JPH0634352A - Fe-plated stainless steel plate and method for measuring attachment quantity of plating - Google Patents

Fe-plated stainless steel plate and method for measuring attachment quantity of plating

Info

Publication number
JPH0634352A
JPH0634352A JP4213286A JP21328692A JPH0634352A JP H0634352 A JPH0634352 A JP H0634352A JP 4213286 A JP4213286 A JP 4213286A JP 21328692 A JP21328692 A JP 21328692A JP H0634352 A JPH0634352 A JP H0634352A
Authority
JP
Japan
Prior art keywords
plating
fluorescent
stainless steel
ray
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4213286A
Other languages
Japanese (ja)
Inventor
Minoru Saito
実 斎藤
Kazuaki Hosomi
和昭 細見
Toshiharu Kikko
敏晴 橘高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP4213286A priority Critical patent/JPH0634352A/en
Publication of JPH0634352A publication Critical patent/JPH0634352A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To establish a method of measuring the Fe plating amount on an Fe-plated stainless steel plate in parallel with conducting the Fe plating process. CONSTITUTION:The procedures of measuring the attachment quantity of Fe plating on an Fe-plated stainless steel plate consists of analyzing the stainless steel plate before and after the Fe plating by means of fluorescent X-ray method and then determining two radios, i.e. the ratio Icr<b>/IFe<b> where Icr<b> is the fluorescent X-ray intensity of Cr before Fe-plating and IFe<b> is the corresponding value of Fe, and the ratio Ica<a>/IFe<a> where Icr<a> is the fluorescent X-ray intensity of Cr before Fe-plating and IFe<a> is the corresponding value of Fe. The obtained values are substituted into the following equation, and the Fe-plating attachment quantity W(g/m<2>) is calculated; W=(Icr<b>/IFe<b>-Icr<a>/IFe<a>)/C, where C is a proportional constant determined by the type of steel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【001】[001]

【産業上の利用分野】本発明は、Feめっきステンレス
鋼板のFeめっき付着量をFeめっきと平行して測定可
能な方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method capable of measuring the amount of Fe plating deposited on a Fe-plated stainless steel sheet in parallel with Fe plating.

【002】[002]

【従来技術】ステンレス鋼板は、耐食性、耐熱性に優れ
ているが、ステンレス鋼板にAl等の溶融めっきを施す
と、耐食性、耐熱性をさらに高めることができる。しか
し、この溶融めっきを低炭素鋼のめっき原板に溶融めっ
きを施すのと同一の工程、すなわち、連続溶融めっきラ
インの無酸化炉または脱脂設備でまずめっき原板表面に
付着した圧延油や防錆油等の油分を除去し、次にH2
2雰囲気中で表面のFe系酸化物を還元し、その後A
l等の溶融めっきを施す工程で行うと、ガス還元時にス
テンレス鋼板のCrが優先酸化され、表面に濃化するた
め、溶融金属との濡れ性が阻害され、不めっき等の表面
欠陥が発生してしまう。
2. Description of the Related Art Although stainless steel sheets are excellent in corrosion resistance and heat resistance, they can be further improved in corrosion resistance and heat resistance by subjecting stainless steel sheets to hot dip plating such as Al. However, the same process as this hot-dip galvanizing of a low carbon steel plating base plate, that is, the rolling oil or rust preventive oil first adhered to the plating base plate surface in the non-oxidizing furnace or degreasing equipment of the continuous hot-dip galvanizing line. the oil etc. is removed, then H 2 -
The Fe-based oxide on the surface is reduced in an N 2 atmosphere, and then A
In the process of performing hot dip coating such as l, Cr of the stainless steel sheet is preferentially oxidized at the time of gas reduction and concentrates on the surface, so that wettability with the molten metal is hindered and surface defects such as non-plating occur. Will end up.

【003】そこで、ステンレス鋼板に溶融めっきを施す
場合には、連続電気めっきラインでFeを予め0.05
〜5g/m2プレめっきして、低炭素鋼めっき原板と同一
表面性状にした後、連続溶融めっきラインで溶融めっき
を施している。このFeプレめっきは、ステンレス鋼板
の溶融金属との濡れ性を改善するものであるから、溶融
めっきステンレス鋼板を安価に製造するには、表面欠陥
の発生しない範囲で付着量を最小限にするのが好まし
い。
Therefore, when hot-dip galvanizing a stainless steel sheet, Fe is previously added to 0.05 in a continuous electroplating line.
After pre-plating up to 5 g / m 2 to make it have the same surface texture as the low carbon steel original plate, hot-dip galvanizing is performed in a continuous hot-dip galvanizing line. Since this Fe pre-plating improves the wettability of the stainless steel sheet with the molten metal, in order to inexpensively manufacture the hot-dip stainless steel sheet, the adhesion amount should be minimized within the range where surface defects do not occur. Is preferred.

【004】この付着量の測定は、従来、連続電気めっき
ラインでFeめっきと平行して正確に測定する方法がな
かったので、試料をサンプリングして、硝酸水溶液等で
Feめっき層を溶解し、溶解前後の重量差から算出する
重量法で行っていた。
There has been no conventional method for measuring the amount of adhesion in parallel with Fe plating on a continuous electroplating line. Therefore, a sample is sampled and the Fe plating layer is dissolved with an aqueous nitric acid solution or the like. The weight method was calculated from the weight difference before and after dissolution.

【005】[0095]

【発明が解決しようとする課題】しかしながら、この重
量法では、試料のサンプリングがめっき原板コイルのト
ップエンドに限られ、コイル途中の付着量を把握できな
いため、めっきの際には、安全を見込んで付着量を多め
にしていた。このため、Feめっき費が高くなるという
問題があった。また、サンプリングから測定結果が判明
するまでに時間がかかるため、付着量に過不足があって
も、直ちに調整できないという問題もあった。さらに、
この重量法は、生産性を高めるために連続溶融めっきラ
インの入側に連続電気めっきラインを配置して、Feプ
レめっきと溶融めっきとを同時に行う場合には、Feプ
レめっきだけの試料をサンプリングできないため、適用
できないという問題もあった。
However, according to this gravimetric method, the sampling of the sample is limited to the top end of the plating original plate coil, and the adhesion amount in the middle of the coil cannot be grasped. Therefore, safety is expected during plating. The amount of adhesion was large. Therefore, there is a problem that the Fe plating cost becomes high. In addition, since it takes time from the sampling to the determination of the measurement result, there is a problem that even if there is an excess or deficiency of the adhered amount, the adjustment cannot be performed immediately. further,
In this gravimetric method, a continuous electroplating line is arranged on the inlet side of the continuous hot-dip plating line in order to improve productivity, and when Fe pre-plating and hot-dip plating are performed simultaneously, a sample of only Fe pre-plating is sampled. There is also a problem that it cannot be applied because it cannot be done.

【006】[0096]

【課題を解決するための手段】本発明は、かかる点に鑑
み、Feプレめっきと平行して測定可能な方法を提供す
るもので、蛍光X線法によりFeめっき前後のステンレ
ス鋼板を分析して、Feめっき前のCrの蛍光X線強度
cr bとFeの蛍光X線強度IFe bの比Icr b/IFe bおよ
びFeめっき後のCrの蛍光X線強度Icr aとFeの蛍
光X線強度IFe aの比Icr a/IFe aを求め、これらの値を
下式に代入して、Feめっき付着量W(g/m2)を算出
することを特徴としている。 W=(Icr b/IFe b−Icr a/IFe a)/C ここで、Cは鋼種により決定される比例定数。
In view of such a point, the present invention provides a method capable of measuring in parallel with Fe pre-plating, and analyzing a stainless steel plate before and after Fe plating by a fluorescent X-ray method. , of the fluorescent X-ray intensity I cr b and Fe in Fe pre-plating of Cr fluorescent X-ray intensity I Fe b ratio I cr b / I Fe b and after Fe plating of the fluorescent X-ray intensity I cr a and Fe and Cr It is characterized in that the ratio I cr a / I Fe a of the fluorescent X-ray intensity I Fe a is calculated, and these values are substituted into the following formula to calculate the Fe plating adhesion amount W (g / m 2 ). W = (I cr b / I Fe b −I cr a / I Fe a ) / C Here, C is a proportional constant determined by the steel type.

【007】[0097]

【作用】鋼板にめっきを施しながら、その付着量を連続
的に測定する方法としては、蛍光X線法が知られてい
る。この方法は、めっき鋼板のめっき原板からの蛍光X
線強度またはめっき層を構成する主要元素の蛍光X線強
度を測定して、それを蛍光X線強度式に代入することに
よりめっき付着量を算出する方法で、めっき原板に異種
金属をめっきする場合にのみ適用可能であるが、Feめ
っきステンレス鋼板のように、めっき原板、めっき層が
ともにFeを含有している場合には、両者のFeからの
蛍光X線強度を分離できないため、めっき付着量を測定
できない。
The fluorescent X-ray method is known as a method for continuously measuring the amount of the deposit while plating the steel plate. This method uses fluorescent X from the plating original plate of the plated steel plate.
When plating different kinds of metal on the plating original plate by the method of measuring the line intensity or the fluorescent X-ray intensity of the main elements that make up the plating layer and then substituting it into the fluorescent X-ray intensity formula to calculate the plating adhesion amount. However, when both the plating base plate and the plating layer contain Fe, such as the Fe-plated stainless steel plate, the fluorescent X-ray intensities from both Fes cannot be separated, so the amount of plating adhesion Cannot be measured.

【008】しかし、本発明者らは、この蛍光X線法をF
eめっきステンレス鋼板のFeめっき付着量測定に適用
すべく、FeとCrの蛍光X線強度を調査したところ、
Feめっき付着量の増加に伴い、Feの蛍光X線強度は
単調に増加し、逆にCrの蛍光X線強度は単調に減少す
ることを見いだした。そして、CrとFeの蛍光X線強
度比を検討してみると、Feめっき付着量の増加に伴っ
て直線的に減少して、その関係は一次式で近似でき、こ
れを利用すれば、蛍光X線法をFeめっきステンレス鋼
板のFeめっき付着量測定に適用できることを見いだし
た。以下本発明を具体的に説明する。
However, the present inventors have adopted the fluorescent X-ray method for F
The fluorescent X-ray intensities of Fe and Cr were investigated to be applied to the measurement of the amount of Fe plating deposited on the e-plated stainless steel sheet.
It has been found that the fluorescent X-ray intensity of Fe monotonically increases and conversely the fluorescent X-ray intensity of Cr monotonically decreases with an increase in the Fe plating deposition amount. Then, when the fluorescent X-ray intensity ratio of Cr and Fe is examined, it decreases linearly as the Fe plating deposition amount increases, and the relationship can be approximated by a linear expression. It was found that the X-ray method can be applied to the measurement of the amount of Fe plating deposited on the Fe-plated stainless steel plate. The present invention will be specifically described below.

【009】Feめっきステンレス鋼板にX線1を照射し
た場合、図1に示すように、Feの蛍光X線2とCrの
蛍光X線3が発生するが、検出されるFeの蛍光X線2
は前述のようにめっき原板のステンレス鋼板4とFeめ
っき層5からの合計となる。一方、検出されるCrの蛍
光X線3はステンレス鋼板4からのものだけである。
When an Fe-plated stainless steel plate is irradiated with X-rays 1, fluorescent X-rays 2 of Fe and fluorescent X-rays 3 of Cr are generated as shown in FIG.
Is the total of the original stainless steel plate 4 and the Fe plating layer 5 as described above. On the other hand, the fluorescent X-ray 3 of Cr detected is only from the stainless steel plate 4.

【010】しかし、この合計となるFeの蛍光X線強度
Fe aとFeめっき付着量との関係およびCrの蛍光X
線強度Icr aとFeめっき付着量との関係をステンレス
鋼板の鋼種、製造ロット別に調査してみると、各鋼種、
製造ロットとも前者は、図2に示すように、Feめっき
付着量の増加とともに単調に増加し、逆に後者は、図3
に示すように、Feめっき付着量の増加とともに単調に
減少する。なお、図2、図3において、グラフ6、6a
は10.5mass%CrのSUH409、グラフ7、7a
は12mass%CrのSUH409、グラフ8、8aは1
8mass%Cr−8mass%NiのSUS304、グラフ
9、9aは20mass%Cr−10.5mass%NiのSU
S304のもので、FeとCrの蛍光X線強度IFe a
cr aはともにKα線の強度である。
However, the relationship between the total of the fluorescent X-ray intensity I Fe a of Fe and the amount of Fe plating deposited and the fluorescent X of Cr
When the relationship between the line strength I cr a and the amount of Fe plating deposited is investigated for each stainless steel sheet type and manufacturing lot,
As shown in FIG. 2, in the production lot, the former monotonically increases as the Fe plating deposition amount increases, and conversely, the latter shows
As shown in (4), it decreases monotonically with an increase in the Fe plating deposition amount. 2 and 3, graphs 6 and 6a
Is SUH409 with 10.5 mass% Cr, graphs 7 and 7a
Is SUH409 of 12 mass% Cr, graphs 8 and 8a are 1
8mass% Cr-8mass% Ni SUS304, Graphs 9 and 9a are 20mass% Cr-10.5mass% Ni SU
S304, the intensity of Fe and Cr X-ray fluorescence I Fe a ,
I cr a is the intensity of Kα rays.

【011】従って、この図2、図3のような関係を各鋼
種のFe濃度やCr濃度毎に作成して、それを検量線式
にすれば、Feめっき付着量を測定することは可能であ
る。しかし、鋼種のFe濃度やCr濃度毎に検量線式を
作成するには、ステンレス鋼板のFe濃度やCr濃度を
化学分析法で個々に測定して作成しなければならないの
で、その作業は膨大になる。
Therefore, if the relations shown in FIGS. 2 and 3 are created for each Fe concentration and Cr concentration of each steel type and made into a calibration curve formula, it is possible to measure the Fe plating deposition amount. is there. However, in order to create a calibration curve formula for each Fe concentration and Cr concentration of the steel type, the Fe concentration and Cr concentration of the stainless steel plate must be individually measured by the chemical analysis method, and the work is enormous. Become.

【012】そこで、本発明者らは、新たにCrの蛍光X
線強度Icr aとFeの蛍光X線強度IFe aの強度比Icr a/
Fe aに着目して、図2、図3のデ−タを整理してみた
ところ、図4に示すように、強度比Icr a/IFe aはFe
めっき付着量の増加に対応して直線的に減少し、その勾
配は製造ロットに関係なく鋼種により一定になること、
すなわち、鋼種が同一であれば、ステンレス鋼板のFe
濃度やCr濃度に関係なく勾配が一定になることを見い
だした。なお、図4において、グラフ6bは10.5mas
s%CrのSUH409、グラフ7bは12mass%Cr
のSUH409、グラフ8bは18mass%Cr−8mass
%NiのSUS304、グラフ9bは20mass%Cr−
10.5mass%NiのSUS304のものである。
Therefore, the present inventors newly added the fluorescent X of Cr.
The intensity ratio I cr a / of the line intensity I cr a and the fluorescent X-ray intensity I Fe a of Fe
Focusing on I Fe a , the data in FIGS. 2 and 3 are arranged, and as shown in FIG. 4, the intensity ratio I cr a / I Fe a is Fe.
Corresponding to an increase in the coating weight, it decreases linearly, and the gradient becomes constant depending on the steel type regardless of the production lot.
That is, if the steel types are the same, the Fe of the stainless steel plate
It was found that the gradient becomes constant regardless of the concentration and the Cr concentration. In addition, in FIG. 4, the graph 6b is 10.5 mas.
SUH409 of s% Cr, Graph 7b is 12 mass% Cr
SUH409, Graph 8b is 18 mass% Cr-8mass
% Ni SUS304, Graph 9b shows 20 mass% Cr-
It is that of SUS304 with 10.5 mass% Ni.

【013】図4で鋼種により勾配が異なるのは、検出さ
れるFeの蛍光X線強度IFe aがめっき原板からのもの
とめっき層からのものとの合計であるため、SUS30
4のようにめっき原板のFe濃度が低いと、Feの蛍光
X線強度IFe aに占めるめっき原板からのものの割合は
少なく、Feめっき層からのものの割合が多くなること
から、Feめっき付着量が変化すると、勾配が大きくな
るからである。このため、SUS304の場合はグラフ
8b、グラフ9bのように勾配は大きくなる。逆にSU
H409のようにめっき原板のFe濃度が高いと、めっ
き原板からのものの割合は少なくなるため、Feめっき
付着量が変化しても勾配は小さく、グラフ6b、グラフ
7bのように勾配は小さくなる。
The difference in the gradient depending on the steel type in FIG. 4 is that the detected fluorescent X-ray intensity I Fe a of Fe is the total of the original plate and the plated layer.
When the Fe concentration of the plating original plate is low as in No. 4, the ratio of the Fe from the plating original plate to the fluorescent X-ray intensity I Fe a is small and the ratio of the Fe plating layer is large. This is because the gradient becomes large when changes. Therefore, in the case of SUS304, the gradient becomes large as shown in graphs 8b and 9b. Conversely, SU
When the Fe concentration of the original plating plate is high as in H409, the proportion of the original plate from the original plating plate is small. Therefore, the gradient is small even if the Fe plating adhesion amount changes, and the gradient becomes small as shown in graphs 6b and 7b.

【014】ところで、図4のグラフは、同一鋼種の場
合、勾配が同一になるので、鋼種毎に次の回帰直線式で
表すことができる。 Icr a/IFe a=Icr-0/IFe-0−C・W …(1) ここで、 Icr a/IFe a : Feめっき後のCrとFeの蛍光X
線強度比 Icr-0/IFe-0: Feめっき付着量0g/m2のときの
CrとFeの蛍光X線強度比 W : 重量法によるFeめっき付着量(g/
2) C : 鋼種による比例定数
By the way, the graph of FIG. 4 has the same gradient in the case of the same steel type, and therefore can be expressed by the following regression linear equation for each steel type. In I cr a / I Fe a = I cr-0 / I Fe-0 -C · W ... (1) where, I cr a / I Fe a : after Fe plating Cr and Fe fluorescent X
Linear intensity ratio I cr-0 / I Fe-0 : Fluorescent X-ray intensity ratio of Cr and Fe when Fe coating amount 0 g / m 2 W: Fe plating amount by gravimetric method (g /
m 2) C: proportionality constant depending steels

【015】しかし、この回帰直線式は、めっき原板のF
e濃度やCr濃度により異なるので、同一鋼種、同一F
eめっき付着量でも製造ロットによりCrとFeの蛍光
X線強度比Icr a/IFe aが異なる。このため、各鋼種毎
に一つの回帰直線式による検量線式でFeめっき付着量
を測定すると、めっき原板のFe濃度やCr濃度により
誤差が生じる。
However, this regression linear equation is
The same steel type and the same F because it depends on e concentration and Cr concentration
The fluorescent X-ray intensity ratio I cr a / I Fe a of Cr and Fe also differs depending on the production lot even with the amount of e plating deposited. Therefore, when the Fe coating amount is measured by the calibration curve method using one regression linear equation for each steel type, an error occurs due to the Fe concentration and Cr concentration of the original plating plate.

【016】この誤差を防止するには、Feめっき前のめ
っき原板のCrとFeの蛍光X線強度比を測定して、上
記(1)式におけるFeめっき付着量0g/m2のときの
CrとFeの蛍光X線強度比Icr-0/IFe-0を求め、め
っき原板のFe濃度やCr濃度に該当する回帰直線式を
決定すればよい。例えば、10.5mass%CrのSUH
409をめっき原板とするFeめっきにおいて、めっき
原板のFeめっき前のCrとFeの蛍光X線強度比を測
定すると、約0.08になるので、回帰直線式は図4に
おけるグラフ6bになる。
In order to prevent this error, the fluorescent X-ray intensity ratio of Cr and Fe of the plating original plate before Fe plating is measured, and Cr when the Fe plating deposition amount of 0 g / m 2 in the above formula (1) is measured. And the fluorescent X-ray intensity ratio I cr-0 / I Fe-0 of Fe can be obtained, and the regression linear equation corresponding to the Fe concentration and Cr concentration of the plating original plate can be determined. For example, SUH with 10.5 mass% Cr
In the Fe plating using 409 as the plating base plate, the fluorescent X-ray intensity ratio of Cr and Fe before the Fe plating of the plating base plate is measured to be about 0.08, and thus the regression linear equation becomes the graph 6b in FIG.

【017】従って、Feめっき前のめっき原板のCrと
Feの蛍光X線強度比をIcr b/I Fe bとして、これを
(1)式のIcr-0/IFe-0に代入して、Wについて整理
すれば、Feめっき付着量Wは次式により測定できる。 W=(Icr b/IFe b−Icr a/IFe a)/C …(2)
Therefore, with the Cr of the plating original plate before Fe plating,
The fluorescence X-ray intensity ratio of Fe is Icr b/ I Fe bAs this
I in equation (1)cr-0/ IFe-0Substitute in and arrange about W
Then, the Fe plating adhesion amount W can be measured by the following equation. W = (Icr b/ IFe b-Icr a/ IFe a) / C (2)

【018】次に、連続FeめっきラインでFeめっきと
平行して実施する場合の1例を説明する。まず、測定対
象のFeとCrの蛍光X線であるが、これは特に限定な
いが、強度が大きく、物質に吸収されにくいKα線が好
ましい。蛍光X線の分光方式には、エネルギ−分散方式
と波長分散方式とがあるが、分解能にすぐれた後者が好
ましい。また、励起源も特に限定ないが、取り扱い容易
なX線が好ましい。
Next, an example of the case where the continuous Fe plating line is carried out in parallel with the Fe plating will be described. First, the fluorescent X-rays of Fe and Cr to be measured are not particularly limited, but Kα-rays, which have high intensity and are hardly absorbed by a substance, are preferable. The fluorescent X-ray spectroscopic method includes an energy-dispersion method and a wavelength-dispersion method, but the latter method which is excellent in resolution is preferable. The excitation source is also not particularly limited, but X-rays that are easy to handle are preferable.

【019】めっき原板のCrとFeの蛍光X線強度比I
cr b/IFe bまたはFeめっき後のCrとFeの蛍光X線
強度比Icr a/IFe aの測定は、図5に示すように、測定
鋼板10の上方に測定ヘッド11を配置して、X線管球
12より励起源のX線1を測定鋼板10に発し、生じた
Crの蛍光X線(Kα)13とFeの蛍光X線(Kα)
14を分光結晶15で分光した後、CrとFeの蛍光X
線強度を検出器16で測定する。
Fluorescent X-ray intensity ratio I of Cr and Fe of the plated original plate I
Measurement of cr b / I Fe b or Fe fluorescent X-ray intensity ratio after plating of Cr and Fe I cr a / I Fe a, as shown in FIG. 5, the measuring head 11 disposed above the measuring steel 10 Then, the X-ray tube 12 emits the X-ray 1 of the excitation source to the measurement steel plate 10, and the generated fluorescent X-rays (Kα) 13 of Cr and fluorescent X-rays (Kα) of Fe.
14 after being dispersed by the dispersive crystal 15, fluorescence X of Cr and Fe
The line intensity is measured by the detector 16.

【020】測定ヘッド11は、図6に示すように、連続
電気めっきラインの入側、出側の各表裏に配置して、F
eめっき前後のCrとFeの蛍光X線強度を測定する。
なお、この測定はFeめっき前後で表裏の測定位置が同
一箇所となるように測定ヘッド11を配置して、それを
板幅方向にトラバ−スしながら行う。17は電解脱脂
槽、18はFe電気めっき槽である。
As shown in FIG. 6, the measurement heads 11 are arranged on the front and back sides of the continuous electroplating line on the inlet side and the outlet side, respectively.
e The fluorescent X-ray intensities of Cr and Fe before and after the plating are measured.
The measurement is performed by arranging the measurement head 11 so that the measurement positions on the front and back sides are the same before and after Fe plating and traversing it in the plate width direction. Reference numeral 17 is an electrolytic degreasing tank, and 18 is an Fe electroplating tank.

【021】測定ヘッド11は予め種々の鋼種のめっき原
板の比例定数C、めっき原板のCrとFeの蛍光X線強
度比Icr b/IFe bによる検量線式などをインプットして
ある演算処理装置19に接続して、Feめっき付着量を
算出し、めっき条件にフィ−ドバックさせる。連続電気
めっきラインの出側には、連続溶融金属めっきラインを
連続配置することも可能である。
The measuring head 11 is preliminarily input with a proportional constant C of plating base plates of various steel types, a calibration curve formula based on the fluorescent X-ray intensity ratio I cr b / I Fe b of Cr and Fe of the plating base plates, and the like. By connecting to the device 19, the Fe plating adhesion amount is calculated and fed back to the plating condition. It is also possible to continuously arrange a continuous molten metal plating line on the outlet side of the continuous electroplating line.

【022】めっき原板のステンレス鋼板は、鋼種により
Cr、Fe以外に種々の添加元素や不可避的不純物を含
んでいるが、これらは極く特殊な場合を除いて測定の障
害にならない。また、Feめっきでは、溶融めっきの際
に溶融金属との濡れ性を向上させるため、0.001〜
0.3mass%のBを添加する場合があるが、これも同様
である。
The stainless steel plate as the plating base plate contains various additive elements and unavoidable impurities in addition to Cr and Fe depending on the steel type, but these do not hinder the measurement except in very special cases. Further, in Fe plating, in order to improve wettability with molten metal during hot dipping, 0.001 to
B may be added in an amount of 0.3 mass% in some cases, and this is also the same.

【023】[0233]

【実施例】図5の測定ヘツド11を図6のように配置し
て、種々のステンレス鋼板に下記条件でFeめっきを施
しながらFeめっき付着量を測定し、重量法での測定値
と比較した。重量法での試料は両サイド、センタ−部の
ライン方向にランダムな位置からサンプリングした。第
1表に本発明法と重量法によるFeめっき付着量を示
す。 (1)めっき原板 (A)鋼種 SUS304(18〜20mass%Cr、8〜10.5mas
s%Ni) SUS316(16〜18mass%Cr、10〜14mass
%Ni) SUH409(10.5〜12mass%Cr) SUS444(18〜20mass%Cr) (B)板厚 1.0mm (C)板幅 1,000mm (D)コイル数 各鋼種とも製造ロットの異なるもの
5コイル
EXAMPLE The measurement head 11 of FIG. 5 was arranged as shown in FIG. 6, and the Fe plating adhesion amount was measured while performing Fe plating on various stainless steel plates under the following conditions, and compared with the measurement value by the gravimetric method. . Samples by the gravimetric method were sampled from random positions in the line direction on both sides and the center part. Table 1 shows the amount of Fe plating deposited by the method of the present invention and the gravimetric method. (1) Plated original plate (A) Steel type SUS304 (18 to 20 mass% Cr, 8 to 10.5 mas)
s% Ni) SUS316 (16-18 mass% Cr, 10-14 mass)
% Ni) SUH409 (10.5 to 12 mass% Cr) SUS444 (18 to 20 mass% Cr) (B) Plate thickness 1.0 mm (C) Plate width 1,000 mm (D) Number of coils Different manufacturing lots for each steel type 5 coils

【024】(2)Feめっき条件 (A)めっき液組成 硫酸第一鉄300g/l、硫酸ソ−ダ70g/l、酒石酸
1g/l、ホウ酸5〜50g/l (B)pH 1.5〜2.0 (C)液温 50℃ (D)電流密度 5,000A/m2 (E)Feめっき付着量 0.38〜5.78g/m2(通
電時間で調整) (F)Feめっき層中のB濃度 0.001〜0.3ma
ss%(ホウ酸添加量で調整)
(2) Fe plating conditions (A) Plating solution composition Ferrous sulfate 300 g / l, sodium sulfate 70 g / l, tartaric acid
1 g / l, boric acid 5 to 50 g / l (B) pH 1.5 to 2.0 (C) Liquid temperature 50 ° C. (D) Current density 5,000 A / m2  (E) Fe plating adhesion amount 0.38 to 5.78 g / m2(Communication
(F) B concentration in the Fe plating layer 0.001 to 0.3 ma
ss% (adjusted by the amount of boric acid added)

【025】(3)Feめっき付着量測定条件 (A)X線管球 タングステン (B)管電圧 50kV (C)管電流 40mA (D)分光結晶 LiF (E)検出器 比例計数管 (F)測定対象 Cr−Kα線、Fe−Kα線 (G)励起用X線の入射角と蛍光X線の取り出し角 6
0° (H)測定時間 1sec (I)トラバ−ス方法 測定ヘツドを板幅方向に1分毎
に1往復させながら、両サイド、センタ−部を測定(F
eめっき前後で表裏それぞれの測定箇所が同一となるよ
うに測定ヘツドを同調)
(3) Fe plating deposition amount measuring condition (A) X-ray tube tungsten (B) tube voltage 50 kV (C) tube current 40 mA (D) dispersive crystal LiF (E) detector proportional counter (F) measurement Target Cr-Kα ray, Fe-Kα ray (G) Incident angle of excitation X-ray and extraction angle of fluorescent X-ray 6
0 ° (H) Measuring time 1 sec (I) Traversing method While reciprocating the measuring head once every 1 minute in the width direction, measure both sides and the center part (F
e The measurement heads are tuned so that the measurement points on the front and back are the same before and after plating)

【026】[026]

【第1表】 [Table 1]

【027】[027]

【発明の効果】以上のように、本発明法は、ステンレス
鋼板全長のFeめっき付着量をめっきと平行して測定で
きるので、付着量を目的の範囲に精度良く管理できると
ともに、付着量に過不足があっても、直ちに調整でき
る。このため、品質が向上し、Feめっき費が安価にな
る。また、Feめっきの連続電気めっきラインと連続溶
融めっきラインとを結合させて、Feめっきと溶融めっ
きとを同時に行う場合でも適用できる。
As described above, according to the method of the present invention, the amount of Fe plating deposited on the entire length of the stainless steel plate can be measured in parallel with the plating. Even if there is a shortage, it can be adjusted immediately. Therefore, the quality is improved and the Fe plating cost is reduced. Further, it can be applied even when the continuous electroplating line for Fe plating and the continuous hot dip plating line are combined to perform the Fe plating and the hot dip plating at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】Feめっきステンレス鋼板にX線を照射した場
合に発生するFeとCrの蛍光X線を示すものである。
FIG. 1 shows fluorescent X-rays of Fe and Cr generated when an Fe-plated stainless steel plate is irradiated with X-rays.

【図2】Feめっきステンレス鋼板のFeめっき付着量
とFeの蛍光X線強度との関係を鋼種、製造ロット毎に
示すグラフである。
FIG. 2 is a graph showing the relationship between the amount of Fe plating deposited on an Fe-plated stainless steel plate and the fluorescent X-ray intensity of Fe for each steel type and manufacturing lot.

【図3】Feめっきステンレス鋼板のFeめっき付着量
とCrの蛍光X線強度との関係を鋼種、製造ロット毎に
示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of Fe plating deposited on an Fe-plated stainless steel plate and the fluorescent X-ray intensity of Cr for each steel type and manufacturing lot.

【図4】Feめっきステンレス鋼板のFeめっき付着量
と、CrとFeの蛍光X線強度比の関係を鋼種、製造ロ
ット毎に示すグラフである。
FIG. 4 is a graph showing the relationship between the amount of Fe plating deposited on an Fe-plated stainless steel plate and the fluorescent X-ray intensity ratio of Cr and Fe for each steel type and manufacturing lot.

【図5】めっき原板のステンレス鋼板およびFeめっき
ステンレス鋼板の蛍光X線強度測定方法を示す図であ
る。
FIG. 5 is a diagram showing a fluorescent X-ray intensity measurement method for a stainless steel plate as an original plating plate and an Fe-plated stainless steel plate.

【図6】連続Feめっきラインで本発明法によるFeめ
っき付着量の測定方法を示す図である。
FIG. 6 is a diagram showing a method for measuring the amount of Fe plating deposited by the method of the present invention on a continuous Fe plating line.

【符号説明】[Explanation of symbols]

1…X線、2…Feの蛍光X線、3…Crの蛍光X線、
4…ステンレス鋼板、5…Feめっき層、10…測定鋼
板、11…測定ヘッド、12…X線管球、13…Crの
蛍光X線、14…Feの蛍光X線、15…分光結晶、1
6…検出器、17…電解脱脂槽、18…Fe電気めっき
槽、19…演算処理装置、
1 ... X-ray, 2 ... Fe fluorescent X-ray, 3 ... Cr fluorescent X-ray,
4 ... Stainless steel plate, 5 ... Fe plating layer, 10 ... Measuring steel plate, 11 ... Measuring head, 12 ... X-ray tube, 13 ... Cr fluorescent X-ray, 14 ... Fe fluorescent X-ray, 15 ... Spectroscopic crystal, 1
6 ... Detector, 17 ... Electrolytic degreasing tank, 18 ... Fe electroplating tank, 19 ... Arithmetic processing device,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蛍光X線法によりFeめっき前後のス
テンレス鋼板を分析して、Feめっき前のCrの蛍光X
線強度Icr bとFeの蛍光X線強度IFe bの比Icr b/IFe
bおよびFeめっき後のCrの蛍光X線強度Icr aとFe
の蛍光X線強度IFe aの比Icr a/IFe aを求め、これらの
値を下式に代入して、Feめっき付着量W(g/m2)を
算出することを特徴とするFeめっきステンレス鋼板の
Feめっき付着量測定方法。 W=(Icr b/IFe b−Icr a/IFe a)/C ここで、Cは鋼種により決定される比例定数。
1. A fluorescent X-ray of Cr before Fe plating is analyzed by analyzing a stainless steel plate before and after Fe plating by a fluorescent X-ray method.
Ratio I cr b / I Fe of the line intensity I cr b and the fluorescent X-ray intensity I Fe b of Fe
b and Fe fluorescence Cr X-ray intensity I cr a and Fe after plating
The ratio I cr a / I Fe a of the fluorescent X-ray intensity I Fe a is calculated, and these values are substituted into the following formula to calculate the Fe plating adhesion amount W (g / m 2 ). Method for measuring the amount of Fe plating deposited on an Fe-plated stainless steel sheet. W = (I cr b / I Fe b −I cr a / I Fe a ) / C Here, C is a proportional constant determined by the steel type.
JP4213286A 1992-07-17 1992-07-17 Fe-plated stainless steel plate and method for measuring attachment quantity of plating Withdrawn JPH0634352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4213286A JPH0634352A (en) 1992-07-17 1992-07-17 Fe-plated stainless steel plate and method for measuring attachment quantity of plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4213286A JPH0634352A (en) 1992-07-17 1992-07-17 Fe-plated stainless steel plate and method for measuring attachment quantity of plating

Publications (1)

Publication Number Publication Date
JPH0634352A true JPH0634352A (en) 1994-02-08

Family

ID=16636603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4213286A Withdrawn JPH0634352A (en) 1992-07-17 1992-07-17 Fe-plated stainless steel plate and method for measuring attachment quantity of plating

Country Status (1)

Country Link
JP (1) JPH0634352A (en)

Similar Documents

Publication Publication Date Title
CN103649679B (en) The measuring method of the Fe-Zn alloy phase thickness of alloyed hot-dip galvanized steel plate and measurement apparatus
DE2636145C3 (en) Method for determining the degree of alloying of hot-dip galvanized steel sheets
DE69407937T2 (en) METHOD FOR HOT-GALNIFYING HIGH-STRENGTH STEEL SHEET WITH LESS UNCOATED AREAS
Sürme et al. Systematic corrosion investigation of various Cu–Sn alloys electrodeposited on mild steel in acidic solution: dependence of alloy composition
JPS58223047A (en) Method for x ray fluorescence analysis
JPH0634352A (en) Fe-plated stainless steel plate and method for measuring attachment quantity of plating
CN111638262A (en) Solid reference substance for laser ablation inductively coupled plasma mass spectrometry and quantitative analysis method
JP2745428B2 (en) X-ray diffraction method for evaluating the processing performance of alloyed zinc plated steel sheets for high processing
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
JP2707865B2 (en) Method of measuring alloying degree of alloyed galvanized layer
JP3778037B2 (en) Determination method of alloy phase in plating layer
KR100206491B1 (en) Metal quantity analyzing method of plated steel plate
KR20000025344A (en) Method for measuring coating amount and alloy degree using fluorescent x-rays
JPH01301155A (en) Method of measuring degree of alloying of alloyed and galvanized steel sheet by x-ray diffraction method and method of controlling degree of alloying in production line for alloyed and galvanized steel sheet
KR20040056207A (en) Method of measuring alloying degree for galvannealed steels by XRD
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
JP2672929B2 (en) Quantitative analysis method for upper layer plating of double-layered alloyed hot dip galvanized steel sheet by glow discharge emission spectrometry
JPH08297106A (en) Measuring method for plating stuck quantity and mg percentage content of zn-mg alloy-plated steel plate
JP2745427B2 (en) Method for evaluating drawability of alloyed zinc-coated steel sheet by X-ray diffraction method
JPH09159428A (en) Method for measuring deposition quantities of mg, and surface layer zn of zn-mg based plated steel plate
JPS5946543A (en) Method for measuring degree of alloy formation of galvannealed steel plate
JPH06331576A (en) Analysis of iron zinc alloy plating layer on iron
JPS61194164A (en) Method for measuring deposition of zinc hot dipped steel sheet
RU2089895C1 (en) Electrochemical method of analysis of chrome carbide materials
Hauser Analysis of Zinc Used in Galvanizing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005