke at this position. The permanent magnet can be easily attached to the cylindrical yoke by inserting the magnet and holding and holding the facing permanent magnet with a vise or the like until the adhesive exhibits an adhesive effect. Alternatively, as shown in FIG. 2C, permanent magnets having magnetization in the radial direction are arranged around the cylindrical yoke via an adhesive, and the magnetization directions are reversed so as to cover the permanent magnets. When the dummy permanent magnets are arranged across adjacent permanent magnets, the repulsive force is reduced and the permanent magnets can be easily bonded to the cylindrical yoke without being fixed using a vise or the like. . The dummy permanent magnet may be removed after the adhesive exhibits an effect.

2個の検出コイル5および2個の内側励磁コイル6としては、各々、例えば、素線径が約0.05〜0.1mmφの銅線を、幅が約0.8〜1.2mm、深さが約0.8〜1.2mmで、約60〜80回巻いて形成される。
内側励磁コイルは、渦電流の導電範囲を欠陥近傍のみに抑制し、微小な欠陥のS/N比を改善し、管端近傍の影響を軽減するので、設けることが好ましい。
As the two detection coils 5 and the two inner excitation coils 6, for example, a copper wire having a wire diameter of about 0.05 to 0.1 mmφ, a width of about 0.8 to 1.2 mm, and a depth is used. Is about 0.8 to 1.2 mm and is formed by winding about 60 to 80 times.
The inner excitation coil is preferably provided because it suppresses the eddy current conduction range only in the vicinity of the defect, improves the S / N ratio of a minute defect, and reduces the influence in the vicinity of the tube end.

プローブの両端部のガイド7、8は、アセタール樹脂、ステンレス鋼などで形成され、ねじ構造によってヨークに装着される。   The guides 7 and 8 at both ends of the probe are formed of acetal resin, stainless steel or the like, and are attached to the yoke by a screw structure.

ヨーク1に設けられた空気導入孔9から空気が導入され、空気噴射孔10から空気が噴射される。磁性体管の探傷ではプローブに装着した強力な永久磁石による管内面への張り付きによって、プローブの走査および芯出しが困難になるが、空気噴射孔から垂直に空気が噴射されることによって、管への張り付きを軽減させることができ、プローブの走査が容易になる。
なお、空気噴射孔10は、例えば、孔径が約2mmφで、空気導入孔9から周方向に約6〜10本設けられる。
Air is introduced from an air introduction hole 9 provided in the yoke 1, and air is ejected from an air ejection hole 10. In the flaw detection of a magnetic tube, it is difficult to scan and center the probe by sticking to the inner surface of the tube with a strong permanent magnet attached to the probe, but when air is injected vertically from the air injection hole, Can be reduced, and the probe can be easily scanned.
For example, the air injection hole 10 has a hole diameter of about 2 mmφ and is provided in the circumferential direction from the air introduction hole 9 with about 6 to 10 holes.

コイルは導線によって渦流探傷装置に接続され、時間-電圧特性などを求め、欠陥を検査する。
図3にプローブの回路図を示す。2個の検出コイルL1、L2および2個の内側励磁コイルL3、L4および4個の可変抵抗器R1、R2、R3、R4を、ロックインアンプに対して並列に接続し、検出コイルL1、L2と可変抵抗器R1、R2がホイストンブリッジ回路となるように、ロックインアンプの入力信号用の端子と接続している。
The coil is connected to the eddy current flaw detector by a conducting wire, and the time-voltage characteristics are determined to inspect the defect.
FIG. 3 shows a circuit diagram of the probe. Two detection coils L1, L2 and two inner excitation coils L3, L4 and four variable resistors R1, R2, R3, R4 are connected in parallel to the lock-in amplifier, and the detection coils L1, L2 The variable resistors R1 and R2 are connected to the input signal terminals of the lock-in amplifier so as to form a Whiston bridge circuit.

探傷は次のようにして行う。
所定の試験周波数、例えば、実際の探傷で探傷感度が高い100kHz、印加電圧5vの時の検出コイルおよび内側励磁コイルのインピーダンスを測定し、可変抵抗器R1、R2の抵抗値を、その測定した抵抗値に調整する。またこのときの検出コイルと可変抵抗器の合成インピーダンスを測定し、内側励磁コイルに接続する可変抵抗器R3、R4の抵抗値を、その測定した抵抗値の前後に変化させて探傷し、最終的に検出感度が良い条件で探傷を行う。
プローブによる探傷速度は、約2〜50mm/秒であり、より小さい欠陥を精度良く検出するためには、約2〜10mm/秒が好ましい。
The flaw detection is performed as follows.
The impedance of the detection coil and the inner excitation coil is measured at a predetermined test frequency, for example, 100 kHz, which has a high flaw detection sensitivity in actual flaw detection, and an applied voltage of 5 v, and the resistance values of the variable resistors R1 and R2 are measured by the measured resistance. Adjust to the value. In addition, the combined impedance of the detection coil and the variable resistor at this time is measured, and the resistance values of the variable resistors R3 and R4 connected to the inner excitation coil are changed before and after the measured resistance value to detect flaws. In addition, flaw detection is performed under conditions with good detection sensitivity.
The flaw detection speed by the probe is about 2 to 50 mm / second, and about 2 to 10 mm / second is preferable in order to detect a smaller defect with high accuracy.

上記の方法によって、磁性体管の外部にバッフルが設けられていない部分の磁性体管の欠陥を精度良く検出することができるが、バッフルが設けられている部分では、バッフルの信号が邪魔して、磁性体管の欠陥を精度良く検出することができない。
このような邪魔する信号を除去して渦流探傷の精度を向上させる方法として、検出コイルに2つ以上の周波数を加えて渦流探傷する多重周波数法が知られている。多重周波数法については、例えば、「非破壊検査シーリーズ 渦流探傷試験II」(平成14年10月5日 1995年版第6刷 社団法人日本非破壊検査協会発行)に記載されている。
By the above method, it is possible to accurately detect defects in the magnetic tube where the baffle is not provided outside the magnetic tube, but the baffle signal interferes with the portion where the baffle is provided. Thus, defects in the magnetic tube cannot be detected with high accuracy.
As a method for removing such disturbing signals and improving the accuracy of eddy current flaw detection, a multi-frequency method is known in which eddy current flaw detection is performed by adding two or more frequencies to a detection coil. The multi-frequency method is described in, for example, “Non-Destructive Inspection Series Eddy Current Test II” (October 5, 2002, 6th printing, published by Japan Nondestructive Inspection Association).

以下、二つの周波数を用いた多重周波数法によるバッフルが設けられている部分の磁性体管の欠陥の検査について説明する。図4はこれを説明のための図である。
バッフルが設けられている部分の欠陥の無い磁性体管をfという周波数で探傷を行なうと(A)に示したようなバッフルの信号(リサージュ波形)が得られる(f処理)。周波数をfにして探傷すると、(B)に示したようなバッフルの信号が得られる(f2処理)。周波数fで得られたバッフルの信号の振幅X、Yおよび位相θを回転させ、周波数fで探傷した時に得られたバッフルの信号とできるだけ同じ振幅と傾きを持った信号になるように調整する(C)。周波数fで得られた信号を調整して得られたのでこの処理をf’とする。
処理の信号とf’処理の信号の差をとる処理(f−f’)をすると、同じようなリサージュ波形形状になっているためバッフルの信号は相殺されて消える(D)。
Hereinafter, the inspection of the defect of the magnetic tube in the portion where the baffle is provided by the multi-frequency method using two frequencies will be described. FIG. 4 is a diagram for explaining this.
When flaw detection is performed on a magnetic tube having no defect in a portion where the baffle is provided at a frequency of f 1 , a baffle signal (Lissajous waveform) as shown in (A) is obtained (f 1 processing). When flaw detection by the frequency f 2, the baffle signal as shown in (B) is obtained (f 2 processing). Rotate the amplitude X, Y and phase θ of the baffle signal obtained at the frequency f 2 and adjust it so that the baffle signal obtained at the frequency f 1 has the same amplitude and inclination as possible. (C). Since the signal obtained by adjusting the signal obtained at the frequency f 2 is obtained, this processing is defined as f 2 ′.
f 1 process 'process taking the difference of the processing of the signal (f 1 -f 2' signal and f 2 of when the) signals baffle for that is a similar Lissajous waveform disappears is offset (D) .

バッフルが設けられている部分の欠陥が有る磁性体管をfという周波数で探傷を行なうと(E)に示したようなバッフルと欠陥が複合された信号が得られる(f処理)。
ここで、上記と同じようにバッフル信号を除去するような処理(f−f’)を行ない、バッフル信号が除去された欠陥信号のみを取り出し(F)、(D)と比較して欠陥を検査する。
When flaw detection is performed on a magnetic tube having a defect in a portion where the baffle is provided at a frequency of f 1, a signal in which the baffle and the defect are combined as shown in (E) is obtained (f 1 processing).
Here, the processing (f 1 −f 2 ′) is performed to remove the baffle signal in the same manner as described above, and only the defect signal from which the baffle signal has been removed is taken out (F) and compared with (D). Inspect.

周波数fとfが同じような帯域であると、バッフル信号も欠陥信号も似通ったものになるため、演算すると欠陥信号も大部分が演算で消えてしまう可能性ある。逆に周波数fとfを全く異なった帯域に設定すると、基本的な波形形状が変わってしまうため、いくら調整してもf処理とf’処理のバッフル信号を似た形状にすることができず、結果としてバッフル信号を消去できなくなる。周波数fは、通常、周波数fの1/2〜1/8程度にする。周波数は、磁性体管の材質などによって変わり、走査して最適な周波数を選定する。 If the frequencies f 1 and f 2 are in the same band, the baffle signal and the defect signal are similar to each other. Therefore, if the frequency is calculated, most of the defect signal may be lost by the calculation. On the other hand, if the frequencies f 1 and f 2 are set to completely different bands, the basic waveform shape changes, so that the baffle signals of the f 1 process and the f 2 ′ process have similar shapes no matter how much adjustment is performed. As a result, the baffle signal cannot be erased. Frequency f 2 is typically about 1 / 2-1 / 8 of the frequency f 1. The frequency varies depending on the material of the magnetic tube, and an optimum frequency is selected by scanning.

渦流探傷および演算処理は、周波数fとfを検出コイルに同時に加え、演算処理も行うように回路を形成し、プローブを走査すると同時に欠陥を検査することができる。
また、周波数fとfを別々に検出コイルに加えて走査し、その後、得られた信号を演算処理して欠陥を検出することもできる。
In the eddy current flaw detection and calculation processing, the frequencies f 1 and f 2 are simultaneously applied to the detection coil, a circuit is formed so as to perform the calculation processing, and the defect can be inspected simultaneously with scanning the probe.
Alternatively, the frequencies f 1 and f 2 can be separately applied to the detection coil for scanning, and then the obtained signal can be processed to detect defects.

なお、バッフル以外に邪魔な信号、例えば、プローブのガタ信号(管内でプローブがガタつくことによって、管と検出コイルとの距離が変化して発生する信号)が大きい場合に、それを消去するために第3の周波数を用いて行うことがある。 In addition, in order to eliminate a signal other than the baffle, such as a backlash signal of the probe (a signal generated by changing the distance between the tube and the detection coil due to rattling of the probe in the tube) is large. In some cases, the third frequency is used.

以下、実施例を挙げて本発明を説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to a following example.

実施例1
図1に示すと同様のプローブを作製した。使用した材料および形状を以下に示す。
ヨーク1:炭素鋼S15C焼鈍材
永久磁石2:ネオジウムマグネット((株)アサヒコーポレーション製)
外径φ25.5mm×内径φ21mm×長さ6.4mmのリング状
永久磁石3、4:ネオジムマグネット((株)アサヒコーポレーション製)
外径φ28mm×内径φ21mm×長さ30mmのリング状を四分割したも
の。
検出コイル5、内側励磁コイル6:
各コイルともに、線径φ0.08mmの銅線を使用し、寸法は幅1.0mm×
深さ1.0mm、巻数は70回、コイル間隔は0.8mmとした。
ガイド7、8:ポリアセタール(コポリマー)ジュラコン(登録商標)(ポリプラス
チック(株)製)、外径φ28.4mm
永久磁石をヨークに接着するための接着剤:
アクリル系接着剤ハードロック(登録商標)(電気化学工業(株)製)
なお、ロックインアンプは、LI5640((株)エヌエフ回路設計ブロック製)を、オシロスコープは、TDS3104B(日本テクトロニクス(株)製を、プローブを走査させるステージコントローラは、CAT-E(中央精機(株)製)を用いた。
Example 1
A probe similar to that shown in FIG. 1 was prepared. The materials and shapes used are shown below.
Yoke 1: Carbon steel S15C annealing material Permanent magnet 2: Neodymium magnet (manufactured by Asahi Corporation)
Ring-shaped permanent magnets 3 and 4: outer diameter φ25.5 mm × inner diameter φ21 mm × length 6.4 mm: Neodymium magnet (manufactured by Asahi Corporation)
Ring shape with outer diameter φ28mm x inner diameter φ21mm x length 30mm divided into four parts.
Detection coil 5, inner excitation coil 6:
Each coil uses a copper wire with a wire diameter of φ0.08mm, and the dimensions are 1.0mm width x
The depth was 1.0 mm, the number of turns was 70, and the coil interval was 0.8 mm.
Guides 7 and 8: Polyacetal (copolymer) Duracon (registered trademark) (manufactured by Polyplastic Co., Ltd.), outer diameter φ28.4 mm
Adhesive for bonding the permanent magnet to the yoke:
Acrylic adhesive hard rock (registered trademark) (manufactured by Electrochemical Industry Co., Ltd.)
The lock-in amplifier is LI5640 (manufactured by NF Circuit Design Block Co., Ltd.), the oscilloscope is TDS3104B (manufactured by Nippon Tektronix Co., Ltd.), and the stage controller that scans the probe is CAT-E (Chuo Seiki Co., Ltd.). Made).

プローブの回路図を図3に示すように作製した。試験周波数を100kHz、印加電圧5vの時の検出コイルおよび内側励磁コイルのインピーダンスを測定すると約93Ωであったことから、可変抵抗器R1、R2の抵抗値を約93Ωに調整した。またこのときの検出コイルと可変抵抗器の合成インピーダンスを測定すると約172Ωであった。この条件で、内側励磁コイルに接続する可変抵抗器R3、R4の抵抗値を150〜500Ωに変化させて探傷を行った。   A circuit diagram of the probe was produced as shown in FIG. Since the impedance of the detection coil and the inner excitation coil when the test frequency was 100 kHz and the applied voltage was 5 v was measured to be about 93Ω, the resistance values of the variable resistors R1 and R2 were adjusted to about 93Ω. Further, when the combined impedance of the detection coil and the variable resistor at this time was measured, it was about 172Ω. Under these conditions, flaw detection was performed by changing the resistance values of the variable resistors R3 and R4 connected to the inner excitation coil to 150 to 500Ω.

強磁性体管(炭素鋼STB340、外径φ34mm×厚み2.3mm×長さ900mm)に100mm間隔でφ2.0mm、φ1.5mm、φ1.0mm、φ0.5mmの貫通孔を設けたものについて、速度30mm/秒、4mm/秒で走査して探傷を行った。
探傷速度が30mm/秒の時の結果を図5に、探傷速度が4mm/秒でφ1.0mm、φ0.5mmの貫通孔について探傷した時の結果を図6に示す。
図中、内側励磁なし(2コイル)は、内側励磁コイルを生かさず、検出コイルのみで探傷したことを、150・・・500Ωは可変抵抗器R3、R4の抵抗値を表す。
For a ferromagnetic tube (carbon steel STB340, outer diameter φ34 mm × thickness 2.3 mm × length 900 mm) provided with through holes of φ2.0 mm, φ1.5 mm, φ1.0 mm, φ0.5 mm at 100 mm intervals, Scanning was performed by scanning at a speed of 30 mm / second and 4 mm / second.
FIG. 5 shows the results when the flaw detection speed is 30 mm / second, and FIG. 6 shows the results when flaw detection is performed on through holes with φ1.0 mm and φ0.5 mm at the flaw detection speed of 4 mm / second.
In the figure, “without inner excitation (2 coils)” indicates that the flaw detection was performed only with the detection coil without using the inner excitation coil, and 150... 500Ω represents the resistance value of the variable resistors R3 and R4.

φ2mm以下の微小な欠陥では内側励磁コイルを設けたプローブを用いることによって、内側励磁コイルがなく検出コイルのみのプローブを使用した時よりも明らかにS/N比が改善されている。また探傷速度が約4mm/秒の時、内側励磁コイルがないとS/N比が悪く、φ1mm、φ0.5mmの貫通孔をともに検出できていないが、内側励磁コイルを設けたプローブでは両者ともに十分な感度で検出可能である。   For a minute defect of φ2 mm or less, by using a probe provided with an inner excitation coil, the S / N ratio is clearly improved as compared with the case of using a probe having no inner excitation coil and only a detection coil. Also, when the flaw detection speed is about 4 mm / sec, the S / N ratio is poor without the inner excitation coil, and both φ1 mm and φ0.5 mm through-holes cannot be detected. Detection is possible with sufficient sensitivity.

実施例2
実施例1で使用したプローブのヨークの軸方向の内部にφ4mmの空気導入孔、および永久磁石の両側(ガイド部)に空気導入孔から半径方向に延びるそれぞれ8本のφ2mmの空気噴射孔を設けた。
プローブの端部にばね秤を取り付け、実施例1と同じ強磁性体管に挿入し、レギュレーターで圧力を調整した空気を空気導入孔に供給し、空気噴射孔から噴出させながら一定速度となるように引張り、プローブが動き出す直前の引張り力を測定した。同じ条件で5回測定し、平均値を求めた。
結果を表1に示す。空気圧を高くして空気を多く噴射させることによって、引張り力が低下して走査が容易になっている。
Example 2
A φ4 mm air introduction hole is provided inside the yoke of the probe used in Example 1 in the axial direction, and eight φ2 mm air injection holes each extending radially from the air introduction hole are provided on both sides (guide portions) of the permanent magnet. It was.
A spring balance is attached to the end of the probe, inserted into the same ferromagnetic tube as in Example 1, and air whose pressure is adjusted by a regulator is supplied to the air introduction hole so as to be constant while being ejected from the air injection hole. The tensile force immediately before the probe started to move was measured. Measurement was performed 5 times under the same conditions, and an average value was obtained.
The results are shown in Table 1. By increasing the air pressure and ejecting more air, the tensile force is reduced and scanning is facilitated.

Figure 2010261836
Figure 2010261836

実施例3
強磁性体管(炭素鋼STB340、外径φ34mm×厚み2.3mm×長さ900mm)に、模擬欠陥として直径1mmφの貫通孔、外表面に幅5mm×長さ12.5mmで深さが厚みの25%である方形溝、外表面に幅5mm×長さ17.5mmで深さが厚みの50%である方形溝、幅が1.5mmで深さが厚みの20%の内側全周溝、幅が1.5mmで深さが厚みの70%の内側全周溝、幅が1.5mmで深さが厚みの50%の外側全周溝、幅が1.5mmで深さが厚みの80%の外側全周溝を設けた。
模擬バッフル(炭素鋼SS400、縦100mm×横100mm×厚み15mm、中央に直径34.4mmφの孔)の孔に強磁性体管を挿入し、実施例1と同じプローブおよび渦流探傷装置を用い、模擬バッフルの位置を変えて渦流探傷し、欠陥の検査を行った。
Example 3
A ferromagnetic tube (carbon steel STB340, outer diameter φ34 mm × thickness 2.3 mm × length 900 mm), a through hole having a diameter of 1 mmφ as a simulated defect, an outer surface having a width of 5 mm × length of 12.5 mm and a depth of thickness A rectangular groove having a width of 25%, a rectangular groove having a width of 5 mm × length of 17.5 mm and a depth of 50% of the thickness, an inner circumferential groove having a width of 1.5 mm and a depth of 20% of the thickness, Inner circumferential groove with a width of 1.5 mm and a depth of 70% of the thickness, outer circumferential groove with a width of 1.5 mm and a depth of 50%, a width of 1.5 mm and a depth of 80 % Outer circumferential groove.
A ferromagnetic tube was inserted into a hole of a simulated baffle (carbon steel SS400, length 100 mm × width 100 mm × thickness 15 mm, diameter 34.4 mmφ hole in the center), and the same probe and eddy current flaw detector as in Example 1 were used for simulation. The position of the baffle was changed to detect eddy currents, and the defect was inspected.

探傷速度を約4mm/秒で、先ず周波数fを20kHzで探傷し(f処理)、その後、周波数fを10kHzで探傷した(f処理)。
得られたデータを演算処理した。すなわち、f処理で得られたバッフルの信号の振幅X、Yおよび位相θを回転させ、f処理で得られたバッフルの信号とできるだけ同じ振幅と傾きを持った信号になるように処理(f’処理)した。
処理の信号とf’処理の信号との差をとる処理(f−f’)をし、欠陥を検査した。得られたリサージュ波形を図7〜図10に示す。図7の(1)は欠陥の無い部位、(2)は直径1mmφの貫通孔、図8の(3)は幅5mm×長さ12.5mmで深さが厚みの25%である方形溝、(4)は幅5mm×長さ17.5mmで深さが厚みの50%である方形溝、図9の(5)は幅が1.5mmで深さが厚みの20%の内側全周溝、(6)は幅が1.5mmで深さが厚みの70%の内側全周溝、図10の(7)は幅が1.5mmで深さが厚みの50%の外側全周溝、(8)は幅が1.5mmで深さが厚みの80%の外側全周溝について示す。
(1)と(2)〜(8)のリサージュ波形の比較から、外部に設けられたバッフル部分の磁性体管の欠陥が検出されていることが判る。
The flaw detection speed was about 4 mm / second, flaw detection was first performed at a frequency f 1 of 20 kHz (f 1 treatment), and then flaw detection was performed at a frequency f 2 of 10 kHz (f 2 treatment).
The obtained data was processed. That is, the amplitudes X and Y and the phase θ of the baffle signal obtained by the f 2 process are rotated, and the baffle signal obtained by the f 1 process is processed so as to have a signal having the same amplitude and inclination as possible ( f 2 'treatment).
A process (f 1 −f 2 ′) that takes the difference between the signal of the f 1 process and the signal of the f 2 ′ process was performed, and the defect was inspected. The obtained Lissajous waveforms are shown in FIGS. (1) in FIG. 7 is a defect-free region, (2) is a through hole having a diameter of 1 mmφ, (3) in FIG. 8 is a rectangular groove having a width of 5 mm × length of 12.5 mm and a depth of 25% of the thickness, (4) is a square groove having a width of 5 mm × length of 17.5 mm and a depth of 50% of the thickness. FIG. 9 (5) is an inner circumferential groove having a width of 1.5 mm and a depth of 20% of the thickness. (6) is an inner circumferential groove having a width of 1.5 mm and a depth of 70%, and FIG. 10 (7) is an outer circumferential groove having a width of 1.5 mm and a depth of 50%. (8) shows an outer circumferential groove having a width of 1.5 mm and a depth of 80% of the thickness.
From the comparison of the Lissajous waveforms of (1) and (2) to (8), it can be seen that a defect in the magnetic tube in the baffle portion provided outside is detected.

1 ヨーク
2 永久磁石
3 永久磁石
4 永久磁石
5 検出コイル
6 内側励磁コイル
7 ガイド
8 ガイド
9 空気導入孔
10 空気噴出孔
DESCRIPTION OF SYMBOLS 1 Yoke 2 Permanent magnet 3 Permanent magnet 4 Permanent magnet 5 Detection coil 6 Inner excitation coil 7 Guide 8 Guide 9 Air introduction hole 10 Air ejection hole

Claims (4)

円柱状ヨークの中央部の周囲に永久磁石を、その磁化方向がヨークの軸方向になるように装着し、その両側のヨークの周囲に永久磁石を、その磁化方向がヨークの半径方向であって、ヨーク側の磁極が相異なるように装着し、中央部の永久磁石の上に検出コイルを配置してなるプローブを用いて、磁性体管内を渦流探傷することを特徴とする磁性体管の欠陥検査方法。   A permanent magnet is mounted around the center of the cylindrical yoke so that the magnetization direction is the axial direction of the yoke, the permanent magnet is mounted around the yokes on both sides, and the magnetization direction is the radial direction of the yoke. A defect in a magnetic tube characterized by vortex flaw detection in a magnetic tube using a probe that is mounted so that the magnetic poles on the yoke side are different, and a detection coil is arranged on the permanent magnet in the center. Inspection method. 検出用コイルの両側に内側励磁コイルを配置してなるプローブを用いることを特徴とする請求項1記載の磁性体管の欠陥検査方法。   2. The defect inspection method for a magnetic tube according to claim 1, wherein a probe is used in which inner excitation coils are arranged on both sides of the detection coil. ヨークの軸方向の内部に空気導入孔、および両側の永久磁石の更に両側に空気導入孔から半径方向に延びる複数の空気噴射孔を有してなるプローブを用いることを特徴とする請求項1記載の磁性体管の欠陥検査方法。   2. A probe comprising an air introduction hole in the axial direction of the yoke and a plurality of air injection holes extending radially from the air introduction hole on both sides of the permanent magnets on both sides. Inspection method for defects in magnetic tube. 多重周波数法によって渦流探傷することを特徴とする請求項1〜3のいずれかに記載の磁性体管の欠陥検査方法。   The defect inspection method for a magnetic tube according to any one of claims 1 to 3, wherein eddy current testing is performed by a multi-frequency method.
JP2009113360A 2009-03-11 2009-05-08 Defect inspection method for magnetic tube. Active JP5169983B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009113360A JP5169983B2 (en) 2009-05-08 2009-05-08 Defect inspection method for magnetic tube.
SG2011063443A SG174227A1 (en) 2009-03-11 2010-03-11 Eddy current flaw detection probe
EP10713254.0A EP2406623B1 (en) 2009-03-11 2010-03-11 Eddy current flaw detection probe
PCT/JP2010/054621 WO2010104213A1 (en) 2009-03-11 2010-03-11 Eddy current flaw detection probe
US13/203,795 US8928315B2 (en) 2009-03-11 2010-03-11 Eddy current flaw detection probe
CN201080011030.2A CN102348972B (en) 2009-03-11 2010-03-11 Eddy current flaw detection probe
KR1020117023713A KR101679446B1 (en) 2009-03-11 2010-03-11 Eddy current flaw detection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113360A JP5169983B2 (en) 2009-05-08 2009-05-08 Defect inspection method for magnetic tube.

Publications (2)

Publication Number Publication Date
JP2010261836A true JP2010261836A (en) 2010-11-18
JP5169983B2 JP5169983B2 (en) 2013-03-27

Family

ID=43360030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113360A Active JP5169983B2 (en) 2009-03-11 2009-05-08 Defect inspection method for magnetic tube.

Country Status (1)

Country Link
JP (1) JP5169983B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038721A1 (en) * 2012-09-06 2014-03-13 Sumitomo Chemical Company, Limited Eddy current flaw detection probe and eddy current flaw inspection apparatus
CN110470728A (en) * 2019-09-03 2019-11-19 西安航空职业技术学院 A kind of Magnetic testing natural flaw test block and production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6579840B2 (en) 2015-07-16 2019-09-25 住友化学株式会社 Defect measurement method, defect measurement apparatus, and inspection probe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280055A (en) * 1975-12-26 1977-07-05 Mitsutoyo Seisakusho Probe for measuring inner diameter
JPS5891155U (en) * 1981-12-15 1983-06-20 住友金属工業株式会社 Eddy current flaw detection probe
JPS61132747U (en) * 1985-02-09 1986-08-19
JPS62126345A (en) * 1985-11-27 1987-06-08 Kawasaki Heavy Ind Ltd Probe for eddy current flaw detection
JPS6324152A (en) * 1985-12-10 1988-02-01 Kawasaki Heavy Ind Ltd Probe for eddy current flaw detection
JPS63124957A (en) * 1986-11-14 1988-05-28 Kawasaki Heavy Ind Ltd Method and probe for eddy current flaw detection
JPH04273055A (en) * 1991-02-28 1992-09-29 Asahi Chem Ind Co Ltd Insertion type eddy current detector for magnetic pipe
JPH07218473A (en) * 1994-01-27 1995-08-18 Asahi Chem Ind Co Ltd Interpolation type enveloped eddy current probe for magnetic pipe
JPH08193981A (en) * 1995-01-17 1996-07-30 Toshiba Corp Method and device for eddy current flaw detection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280055A (en) * 1975-12-26 1977-07-05 Mitsutoyo Seisakusho Probe for measuring inner diameter
JPS5891155U (en) * 1981-12-15 1983-06-20 住友金属工業株式会社 Eddy current flaw detection probe
JPS61132747U (en) * 1985-02-09 1986-08-19
JPS62126345A (en) * 1985-11-27 1987-06-08 Kawasaki Heavy Ind Ltd Probe for eddy current flaw detection
JPS6324152A (en) * 1985-12-10 1988-02-01 Kawasaki Heavy Ind Ltd Probe for eddy current flaw detection
JPS63124957A (en) * 1986-11-14 1988-05-28 Kawasaki Heavy Ind Ltd Method and probe for eddy current flaw detection
JPH04273055A (en) * 1991-02-28 1992-09-29 Asahi Chem Ind Co Ltd Insertion type eddy current detector for magnetic pipe
JPH07218473A (en) * 1994-01-27 1995-08-18 Asahi Chem Ind Co Ltd Interpolation type enveloped eddy current probe for magnetic pipe
JPH08193981A (en) * 1995-01-17 1996-07-30 Toshiba Corp Method and device for eddy current flaw detection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038721A1 (en) * 2012-09-06 2014-03-13 Sumitomo Chemical Company, Limited Eddy current flaw detection probe and eddy current flaw inspection apparatus
JP2014052265A (en) * 2012-09-06 2014-03-20 Sumitomo Chemical Co Ltd Eddy current examination probe, and eddy current examination device
KR20150048141A (en) * 2012-09-06 2015-05-06 스미또모 가가꾸 가부시키가이샤 Eddy current flaw detection probe and eddy current flaw inspection apparatus
US9453818B2 (en) 2012-09-06 2016-09-27 Sumitomo Chemical Company, Limited Eddy current flaw detection probe and eddy current flaw inspection apparatus
KR102055034B1 (en) * 2012-09-06 2019-12-11 스미또모 가가꾸 가부시키가이샤 Eddy current flaw detection probe and eddy current flaw inspection apparatus
CN110470728A (en) * 2019-09-03 2019-11-19 西安航空职业技术学院 A kind of Magnetic testing natural flaw test block and production method
CN110470728B (en) * 2019-09-03 2023-06-20 西安航空职业技术学院 Natural defect test block for magnetic powder detection and manufacturing method

Also Published As

Publication number Publication date
JP5169983B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
US8928315B2 (en) Eddy current flaw detection probe
CN109781838B (en) Vortex-ultrasonic detection probe based on V-shaped coil excitation
JP4247723B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
KR102501065B1 (en) Flaw measurement method, defect measurement device and inspection probe
CN106290558B (en) A kind of inner and outer walls of pipeline defect detecting device and detection method
JP2009069090A (en) Method and device for detecting flaw of inspecting object, and probe for eddy current flaw detection
US20120153944A1 (en) Method for inspecting an austenitic stainless steel weld
KR20150048141A (en) Eddy current flaw detection probe and eddy current flaw inspection apparatus
JP5169983B2 (en) Defect inspection method for magnetic tube.
JP5851783B2 (en) Eddy current testing probe
JP5233835B2 (en) Eddy current flaw detection probe
CN110763755A (en) Evaluation method capable of rapidly evaluating crack defect direction of metal material
JP2000266727A (en) Carburized depth measuring method
JP5417979B2 (en) Defect inspection method for magnetic tube
KR101254300B1 (en) Apparatus for detecting thickness of the conductor using dual core
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JPS61198055A (en) Insertion type probe for eddy current examination
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
JP2011047716A (en) Eddy-current type inspection device, and eddy-current type inspection method
WO2019107575A1 (en) Defect measurement device, defect measurement method, and inspection probe
JP2016133459A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2019020272A (en) Front surface scratch inspection device
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
JP2010054415A (en) Method for inspecting flaw of tube plate welded part
JP5134997B2 (en) Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R151 Written notification of patent or utility model registration

Ref document number: 5169983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350