JPS62130350A - Probe for eddy current flaw detection - Google Patents

Probe for eddy current flaw detection

Info

Publication number
JPS62130350A
JPS62130350A JP60272035A JP27203585A JPS62130350A JP S62130350 A JPS62130350 A JP S62130350A JP 60272035 A JP60272035 A JP 60272035A JP 27203585 A JP27203585 A JP 27203585A JP S62130350 A JPS62130350 A JP S62130350A
Authority
JP
Japan
Prior art keywords
eddy current
flaw detection
tube
probe
current flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60272035A
Other languages
Japanese (ja)
Inventor
Yoshihisa Shindo
進藤 嘉久
Shinji Yoshie
伸二 吉江
Masashi Morimoto
正史 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP60272035A priority Critical patent/JPS62130350A/en
Publication of JPS62130350A publication Critical patent/JPS62130350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To detect a defect with high sensitivity by providing a permanent magnet which has magnetic poles at both column flank parts and an inspection coil arranged at the center part of a plane. CONSTITUTION:A probe 10 for eddy current flaw detection consists of permanent magnets 1, inspection coils 2, insulating materials 3, etc., and is inserted into a pipe (t) to perform flaw detection. The sectional shape of the permanent magnet 1 consists of column flank parts (a) and symmetrical planes (b) obtained by cutting the column flanks, and an inspection coil 2 is provided on an insulating material 3 almost at the center part of each plane (b). Then when the probe 10 is inserted into the pipe (t), a magnetic circuit is formed between the probe 10 and pipe (t) and a detection signal indicating electromagnetic variation of the pipe due to a defect is detected in this state through the inspection coils 2. Thus, the defect of the pipe (t) is detected with high sensitivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は管に内挿して使用する渦流探傷用プローブに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an eddy current flaw detection probe that is used by being inserted into a pipe.

〔従来の技術〕[Conventional technology]

従来、熱交換器に組込まれている伝熱管および、地中埋
設管のごとき管は、外面からの探傷検査は難しいので、
通常内挿型渦流探傷用プローブを用いて管内面から定期
検査等を行っている。この場合、管が非磁性材料である
場合は格別の不都合を生じないが、強磁性材料である場
合は、そのままでは高感度の探傷を行うことができない
、それは管の透磁率が大きく渦電流が管の内表面近傍に
のみ集中し、管の外表面にまで達せず管外表面の探傷感
度が低下するからである。そこで磁気飽和により管の透
磁率を低下せしめる目的で以下に示す磁気回路を有する
内挿型プローブが用いられている。
Conventionally, it is difficult to inspect heat transfer tubes built into heat exchangers and underground tubes from the outside.
Normally, periodic inspections are performed from the inside of the tube using an insertion type eddy current probe. In this case, if the tube is made of a non-magnetic material, there will be no particular inconvenience, but if the tube is made of a ferromagnetic material, high-sensitivity flaw detection cannot be performed as it is because the tube has a large magnetic permeability and eddy currents are generated. This is because the flaws concentrate only near the inner surface of the tube and do not reach the outer surface of the tube, reducing the sensitivity of flaw detection on the outer surface of the tube. Therefore, in order to reduce the permeability of the tube by magnetic saturation, an interpolated probe having a magnetic circuit as shown below is used.

第8図および第9図は従来の渦流探傷用プローブ50を
しめしており、第9図は第8図の■−n線における断面
図である。tは管をしめし、54は円柱状継鉄であり、
その両端部には円筒状の永久磁石51a、51bを嵌着
しており、継鉄54の中央部には絶縁材53を介して検
査コイル52を取着けている。
8 and 9 show a conventional eddy current flaw detection probe 50, and FIG. 9 is a cross-sectional view taken along the line -n in FIG. t indicates a pipe, 54 is a cylindrical yoke,
Cylindrical permanent magnets 51a and 51b are fitted to both ends thereof, and an inspection coil 52 is attached to the center of the yoke 54 via an insulating material 53.

(例えば実開昭58−91155号)この内挿渦流探傷
用プローブ50は管を内に挿入して探傷を行うさいに、
一点鎖線で示す磁気回路が形成される。すなわち、渦流
探傷用プローブ50の軸に垂直な方向の断面積より若干
小さい軸に垂直な方向の断面積をもつ継鉄54を磁路の
一部とし、一対の永久磁石51a=51bより発した磁
束が管tに入り、管を内の軸に垂直な方向の断面上に分
布して、管りを軸方向に磁気飽和し、これにより管を内
の磁束密度を確保している。第10図および第11図は
従来の渦流探傷用プローブ50による渦電流の発生状態
をしめている。上記の磁気飽和状態において、検査コイ
ル52に高周波信号を通じると管を内には、第10図に
示す様に管tの周方向に渦をなす同心円状の渦電流が発
生し、管を内の磁気飽和用磁束密度が高いと第11図に
示した様に渦電流の管外表面近傍の分布が増加して、傷
に対する検出感度を確保している。そして、渦流探傷用
プローブ50の移動にともない、渦電流の流路中に傷等
の欠陥による管tの電磁気特性の変化が存在すれば、渦
電流の変化が生じ、これを検査コイル52のインピーダ
ンス変化としてとらえて、欠陥の存無を検出している。
(For example, Japanese Utility Model Application Publication No. 58-91155) This probe 50 for internal eddy current flaw detection can be used for flaw detection by inserting a tube into the interior.
A magnetic circuit shown by a dashed line is formed. That is, the yoke 54, which has a cross-sectional area perpendicular to the axis slightly smaller than the cross-sectional area perpendicular to the axis of the eddy current flaw detection probe 50, is used as part of the magnetic path, and the magnetic flux emitted from the pair of permanent magnets 51a and 51b is used as a part of the magnetic path. Magnetic flux enters the tube t and is distributed on a cross section perpendicular to the axis inside the tube, magnetically saturating the tube in the axial direction, thereby ensuring a magnetic flux density inside the tube. FIGS. 10 and 11 show how eddy currents are generated by the conventional eddy current flaw detection probe 50. FIG. In the magnetic saturation state described above, when a high frequency signal is passed through the test coil 52, a concentric eddy current is generated inside the tube, forming a vortex in the circumferential direction of the tube t, as shown in FIG. When the magnetic flux density for magnetic saturation is high, the distribution of eddy currents near the outer surface of the tube increases as shown in FIG. 11, thereby ensuring detection sensitivity for flaws. As the eddy current flaw detection probe 50 moves, if there is a change in the electromagnetic characteristics of the tube t due to a defect such as a flaw in the eddy current flow path, a change in the eddy current occurs, which is reflected by the impedance of the test coil 52. The presence or absence of a defect is detected by recognizing it as a change.

第12図は管tの周方向において、同一円周上に複数個
の欠陥da、dbが存在していることをしめしている。
FIG. 12 shows that a plurality of defects da and db exist on the same circumference in the circumferential direction of the tube t.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の内挿渦流探傷用プローブ50
では慣用する永久磁石の強さおよび鉄心の飽和磁束密度
に制約があり、かつ寸法的に小型にすることの困難性も
あって、プローブ内の磁路断面積と管内の磁路の断面積
との比を大きくすることができず、管における磁束密度
を増加させることが困難であるため、強磁性材料であり
かつ管が小径厚肉管である場合の探傷にさいしては、傷
に対する検出感度に限界が生じる。検査コイル52によ
って管tに流れる渦電流の流れが第1O図にしめすごと
く管tの円周方向に向いているため、管tの全周を一様
に探傷することとなる。したがって第12図に示すがご
とく管tの円周方向において同一円周上に複数個の欠陥
da、dbが存在する場合、円周方向の分解能が不充分
で、これらの欠陥を分離、識別することが困難であると
いう問題があった。なお、円周方向の分解能が不十分で
あるということについては、非磁性管に対して探傷を行
ったさいにも生ずるものである。
However, the above-mentioned conventional interpolation eddy current probe 50
However, there are restrictions on the strength of the permanent magnets that are commonly used and the saturation magnetic flux density of the iron core, and there is also the difficulty of making the dimensions smaller, so the cross-sectional area of the magnetic path inside the probe and the cross-sectional area of the magnetic path inside the tube are It is difficult to increase the magnetic flux density in the tube because it is difficult to increase the ratio of There are limits to this. Since the flow of eddy current flowing through the tube t by the inspection coil 52 is directed in the circumferential direction of the tube t as shown in FIG. 1O, the entire circumference of the tube t is uniformly detected. Therefore, when multiple defects da and db exist on the same circumference in the circumferential direction of the tube t as shown in FIG. 12, the resolution in the circumferential direction is insufficient and it is difficult to separate and identify these defects. The problem was that it was difficult to Note that insufficient resolution in the circumferential direction also occurs when flaw detection is performed on non-magnetic tubes.

本発明はこのような従来の問題を解決するものであり、
強磁性材料であり、かつ管が小径厚肉管であっても、欠
陥を高感度にて探傷しうるのみならず、管の円周方向に
おいて同一円周上に複数個の欠陥が存在する場合、これ
らの欠陥の分離、識別を可能ならしめる分解能を有する
優れた渦流探傷用プローブを提供する事を目的とするも
のである。
The present invention solves these conventional problems,
Even if the tube is made of ferromagnetic material and has a small diameter and thick wall, it is possible to detect defects with high sensitivity. The object of the present invention is to provide an excellent eddy current flaw detection probe having a resolution that enables separation and identification of these defects.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するために、管に内挿し、円柱
側面部と円柱の両側面を切った対称な平面を有する柱状
形状からなり、両円柱側面部に磁極を有する永久磁石と
該平面の中央部に配設した検査コイルを備え、また渦流
探傷用プローブに回転駆動機構および軸方向移動機構と
接続し、また渦流探傷用プローブを複数とするとともに
、軸方向に連接し、各プローブの磁極方向を一定角度を
もって順次変化させ、軸方向移動機構と接続するように
したものである。
In order to achieve the above object, the present invention has a permanent magnet that is inserted into a tube, has a columnar shape having a cylindrical side surface and a symmetrical plane cut on both side surfaces of the cylinder, and has magnetic poles on both cylindrical side surfaces. The eddy current flaw detection probe is equipped with an inspection coil placed in the center, and is connected to the rotational drive mechanism and axial movement mechanism to the eddy current flaw detection probe. The direction of the magnetic poles is changed sequentially at a constant angle and connected to an axial movement mechanism.

〔作用〕[Effect]

本発明は上記のような構成により次のような作用を有す
る。すなわち、渦流探傷用プローブを管に内挿すると渦
流探傷用プローブと管との間に磁気回路が形成され、検
査コイルの作用とともに管における傷の有無について探
傷しうる。
The present invention has the following effects due to the above configuration. That is, when the eddy current flaw detection probe is inserted into the tube, a magnetic circuit is formed between the eddy current flaw detection probe and the tube, and the presence or absence of flaws in the tube can be detected along with the action of the test coil.

また、プローブ内の磁路の断面積と管内の磁路の断面積
との比を大きくすることにより管における磁束密度を増
加させ、強磁性材料であり、かつ管が小径厚肉管である
場合の探傷にさいしても傷を高感度にて探傷することが
できる。さらに、管における磁化方向を断面方向として
おり、管には局部的な渦電流が生起されて、管の全周を
一様に探傷することにより、周一円周上に複数個の欠陥
が存在する場合も、円周方向の分解能が増大するため、
これらの欠陥の分離、識別が可能となる。
In addition, by increasing the ratio of the cross-sectional area of the magnetic path in the probe to the cross-sectional area of the magnetic path in the tube, the magnetic flux density in the tube can be increased. Even in flaw detection, flaws can be detected with high sensitivity. Furthermore, since the direction of magnetization in the tube is the cross-sectional direction, local eddy currents are generated in the tube, and by uniformly detecting flaws around the entire circumference of the tube, it is possible to detect multiple defects on one circumference. Also, since the circumferential resolution increases,
These defects can be separated and identified.

また、渦流探傷用プローブの軸方向には回転駆動機構お
よび軸方向移動機構を接続することによりプローブの作
動を自動的にすることが可能となり、搬送を自在化でき
るため、多数にして比較的長大な管の多数の探傷を管の
全周にわたり、もれなく効率よく行うことができる。
In addition, by connecting a rotational drive mechanism and an axial movement mechanism to the axial direction of the eddy current flaw detection probe, it is possible to automatically operate the probe, and it is possible to transport it freely, so it can be used in large numbers and relatively long. It is possible to efficiently perform multiple flaw detections on a large number of pipes, covering the entire circumference of the pipe.

さらにまた、複数の渦流探傷用プローブの各プローブの
角度を順次変化させて軸方向移動機構を接続することに
より、渦流探傷用プローブの回転駆動機構を省略するこ
とができて、しかも管全面にわたりもれなく探傷を達成
することができるので渦流探傷用プローブの構造を簡易
にさせることができる。
Furthermore, by sequentially changing the angle of each probe of a plurality of eddy current flaw detection probes and connecting the axial movement mechanism, it is possible to omit the rotational drive mechanism of the eddy current flaw detection probes, and moreover, it is possible to eliminate leakage over the entire surface of the tube. Since flaw detection can be achieved, the structure of the eddy current flaw detection probe can be simplified.

〔実施例〕〔Example〕

以下、本発明の実施例を図面について詳細に述べる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の構成をしめし、第2図は第
1図の1−1線における断面図をしめすものである。
FIG. 1 shows the structure of an embodiment of the present invention, and FIG. 2 shows a sectional view taken along the line 1--1 in FIG.

第1図および第2図において、tは管、10は渦流探傷
用プローブ、40は軸方向移動機構を兼ねるケーブルを
しめす、プローブ10は永久磁石1、検査コイル2、絶
縁材3などからなり、管tに内挿して探傷を行う、永久
磁石1の形状は、第2図においてしめすごと(その断面
は円柱側面部a、aと円柱側面を切った対称な平面す、
bからなっており、該平面す、bのほぼ中央部には絶縁
材3上に検査コイル2を配設している。渦流探傷用プロ
ーブ10を管を内に内挿すると、渦流探傷用プローブ1
0と管tの間に磁気回路が形成され、この状態において
検査コイル2を通じて、欠陥による管の電磁的変化を示
す探傷信号を検出する。
In FIGS. 1 and 2, t is a tube, 10 is an eddy current flaw detection probe, and 40 is a cable that also serves as an axial movement mechanism. The probe 10 consists of a permanent magnet 1, a test coil 2, an insulating material 3, etc. The shape of the permanent magnet 1, which is inserted into the tube t for flaw detection, is as shown in Fig. 2 (its cross section is a symmetrical plane cutting the cylindrical side surface a, a).
A test coil 2 is disposed on an insulating material 3 approximately in the center of the plane surface b. When the eddy current flaw detection probe 10 is inserted into the tube, the eddy current flaw detection probe 1
A magnetic circuit is formed between 0 and the tube t, and in this state, a flaw detection signal indicating an electromagnetic change in the tube due to a defect is detected through the inspection coil 2.

第3図は第1図および第2図にしめした渦流探傷用プロ
ーブ10にもちいている永久磁石1と管tからなる磁気
回路をしめし、永久磁石1の両円柱側面部a、aはそれ
ぞれ磁極N、Sを構成し、磁束は一点鎖線にてしめした
ように流れ、断面方向を磁化させている。第3図におい
て渦流探傷用プローブ10のB部の磁束の磁束密度Bp
、伝熱管を内の磁束密度をBtとすれば  Bt=  
(ffi、/  (1,+ 1.)l  ・ Bpとな
る。
Fig. 3 shows a magnetic circuit consisting of a permanent magnet 1 and a tube t used in the eddy current flaw detection probe 10 shown in Figs. The magnetic flux flows as shown by the dashed line, magnetizing the cross-sectional direction. In FIG. 3, the magnetic flux density Bp of the magnetic flux in the B section of the eddy current flaw detection probe 10
, if the magnetic flux density inside the heat transfer tube is Bt, then Bt=
(ffi, / (1, + 1.)l · Bp.

一方、第8図にしめず従来の渦流探傷用プローブ50に
おいては、継鉄54のA部の断面積をSp、A部を通過
する磁束の磁束密度をBp’、伝熱管tの軸に垂直な断
面積をStとすれば、伝熱管り内の磁束密度Bt’は B t ’ = (SA/S t)  ・Bp′である
On the other hand, in the conventional eddy current flaw detection probe 50 shown in FIG. If the cross-sectional area is St, then the magnetic flux density Bt' in the heat transfer tube is Bt' = (SA/St) · Bp'.

したがって、管tにおける磁化方向を従来の軸方向から
断面方向に変更させることにより、管tの磁路の断面積
と渦流探傷用プローブ内の磁路の断面積の比 is /
’(z+  +1z )を従来のSA/Stに比して大
きくすることができるため管における磁束密度を向上さ
せている。
Therefore, by changing the magnetization direction in the tube t from the conventional axial direction to the cross-sectional direction, the ratio of the cross-sectional area of the magnetic path in the tube t to the cross-sectional area of the magnetic path in the eddy current probe is /
'(z+ +1z) can be made larger than in the conventional SA/St, improving the magnetic flux density in the tube.

上記の実施例にもとづく解析例による管内磁束密度を従
来の渦流探傷用プローブをもちいた管内磁束密度を第1
3図および次の表にしめす。
The magnetic flux density inside the pipe using the conventional eddy current probe was calculated using the analysis example based on the above example.
This is shown in Figure 3 and the table below.

なお、上記表において供試管の材料は21/4 Cr 
−I M O鋼であり、寸法は外径25.4mm、内径
18.4■1である。第13図および上記表の解析例に
ても判明できるとうり、本発明による方式によれば、管
における磁束密度を向上させることができ、強磁性材料
であり、かつ小径厚肉管である場合の探傷であっても、
欠陥を高感度にて探傷することができる。また、第4図
は第1図および第2図にしめした渦流探傷用プローブ1
0をもちいて管tを探傷した場合に検査コイル2によっ
て管tには局所的な渦電流が生起されていることをしめ
している。従って渦流探傷用プローブ10の移動にとも
ない、該渦電流中に欠陥が存在すると、欠陥による管の
電磁気的特性の変化によって検査コイルはインピーダン
ス変化を詳細に検出できる。従って、この検出したイン
ピーダンス変化値をもとに図示を省略した記録装置では
欠陥に対する円周方向の分解能が増大し、管の円周方向
において同一円周上に複数個の欠陥が存在する場合でも
、これらの欠陥の分離、識別をすることが可能である。
In addition, in the above table, the material of the test tube is 21/4 Cr
- It is made of IMO steel and has an outer diameter of 25.4 mm and an inner diameter of 18.4 mm. As can be seen from the analysis example shown in FIG. 13 and the table above, according to the method of the present invention, the magnetic flux density in the tube can be improved. Even for flaw detection,
Defects can be detected with high sensitivity. In addition, Figure 4 shows the eddy current flaw detection probe 1 shown in Figures 1 and 2.
This shows that when the tube t is flaw-detected using 0, a local eddy current is generated in the tube t by the inspection coil 2. Therefore, if a defect exists in the eddy current as the eddy current flaw detection probe 10 moves, the test coil can detect the impedance change in detail due to the change in the electromagnetic characteristics of the tube due to the defect. Therefore, a recording device (not shown) based on this detected impedance change value can increase the resolution of defects in the circumferential direction, and even if there are multiple defects on the same circumference in the circumferential direction of the tube, , it is possible to separate and identify these defects.

また、本発明の態様実施例を第5図および第6図にそれ
ぞれしめす。
Embodiments of the present invention are shown in FIGS. 5 and 6, respectively.

第5図において、10は渦流探傷用プローブをしめし、
42は減速機、41はモータ、5はスリップリングをさ
らに40はケーブルをしめす、これらは渦流探傷用プロ
ーブ10の軸方向に接続され、渦流探傷用プローブ10
はモータ41の回転駆動力により減速機42を介して回
転運動を行う、回転駆動機構に接続し、かつ渦流探傷用
プローブ10の吊型用牽条を兼ねるケーブル40に接続
することにより軸方向に移動する。
In FIG. 5, 10 indicates an eddy current flaw detection probe,
42 is a reducer, 41 is a motor, 5 is a slip ring, and 40 is a cable, which are connected in the axial direction of the eddy current flaw detection probe 10.
is connected to a rotational drive mechanism that performs rotational movement via a speed reducer 42 by the rotational driving force of a motor 41, and is connected to a cable 40 that also serves as a hanging rod for the eddy current flaw detection probe 10. Moving.

スリップリング5は軸の回りに回転している渦流探傷用
プローブIOの検査コイル2からの探傷信号を図示する
ことを省略した検査機器に伝達するものである。
The slip ring 5 transmits a flaw detection signal from the test coil 2 of the eddy current flaw detection probe IO rotating around its axis to a test device (not shown).

第6図において、複数の渦流探傷用プローブl0110
a、10b、10cがスプリング44をもってたわみ状
態に対応しうるごとく軸方向に一体的に連接しかつ端部
においてはケーブル40と接続している。またそれぞれ
の渦流探傷用プローブの取付方向は磁極方向を一定角度
のずれθをもって順次進相させて配列している。
In FIG. 6, a plurality of eddy current flaw detection probes l0110
a, 10b, and 10c are integrally connected in the axial direction with a spring 44 so as to be able to respond to a deflected state, and are connected to a cable 40 at the end. Moreover, the mounting direction of each eddy current flaw detection probe is arranged such that the magnetic pole direction is sequentially advanced with a certain angle deviation θ.

第6図における実施例では角度のずれθは45″である
In the embodiment in FIG. 6, the angular deviation θ is 45''.

また、第5図に示した7Li様例では渦流探傷用プロー
ブ10に回転駆動機構を接続し、これを軸方向移動機構
を接続することにより、渦流探傷用プローブ10によっ
て生ずる渦電流が局所的であっても第7図に示すがごと
く、渦電流の一流れる範囲に比して広い領域をもつ斜線
部分の様な欠陥dに対しても同図中の一点鎖線のごとく
順次探傷を行う事により、欠陥の軸方向及び円周方向の
分布を知る事が出来、かつ、渦流探傷用プローブ10の
作動を自動的にすることが可能となり、搬送を自在化で
きるため、多数にして比較的長大な管の多数の探傷を管
の全面にわたり、もれなく効率よく行うことができる。
In addition, in the 7Li example shown in FIG. 5, by connecting a rotational drive mechanism to the eddy current probe 10 and connecting this to an axial movement mechanism, the eddy current generated by the eddy current probe 10 can be localized. Even if there is a defect d as shown in Fig. 7, which is the shaded area that is wider than the range in which the eddy current flows, it can be detected by sequential flaw detection as shown by the dashed-dotted line in the same figure. , it is possible to know the distribution of defects in the axial and circumferential directions, and it is also possible to automatically operate the eddy current flaw detection probe 10, making it possible to transport it freely. Multiple flaws can be detected efficiently over the entire surface of the pipe.

さらにまた、第6図に示した態様例では、複数の渦流探
傷用プローブl0110a、10b、lOCの各渦流探
傷用プローブの角度を順次変化させて軸方向移動機構を
接続することにより、渦流探傷用プローブの回転駆動機
構を省略することができて、しかも管全面にわたりもれ
なく探傷を達成することができるので渦流探傷用プロー
ブの構成を簡易にさせることができる。
Furthermore, in the embodiment shown in FIG. 6, by sequentially changing the angle of each eddy current flaw detection probe of the plurality of eddy current flaw detection probes l0110a, 10b, and lOC and connecting the axial movement mechanism, the eddy current flaw detection Since the rotational drive mechanism of the probe can be omitted and flaw detection can be carried out over the entire surface of the tube, the structure of the eddy current flaw detection probe can be simplified.

〔発明の効果〕〔Effect of the invention〕

本発明は上記実施例により明らかなように、強磁性材料
でありかつ小径厚肉管の探傷に適用するにあたり、欠陥
を高感度で探傷することができるとともに、管の円周方
向において同一円周上に複数個の欠陥が存在する場合で
も、欠陥に対する円周方向の分解能の増大により、これ
らの欠陥の分離、識別が可能となるのみならず、またさ
らに、渦電流の流れる範囲に比して広い領域をもつ欠陥
に対しても、欠陥の軸方向及び円周方向の分布を知る事
ができ、渦流探傷用プローブの作動を自動的にすること
が可能となり搬送を自在化できるため、多数にして比較
的長大な管の探傷を効率よく行うことができるなどその
効果は多大である。
As is clear from the above embodiments, when the present invention is applied to the flaw detection of small-diameter thick-walled tubes made of ferromagnetic material, it is possible to detect defects with high sensitivity, and the same circumference in the circumferential direction of the tube can be detected. The increased circumferential resolution of defects not only makes it possible to separate and identify them, even when multiple defects are present on the surface, but also makes it possible to Even for defects in a wide area, it is possible to know the distribution of defects in the axial and circumferential directions, and the operation of the eddy current flaw detection probe can be automated, making it possible to transport it freely. Its effects are significant, such as being able to efficiently perform flaw detection on relatively long pipes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る渦流深傷用プローブの
概略図、第2図は同断面図、第3図は同磁気回路図、第
4図は同渦電流をしめず説明図、第5図は本発明の他の
実施例に係る渦流探傷用iロープの概略図、第6図は本
発明のさらに他の実施例に係る渦流深傷用プローブの概
略図、第7図は第5図および第6図にしめず実施例に係
る説明図、第8図は従来技術に係る渦流深傷用プローブ
の概略図、第9図は同断面図、第1O図は同渦電流をし
めず説明図、第11図は管内磁束密度による渦電流分布
の変化をしめず説明図、第12図は従来技術に係る分離
、識別が困難である欠陥をしめず説明図、第13図は本
発明および従来技術に係る管内磁束密度の比較をしめず
説明図である。 1−−−−−一永久磁石 2−−−−−一検査コイル 10−−−−−一渦流探傷用プロープ 40−−−−−−ケーブル 1−−−−−一管 a −−−−−一円柱側面部 b −−−−−一平面 出 願人 川崎重工業株式会社 M8図 第9図     第1o図
Fig. 1 is a schematic diagram of an eddy current deep wound probe according to an embodiment of the present invention, Fig. 2 is a sectional view thereof, Fig. 3 is a magnetic circuit diagram thereof, and Fig. 4 is an explanatory diagram of the eddy current without showing it. , FIG. 5 is a schematic diagram of an i-rope for eddy current flaw detection according to another embodiment of the present invention, FIG. 6 is a schematic diagram of an eddy current deep flaw probe according to still another embodiment of the present invention, and FIG. Figures 5 and 6 are explanatory diagrams of the Shimezu embodiment, Figure 8 is a schematic diagram of a conventional eddy current probe for deep wounds, Figure 9 is a cross-sectional view of the same, and Figure 1O shows the eddy current. Figure 11 is an explanatory diagram showing the changes in eddy current distribution due to the magnetic flux density inside the tube, Figure 12 is an explanatory diagram of defects that are difficult to separate and identify according to the prior art, and Figure 13 is an explanatory diagram showing the changes in eddy current distribution due to the magnetic flux density inside the tube. FIG. 3 is an explanatory diagram showing a comparison of the magnetic flux density in the tube according to the present invention and the conventional technology. 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (- - - - One cylindrical side part b - One plane Applicant Kawasaki Heavy Industries Ltd. M8 Figure 9 Figure 1o Figure

Claims (1)

【特許請求の範囲】 1、管に内挿し、円柱側面部と円柱の両側面を切った対
称な平面を有する柱状形状からなり、両円柱側面部に磁
極を有する永久磁石と該平面の中央部に配設した検査コ
イルからなる渦流探傷用プローブ。 2、管に内挿し、円柱側面部と円柱の両側面を切った対
称な平面を有する柱状形状からなり、両円柱側面部に磁
極を有する永久磁石と該平面の中央部に配設した検査コ
イルからなる渦流探傷用プローブにおいて、前記渦流探
傷用プローブに回転駆動機構および軸方向移動機構とを
接続したことを特徴とする渦流探傷用プローブ。 3、管に内挿し、円柱側面部と円柱の両側面を切った対
称な平面を有する柱状形状からなり、両円柱側面部に磁
極を有する永久磁石と該平面の中央部に配設した検査コ
イルからなる渦流探傷用プローブにおいて、前記渦流駆
探傷用プローブを複数とするとともに、軸方向に連接し
、各プローブの磁極方向を一定角度をもって順次変化さ
せ、軸方向移動機構と接続したことを特徴とする渦流探
傷用プローブ。
[Claims] 1. A permanent magnet that is inserted into a tube and has a columnar shape having a cylindrical side surface and a symmetrical plane cutting both side surfaces of the cylinder, and has magnetic poles on both cylindrical side surfaces, and a central portion of the plane. An eddy current flaw detection probe consisting of a test coil installed in the . 2. A permanent magnet that is inserted into the tube and has a symmetrical plane with a cylindrical side surface and a symmetrical plane cutting both side surfaces of the cylinder, and a permanent magnet that has magnetic poles on both cylindrical side surfaces and an inspection coil that is placed in the center of the plane. An eddy current flaw detection probe comprising: a rotary drive mechanism and an axial movement mechanism connected to the eddy current flaw detection probe. 3. A permanent magnet that is inserted into the tube and has a symmetrical plane with a cylindrical side surface and a symmetrical plane cut on both side surfaces of the cylinder, and a permanent magnet that has magnetic poles on both cylindrical side surfaces and an inspection coil arranged in the center of the plane. The eddy current flaw detection probe is characterized in that a plurality of the eddy current flaw detection probes are connected in the axial direction, the magnetic pole direction of each probe is sequentially changed at a constant angle, and is connected to an axial movement mechanism. Eddy current flaw detection probe.
JP60272035A 1985-12-03 1985-12-03 Probe for eddy current flaw detection Pending JPS62130350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60272035A JPS62130350A (en) 1985-12-03 1985-12-03 Probe for eddy current flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272035A JPS62130350A (en) 1985-12-03 1985-12-03 Probe for eddy current flaw detection

Publications (1)

Publication Number Publication Date
JPS62130350A true JPS62130350A (en) 1987-06-12

Family

ID=17508216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272035A Pending JPS62130350A (en) 1985-12-03 1985-12-03 Probe for eddy current flaw detection

Country Status (1)

Country Link
JP (1) JPS62130350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237270A (en) * 1990-10-11 1993-08-17 Atomic Energy Of Canada Limited Ferromagnetic eddy current probe having eccentric magnetization for detecting anomalies in a tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237270A (en) * 1990-10-11 1993-08-17 Atomic Energy Of Canada Limited Ferromagnetic eddy current probe having eccentric magnetization for detecting anomalies in a tube

Similar Documents

Publication Publication Date Title
CA2122516C (en) Method and device for nondestructively, magnetically inspecting elongated objects for structural faults
US4602212A (en) Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
US4855676A (en) Ferromagnetic eddy current probe having transmit and receive coil assemblies
CN108226277A (en) The outer detection probe of a kind of leakage field, electromagnetic acoustic and vortex composite pipeline
US4471658A (en) Electromagnetic acoustic transducer
US3952315A (en) Eddy current discontinuity probe utilizing a permanent magnet bobbin with at least one A.C. energized coil mounted in a groove thereon
JPH0664012B2 (en) Flux leakage probe for use in non-destructive testing
US2964699A (en) Probe device for flaw detection
GB1567166A (en) Apparatus and method for the non-destructive testing of ferromagnetic material
CN110333284B (en) Series type plane eddy current sensor
CN100392391C (en) Inside-through type low frequency electromagnetic detection sensor
JPS62130350A (en) Probe for eddy current flaw detection
JPS6324152A (en) Probe for eddy current flaw detection
JPH0338696Y2 (en)
JPS637895Y2 (en)
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
JPS62126345A (en) Probe for eddy current flaw detection
JPH072967U (en) Eddy current probe with opposite diameter coils
JPH04273055A (en) Insertion type eddy current detector for magnetic pipe
JPS63124957A (en) Method and probe for eddy current flaw detection
JPH03118465A (en) Detecting apparatus for defect inside tube
JPH0355099Y2 (en)
JPH0338695Y2 (en)
JPH0639331Y2 (en) Eddy current flaw detection coil
CN113267559B (en) Magnetic flux leakage detection device and magnetic flux leakage detection method