JPH06339617A - Hollow fiber composite membrane and its preparation - Google Patents

Hollow fiber composite membrane and its preparation

Info

Publication number
JPH06339617A
JPH06339617A JP27726192A JP27726192A JPH06339617A JP H06339617 A JPH06339617 A JP H06339617A JP 27726192 A JP27726192 A JP 27726192A JP 27726192 A JP27726192 A JP 27726192A JP H06339617 A JPH06339617 A JP H06339617A
Authority
JP
Japan
Prior art keywords
membrane
separation
porous layer
separation membrane
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27726192A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fujiki
浩之 藤木
Nobuyuki Yamamoto
伸之 山本
Takayuki Hirai
孝之 平井
Masaji Okamoto
正司 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP27726192A priority Critical patent/JPH06339617A/en
Publication of JPH06339617A publication Critical patent/JPH06339617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To enlarge gas permeation characteristics and to attempt to improve membrane characteristics by placing a plurality of hollow separation membranes with separation function therein along the longitudinal direction of a fibrous body consisting of a porous layer with reinforcing function and laminating a porous layer with reinforcing function on the inner surface of a separation membrane. CONSTITUTION:A plurality of hollow separation membranes B with separation function therein along the longitudinal direction of a fibrous body consisting of a porous layer A with reinforcing function exist and a porous layer C with reinforcing function is laminated on the inner surface of a separation membrane. Gas permeation characteristics is made thereby about 3.8 times larger than the conventional composite membrane even when the outer diameters and the fine pore structures of the porous layers A and C and the thickness of the separation membrane B are the same as those for the conventional composite membrane and the membrane characteristics can be improved by increase in the membrane area of the separation membrane B. In addition, it is possible to miniaturize furthermore various membrane modules wherein the conventional composite membranes are used by using this multifilament type hollow fiber composite membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス分離、溶剤分離、
脱気等に用いられる高性能のマルチフィラメント型中空
繊維状複合膜に関するものである。
The present invention relates to gas separation, solvent separation,
The present invention relates to a high-performance multifilament hollow fiber composite membrane used for deaeration and the like.

【0002】[0002]

【従来の技術】物質を分離精製する技術は、古くから数
多くの方法が開発され、改良が重ねられてきた。膜分離
技術もその一つであるが、その改良の経過を見ると優れ
た膜素材の開発と分離効率を高めるための薄膜化技術の
開発が大きな技術開発の流れであった。
2. Description of the Related Art Many techniques for separating and refining substances have been developed and improved since ancient times. Membrane separation technology is one of them, but looking at the progress of its improvement, the development of excellent membrane materials and the development of thin film technology to improve the separation efficiency were the major technological development flows.

【0003】薄膜化技術の一つとして、多孔質の基材の
上にコート法や蒸着法によって薄膜を形成させる方法が
盛んに行われているが、多孔質基材上にコートするため
に、基材の細孔に薄膜材料が侵入して実質的な薄膜が得
られにくかった。またこの欠点を解消するものとして、
多孔質基材の細孔を予め溶解性物質で埋めておいて表面
に薄膜層を形成した後に、多孔質基材内の溶解性物質を
溶出する方法がある。
As one of thinning techniques, a method of forming a thin film on a porous base material by a coating method or a vapor deposition method is widely used. However, in order to coat on a porous base material, It was difficult to obtain a substantial thin film because the thin film material entered the pores of the base material. As a solution to this drawback,
There is a method of previously filling the pores of the porous substrate with a soluble substance to form a thin film layer on the surface and then eluting the soluble substance in the porous substrate.

【0004】しかしこの方法においても、均質な薄膜層
が得られ難く、また溶出過程で薄膜層が傷つきやすかっ
たり、得られた複合膜から薄膜層が剥れやすく、適用で
きる膜形態にも制限があるという問題点があった。
However, even in this method, it is difficult to obtain a uniform thin film layer, the thin film layer is easily damaged during the elution process, and the thin film layer is easily peeled off from the obtained composite film. There was a problem.

【0005】分離膜を薄膜化して工業的に製造できる膜
構造としたものとして特公平3−44811号公報に開
示された多層複合膜中空糸膜などが知られている。これ
らの複合膜の膜構造は、図3に示すように、補強機能を
持つ多孔質層(A)の内部に多孔質層(C)を内表面に
積層した分離機能を持つ中空状の分離膜(B)が一つだ
け存在する構造になっている。
A multilayer composite membrane hollow fiber membrane disclosed in Japanese Patent Publication No. 3-44811 is known as a membrane structure which can be industrially produced by thinning a separation membrane. The membrane structure of these composite membranes is, as shown in FIG. 3, a hollow separation membrane having a separation function in which a porous layer (A) having a reinforcing function is laminated on the inner surface thereof. The structure has only one (B).

【0006】[0006]

【発明が解決しようとする課題】しかしながらこれらの
複合膜の膜構造は、図3から明らかなように、分離機能
を持つ中空状の分離膜(B)が中空糸の複合膜では補強
機能を持つ多孔質層(A)中に一つだけ存在していた。
However, as is apparent from FIG. 3, the membrane structure of these composite membranes has a reinforcing function in the case where the hollow separation membrane (B) having the separation function is the hollow fiber composite membrane. There was only one in the porous layer (A).

【0007】多層複合分離膜としての性能指標の一つに
透過速度があるが、膜素材が同じであれば、透過速度を
高くするためには、分離膜(B)をより薄膜化するとと
もに、分離膜(B)の有効膜面積を増大させることが重
要である。更に、多孔質層(A)及び(C)の孔径、空
孔率、膜厚を透過の抵抗にならないように設定すること
も重要である。
Permeation speed is one of the performance indexes as a multilayer composite separation membrane, but if the membrane materials are the same, in order to increase the permeation speed, the separation membrane (B) is made thinner and It is important to increase the effective membrane area of the separation membrane (B). Furthermore, it is important to set the pore diameter, porosity, and film thickness of the porous layers (A) and (C) so that they do not become a resistance to permeation.

【0008】分離膜(B)を薄膜化していくと膜欠陥の
発生率が大きくなるため薄膜化には限界がある。従って
分離膜(B)の有効膜面積を大きくすることは非常に有
効な手段である。
As the separation membrane (B) is made thinner, the rate of occurrence of membrane defects increases, so there is a limit to thinning. Therefore, increasing the effective membrane area of the separation membrane (B) is a very effective means.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、補強機
能を持つ多孔質層(A)からなる繊維状物体の長手方向
に沿って、内部に分離機能を持つ中空状の分離膜(B)
が複数存在し、分離膜(B)の内表面に補強機能を持つ
多孔質層(C)が積層されているマルチフィラメント型
中空繊維状複合膜にある。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a hollow separation membrane (B) having a separation function inside along the longitudinal direction of a fibrous object comprising a porous layer (A) having a reinforcing function. )
In the multifilament type hollow fibrous composite membrane in which a plurality of layers are present and the porous layer (C) having a reinforcing function is laminated on the inner surface of the separation membrane (B).

【0010】さらに、中空部の流体を分配するノズルと
補強層重合体(A′)を分配するノズル、分離膜重合体
(B′)を分配するノズル及び、補強層重合体(C′)
を分配するノズルを組み合わせた紡糸ノズルを用い、補
強層重合体(A′)と補強層重合体(C′)が分離膜重
合体(B′)をサンドイッチにする形で複数複合紡糸
し、延伸によって少なくとも補強層重合体(A′)及び
補強層重合体(C′)部分を多孔質化させて、該中空繊
維状複合膜の内表面及び外表面が補強機能を持つ多孔質
層(C)及び補強機能を持つ多孔質層(A)からなる構
造を有するマルチフィラメント型中空繊維状複合膜の製
造法にある。
Further, a nozzle for distributing the fluid in the hollow portion, a nozzle for distributing the reinforcing layer polymer (A '), a nozzle for distributing the separation membrane polymer (B'), and the reinforcing layer polymer (C ').
Using a spinning nozzle in combination with a nozzle for distributing, the reinforcing layer polymer (A ') and the reinforcing layer polymer (C') are composite-spun in a form of sandwiching the separation membrane polymer (B ') and stretched. By making at least the reinforcing layer polymer (A ') and the reinforcing layer polymer (C') part porous by the porous layer (C), the inner surface and the outer surface of the hollow fibrous composite membrane have a reinforcing function. And a method for producing a multifilament type hollow fiber composite membrane having a structure comprising a porous layer (A) having a reinforcing function.

【0011】以下、図面を参照しつつ本発明のマルチフ
ィラメント型中空繊維状複合膜について説明する。図1
及び2は、本発明の複合膜の断面図の例を示したもので
ある。補強機能を持つ多孔質層(A)の内部に補強機能
を持つ多孔質層(C)を内表面に積層した分離機能を持
つ分離膜(B)が複数存在した膜構造を示している。
The multifilament type hollow fiber composite membrane of the present invention will be described below with reference to the drawings. Figure 1
2 and 2 show examples of sectional views of the composite membrane of the present invention. This shows a membrane structure in which a plurality of separation membranes (B) having a separation function in which a porous layer (C) having a reinforcement function is laminated on the inner surface are present inside the porous layer (A) having a reinforcement function.

【0012】本発明の複合膜は分離膜(B)一つ一つで
見れば少なくとも三層構造からなっている。基本的に
は、分離膜(B)は一層で充分であるが、目的に応じて
二層以上の多層構造としてもよい。
The composite membrane of the present invention has at least a three-layer structure when viewed as each separation membrane (B). Basically, the separation membrane (B) is sufficient in one layer, but may have a multilayer structure of two or more layers depending on the purpose.

【0013】分離に於ては、分離機能を持つ層が最も重
要であり、この分離膜(B)は表層にあると取り扱い時
等に分離膜表面に傷が生ずるおそれがあるが本発明の複
合膜では、分離膜(B)が多孔質層で覆われているため
にこのような危険性がない。
In the separation, the layer having the separating function is the most important, and if the separation membrane (B) is on the surface layer, the surface of the separation membrane may be damaged during handling, but the composite of the present invention is used. The membrane does not have such a danger because the separation membrane (B) is covered with the porous layer.

【0014】本発明の複合膜の膜性能は多孔質層(A)
及び多孔質層(C)の空孔率、平均孔径が同じで、厚み
が数百ミクロン程度以下であれば、多孔質層中に存在す
る分離膜(B)の膜厚と膜面積によって決定される。
The membrane performance of the composite membrane of the present invention depends on the porous layer (A).
If the porosity and average pore diameter of the porous layer (C) are the same and the thickness is about several hundreds of microns or less, it is determined by the thickness and the membrane area of the separation membrane (B) present in the porous layer. It

【0015】従って分離膜(B)を薄膜化し、存在する
分離膜(B)の本数を増やすことで膜面積が大きくなり
膜性能は高くなる。分離膜(B)の膜厚を薄くする方法
は、製造方法、あるいは素材等により限界がある。
Therefore, by thinning the separation membrane (B) and increasing the number of existing separation membranes (B), the membrane area is increased and the membrane performance is improved. The method for reducing the thickness of the separation membrane (B) has a limit depending on the manufacturing method or the material.

【0016】また薄膜化すればするほど膜欠陥発生の危
険性が増加する。従って薄膜化が限界に近くなった場合
或いは膜欠陥発生の危険性を少なくし、膜性能を高度な
ものとするには、多孔質膜中に存在する分離膜(B)の
膜面積を増加させることが有効である。
Moreover, the risk of occurrence of film defects increases as the film becomes thinner. Therefore, when the thinning becomes close to the limit or the risk of the occurrence of membrane defects is reduced and the membrane performance is enhanced, the membrane area of the separation membrane (B) present in the porous membrane is increased. Is effective.

【0017】分離膜(B)の膜面積を増加させるため
に、従来はその横断面で観察した場合、図3の様に一本
の複合膜中に一つの中空状分離膜が存在する形態であっ
たが、本発明の複合膜は、図1若しくは図2の様に一本
の複合膜中に中空状分離膜が複数存在する形態となって
いる。
In order to increase the membrane area of the separation membrane (B), conventionally, when observed in its cross section, one composite membrane has one hollow separation membrane as shown in FIG. However, the composite membrane of the present invention has a form in which a plurality of hollow separation membranes are present in one composite membrane as shown in FIG. 1 or 2.

【0018】尚本発明で中空状分離膜が複数存在する形
態とは、図3の様な一つの中空状膜の形態である場合に
比べて少なくとも同等以上の膜面積となるように分離膜
(B)を複数有していることをいう。また複数の分離膜
(B)の大きさは同じでなくてもよいが、同じであるこ
とが好ましい。
The form in which a plurality of hollow separation membranes are present in the present invention is such that the separation membrane has at least the same or more membrane area as compared with the case of a single hollow membrane form as shown in FIG. It means having multiple B). The sizes of the plurality of separation membranes (B) may not be the same, but it is preferable that they are the same.

【0019】本発明で補強機能を持つ多孔質層(A)か
らなる繊維状物体の長手方向に沿って、内部に分離機能
を持つ中空状の分離膜(B)が複数存在し、分離膜
(B)の内表面に補強機能を持つ多孔質層(C)が積層
されているとは、多孔質層(A)と分離膜(B)、分離
膜(B)と多孔質層(C)との間に特別な空隙部が存在
しない状態をいうものとする。
According to the present invention, a plurality of hollow separation membranes (B) having a separation function are present inside the fibrous object comprising the porous layer (A) having a reinforcement function, and the separation membrane ( The porous layer (C) having a reinforcing function is laminated on the inner surface of B) means that the porous layer (A) and the separation membrane (B), and the separation membrane (B) and the porous layer (C). It means that there is no special void between them.

【0020】分離膜(B)は分離機能を有する部分であ
り、透過速度を高い値に維持するには、出来るだけ薄い
ことが好ましい。従ってこの分離膜(B)の厚みが2μ
mを超えると薄膜化の意味が薄れる。
The separation membrane (B) is a portion having a separation function and is preferably as thin as possible in order to maintain a high transmission rate. Therefore, the thickness of this separation membrane (B) is 2μ.
If it exceeds m, the meaning of thinning is diminished.

【0021】一方分離膜(B)の厚みの下限値は特に限
定されないが、およそ0.005μm以上であることが
好ましく、0.01μm以上であることがより好まし
い。
On the other hand, the lower limit of the thickness of the separation membrane (B) is not particularly limited, but it is preferably about 0.005 μm or more, and more preferably 0.01 μm or more.

【0022】分離膜(B)が多孔質層中に複数存在する
位置範囲は、分離膜(B)の取り扱い時等の外傷から保
護するためにも多孔質層(A)の外表面より0.5μm
以上内側にあることが好ましく2μm以上内側にあるこ
とがより好ましい。分離膜(B)の断面形状は矩形や波
形等どのような形状でも差し支えないが高強度の維持や
加工等を考えた場合円形がより好ましい。
The position range in which a plurality of separation membranes (B) are present in the porous layer is smaller than the outer surface of the porous layer (A) in order to protect the separation membrane (B) from external damages such as handling. 5 μm
The inner side is preferable, and the inner side is more preferably 2 μm or more. The cross-sectional shape of the separation membrane (B) may be any shape such as rectangular or corrugated, but a circular shape is more preferable in consideration of maintaining high strength and processing.

【0023】分離膜(B)同士は接触しても差し支えな
いが、その機能を有効に使用するために分離膜(B)外
径の0.06倍以上であることが好ましい。補強機能を
持つ多孔質層(A)及び多孔質層(C)は、補強、保護
を受け持つ他に、分離膜(B)を薄膜化させる際に膜欠
陥の発生防止に効果を発揮する。
The separation membranes (B) may come into contact with each other, but in order to effectively use their functions, it is preferably 0.06 times or more the outer diameter of the separation membrane (B). The porous layer (A) and the porous layer (C) having a reinforcing function, in addition to being responsible for reinforcement and protection, exert an effect of preventing the occurrence of a membrane defect when the separation membrane (B) is thinned.

【0024】本発明の複合膜において、分離膜(B)を
薄くする場合、分離膜(B)が薄膜になればなるほど、
多孔質層(A)及び(C)の孔径の制御は重要であり、
制御がうまくゆかぬと分離膜(B)に欠陥が発生しやす
くなる。
In the composite membrane of the present invention, when the separation membrane (B) is thinned, the thinner the separation membrane (B) is,
It is important to control the pore size of the porous layers (A) and (C),
If the control is not performed properly, defects are likely to occur in the separation film (B).

【0025】従って分離膜(B)の分離機能を膜欠陥の
発生がない状態で充分に発現出来てしかも分離膜(B)
が分離機能を発現するのに抵抗とならないような多孔質
層(A)及び(C)の好ましい多孔質構造は、平均孔径
が0.005〜0.5μm好ましくは0.01〜0.3
μm、空孔率が20〜90%好ましくは30〜70%、
複合膜の外径が10〜1000μmである。
Therefore, the separation function of the separation membrane (B) can be sufficiently exhibited without the occurrence of membrane defects, and the separation membrane (B) can be obtained.
The preferable porous structure of the porous layers (A) and (C) such that the above does not resist the separation function, the average pore diameter is 0.005 to 0.5 μm, preferably 0.01 to 0.3.
μm, porosity 20 to 90%, preferably 30 to 70%,
The outer diameter of the composite membrane is 10 to 1000 μm.

【0026】多孔質層(C)の膜厚は分離膜(B)の外
径の0.01倍以上あればよく0.06倍以上あればよ
り好ましい。孔径が0.005μmでは分離対象物質の
透過抵抗が増大し、0.5μmを超えると、分離膜
(B)の欠陥発生の原因となりやすい。空孔率が20%
未満では多孔質層(A)及び(C)の細孔の開口部に臨
む分離膜(B)の割合が少なすぎて分離膜(B)の有効
利用率が著しく減少し、90%を超えると本発明の複合
膜の補強保持が難しくなる。
The thickness of the porous layer (C) is preferably 0.01 times or more the outer diameter of the separation membrane (B), more preferably 0.06 times or more. When the pore diameter is 0.005 μm, the permeation resistance of the substance to be separated increases, and when it exceeds 0.5 μm, it tends to cause defects in the separation membrane (B). 20% porosity
When the ratio is less than the above, the ratio of the separation membrane (B) facing the openings of the pores of the porous layers (A) and (C) is too small, and the effective utilization rate of the separation membrane (B) is significantly reduced. It becomes difficult to reinforce and hold the composite membrane of the present invention.

【0027】本発明の複合膜の外径が10μm未満では
取扱いが難しく、強度的にも不充分となりやすい。多孔
質層中に複数存在させた分離膜(B)の膜面積を増加さ
せるには、複合膜の外径が大きい方が有利であるが、1
000μmを超えると分離対象物質の多孔質層中での抵
抗が過大となり複合膜中心部にある分離膜(B)の分離
機能が低下しやすい。
When the outer diameter of the composite membrane of the present invention is less than 10 μm, it is difficult to handle and the strength tends to be insufficient. In order to increase the membrane area of a plurality of separation membranes (B) present in the porous layer, it is advantageous that the outer diameter of the composite membrane is large.
If it exceeds 000 μm, the resistance of the substance to be separated in the porous layer becomes too large, and the separation function of the separation membrane (B) at the center of the composite membrane is likely to deteriorate.

【0028】多孔質層中にある中空部の直径は1μm以
上あればよく10μm以上あることが好ましい。中空部
の直径が1μm未満では分離対象物質の透過抵抗が増大
し分離機能が低下しやすい。
The diameter of the hollow portion in the porous layer may be 1 μm or more, preferably 10 μm or more. If the diameter of the hollow portion is less than 1 μm, the permeation resistance of the substance to be separated increases and the separation function is likely to deteriorate.

【0029】本発明の複合膜の製造法を以下に記載す
る。中空部の流体を分配するノズルと補強層重合体
(A′)を分配するノズル、分離膜重合体(B′)を分
配するノズル及び補強層重合体(C′)を分配するノズ
ルを組み合わせた紡糸ノズルにより、溶融賦形温度15
0〜300℃の範囲で、分離膜重合体(B′)を補強層
重合体(A′)及び(C′)で挟みこんだ中空状の複合
膜として複数本形成し、更にそれぞれの複合膜を外層の
補強層重合体(A′)により接合一体化ししかるのち、
ドラフト比5〜9000の範囲で紡糸する。
The method for producing the composite membrane of the present invention is described below. A nozzle for distributing the fluid in the hollow portion, a nozzle for distributing the polymer for reinforcing layer (A '), a nozzle for distributing the polymer for separating membrane (B') and a nozzle for distributing the polymer for reinforcing layer (C ') were combined. Melt shaping temperature of 15 with spinning nozzle
A plurality of separation membrane polymers (B ') are sandwiched between the reinforcing layer polymers (A') and (C ') in the range of 0 to 300 ° C to form a plurality of hollow composite membranes, and further each composite membrane is formed. After being joined and integrated with the reinforcing layer polymer (A ') of the outer layer,
Spinning is performed in a draft ratio range of 5 to 9000.

【0030】溶融形成された複合膜先駆体は、必要に応
じてアニール処理した後延伸処理により多孔質層(A)
及び(C)に用いられる補強層重合体(A′)及び
(C′)の部分を多孔化する。
The melt-formed composite film precursor is annealed as necessary and then stretched to form a porous layer (A).
The portions of the reinforcing layer polymers (A ') and (C') used in (C) and (C) are made porous.

【0031】延伸多孔化の方法としては、ポリオレフィ
ンで行われている公知の方法が採用できる。即ち常温付
近での少量の延伸によって多孔質層(A)及び(C)に
用いられる補強層重合体(A′)及び(C′)にミクロ
クラックを発生させて白化させ、続いて加熱延伸によっ
て孔の拡大と孔形状の安定化を図ることができる。
As a method for stretching and porosifying, a known method used for polyolefin can be adopted. That is, the reinforcing layer polymers (A ') and (C') used for the porous layers (A) and (C) are caused to whiten by microcracking by a small amount of stretching at around room temperature, and then, by heat stretching. It is possible to enlarge the holes and stabilize the hole shape.

【0032】この間分離膜(B)に用いられる分離膜重
合体(B′)は多孔化されないので延伸倍率の増加に伴
い薄膜化される。延伸条件も特に限定されず、補強層重
合体(A′)及び(C′)、分離膜重合体(B′)の種
類に応じて最適条件を設定しうるが、例えば多孔質層
(A)及び(C)に用いられる補強層重合体(A′)及
び(C′)にポリエチレンを用いる場合には、冷延伸条
件としては常温下で40〜200%、熱延伸条件として
は80〜125℃好ましくは90〜105℃で全延伸倍
率が100〜300%程度とする条件が採用される。更
に熱安定性を改良するために、80〜125℃好ましく
は105〜120℃で定長もしくは緩和熱処理してもよ
い。
During this period, the separation membrane polymer (B ') used for the separation membrane (B) is not made porous, and thus becomes thin as the draw ratio increases. The stretching conditions are not particularly limited, and the optimum conditions can be set depending on the types of the reinforcing layer polymers (A ') and (C') and the separation membrane polymer (B '). For example, the porous layer (A) When polyethylene is used for the reinforcing layer polymers (A ′) and (C ′) used in (C) and (C), the cold stretching conditions are 40 to 200% at room temperature and the hot stretching conditions are 80 to 125 ° C. Preferably, the conditions are such that the total draw ratio is about 100 to 300% at 90 to 105 ° C. To further improve the thermal stability, a constant length or relaxation heat treatment may be performed at 80 to 125 ° C, preferably 105 to 120 ° C.

【0033】本発明の複合膜において、分離膜(B)に
用いられる分離膜重合体(B′)としては、シリコーン
ゴム、シリコーンとポリカーボネートの共重合体等シリ
コーン系重合体,ポリ4−メチルペンテン−1、線状低
密度ポリエチレン等のポリオレフィン系重合体,パーフ
ロロアルキル系フッ素含有重合体,ポリウレタン系重合
体,ポリフェニレンオキシド,ポリ4−ビニルピリジ
ン,およびこれら重合体を構成するモノマーの共重合
体,及びこれら重合体を構成するモノマーの共重合体,
及びこれらの混合物があげられる。
In the composite membrane of the present invention, the separation membrane polymer (B ') used for the separation membrane (B) is silicone rubber, a silicone-based polymer such as a copolymer of silicone and polycarbonate, or poly-4-methylpentene. -1, polyolefin polymers such as linear low-density polyethylene, perfluoroalkyl fluorine-containing polymers, polyurethane polymers, polyphenylene oxide, poly-4-vinylpyridine, and copolymers of the monomers constituting these polymers , And copolymers of the monomers constituting these polymers,
And mixtures thereof.

【0034】多孔質層(A)及び(C)に用いられる補
強層重合体(A′)及び(C′)としては、延伸操作に
よって多孔化が可能な素材であればどの重合体を使用し
てもよいが、ポリエチレン,ポリプロピレン,ポリ4−
メチルペンテン−1等のポリオレフィン,及びポリフッ
化ビニリデン、テトラフロロエチレン等のハロゲン含有
ポリオレフィン等の結晶性ポリマーが好ましい。
As the reinforcing layer polymers (A ') and (C') used in the porous layers (A) and (C), any polymer can be used as long as it is a material that can be made porous by a stretching operation. May be polyethylene, polypropylene, poly 4-
Crystalline polymers such as polyolefins such as methylpentene-1 and halogen-containing polyolefins such as polyvinylidene fluoride and tetrafluoroethylene are preferred.

【0035】[0035]

【実施例】以下実施例により本発明を具体的に説明す
る。「平均孔径」は水銀ポロシメータで測定し、細孔径
と細孔容量の関係から細孔容量が1/2のときの細孔径
を平均孔径とした。「中間層の膜厚」は電子顕微鏡観察
で測定した。
The present invention will be described in detail with reference to the following examples. The "average pore diameter" was measured with a mercury porosimeter, and the pore diameter when the pore volume was 1/2 was taken as the average pore diameter from the relationship between the pore diameter and the pore volume. The “thickness of the intermediate layer” was measured by electron microscope observation.

【0036】実施例1 補強機能を持つ多孔質層(A)からなる繊維状物体の長
手方向に沿って、内部に分離機能を持つ中空状の分離膜
(B)を5本形成し、分離膜(B)の内表面に補強機能
を持つ多孔質層(C)が積層された形を形成するように
配置されたマルチ膜製造用ノズルを用い、多孔質層
(A)及び(C)部に供給するポリマー素材として密度
0.968g/cc、メルトインデックス値が5.5の
高密度ポリエチレン(三井石油化学工業(株)製、ハイ
ゼックス2200J)を分離膜(B)部に供給するポリ
マー素材としてセグメント化ポリウレタン(サーメデッ
ク社製、テコフレックスEG−80A)を用い、吐出温
度165℃、巻取り速度205m/minで溶融紡糸し
た。
Example 1 Five hollow separation membranes (B) having a separation function were formed inside along the longitudinal direction of a fibrous object composed of a porous layer (A) having a reinforcement function to form a separation membrane. Using a multi-membrane manufacturing nozzle arranged so as to form a shape in which a porous layer (C) having a reinforcing function is laminated on the inner surface of (B), the porous layers (A) and (C) are High density polyethylene (Hisex 2200J, manufactured by Mitsui Petrochemical Co., Ltd.) with a density of 0.968 g / cc and a melt index value of 5.5 is supplied as a polymer material to the separation membrane (B) segment. Polyurethane (TECOFLEX EG-80A, manufactured by Thermedeck Co., Ltd.) was used, and melt spinning was performed at a discharge temperature of 165 ° C. and a winding speed of 205 m / min.

【0037】得られた未延伸繊維は図2のような膜形態
を有し、円柱状のポリエチレンの内部に内表面をポリエ
チレンで積層した中空状のセグメント化ポリウレタンが
5つ形成された構造であり、外径300μm、分離膜
(B)の内表面に積層された多孔質層(C)の膜厚3μ
m、隣り合う分離膜(B)間の最小距離3μm、分離膜
(B)の膜厚は1μm、中空部内径は41.7μmであ
った。
The obtained unstretched fiber has a film form as shown in FIG. 2, and has a structure in which five hollow segmented polyurethanes having an inner surface laminated with polyethylene are formed inside a cylindrical polyethylene. , Outer diameter 300 μm, film thickness 3 μ of the porous layer (C) laminated on the inner surface of the separation membrane (B)
m, the minimum distance between adjacent separation membranes (B) was 3 μm, the thickness of the separation membrane (B) was 1 μm, and the inner diameter of the hollow portion was 41.7 μm.

【0038】この未延伸繊維を115℃で1時間アニー
ル処理をした。次いでアニール処理繊維を常温下で14
0%冷延伸を行い、引き続き105℃に加熱された加熱
炉中で総延伸倍率が170%になるまで熱延伸を行い、
更に、120℃の加熱された加熱炉中で総延伸倍率が1
00%になるように緩和熱セットを行った。
This unstretched fiber was annealed at 115 ° C. for 1 hour. Next, the annealed fiber is heated at room temperature for 14
0% cold drawing is performed, and then hot drawing is performed in a heating furnace heated to 105 ° C. until the total draw ratio becomes 170%,
Furthermore, the total draw ratio is 1 in a heating furnace heated at 120 ° C.
Relaxation heat setting was performed so that it would be 00%.

【0039】得られた複合膜の膜性能を評価した結果、
空孔率は40.2%、平均孔径0.155μm、外径2
60μm、分離膜(B)の内表面に積層された多孔質層
(C)の膜厚2.8μm、隣り合う分離膜(B)間の最
小距離2.8μm、分離膜(B)の膜厚は0.7μm、
中空部内径は39.3μmであった。
As a result of evaluating the membrane performance of the obtained composite membrane,
Porosity 40.2%, average pore diameter 0.155 μm, outer diameter 2
60 μm, thickness of the porous layer (C) laminated on the inner surface of the separation membrane (B) 2.8 μm, minimum distance between adjacent separation membranes (B) 2.8 μm, thickness of the separation membrane (B) Is 0.7 μm,
The inner diameter of the hollow portion was 39.3 μm.

【0040】得られた複合膜の空気透過速度を測定した
ところ、室温で酸素透過速度(QO2 )は8.65×1
-6cm3 /cm2 ・sec・cmHg、窒素透過速度
(QN2 )は3.2×10-6cm3 /cm2 ・sec・
cmHgであり、分離係数(QO2 /QN2 )は2.7
であった。
When the air permeation rate of the obtained composite membrane was measured, the oxygen permeation rate (QO 2 ) at room temperature was 8.65 × 1.
0 −6 cm 3 / cm 2 · sec · cmHg, nitrogen permeation rate (QN 2 ) is 3.2 × 10 −6 cm 3 / cm 2 · sec ·
cmHg, and the separation factor (QO 2 / QN 2 ) is 2.7.
Met.

【0041】実施例2 補強機能を持つ多孔質層(A)からなる繊維状物体の長
手方向に沿って、内部に分離機能を持つ中空状の分離膜
(B)を19本形成し、分離膜(B)の内表面に補強機
能を持つ多孔質層(C)が積層された形を形成するよう
に配置されたノズルを用い、実施例1と同様のポリマー
を用いて同様の紡糸条件で紡糸した。
Example 2 19 hollow separation membranes (B) each having a separation function were formed inside the fibrous substance comprising the porous layer (A) having a reinforcement function in the longitudinal direction. Using a nozzle arranged so as to form a shape in which a porous layer (C) having a reinforcing function is laminated on the inner surface of (B), the same polymer as in Example 1 is used, and spinning is performed under the same spinning conditions. did.

【0042】得られた未延伸繊維は図1のような膜形態
を有しており、外径300μm、分離膜(B)の内表面
に積層された多孔質層(C)の膜厚3μm、分離膜
(B)の膜厚は1μm、中空部内径は41.7μmであ
った。
The obtained unstretched fiber has a membrane form as shown in FIG. 1, the outer diameter is 300 μm, the thickness of the porous layer (C) laminated on the inner surface of the separation membrane (B) is 3 μm, The thickness of the separation membrane (B) was 1 μm, and the inner diameter of the hollow portion was 41.7 μm.

【0043】この未延伸繊維を実施例1と同様のアニー
ル、冷延伸、熱延伸、緩和熱セットを行い、膜性能を評
価した。得られた複合膜を評価した結果、空孔率40.
2%、平均孔径0.155μm、外径260μm、分離
膜(B)の内表面に積層された多孔質層(C)の膜厚
2.8μm、隣り合う分離膜(B)間の最小距離2.8
μm、分離膜(B)の膜厚は0.7μm、中空部内径は
39.3μmであった。
The unstretched fiber was annealed, cold-stretched, hot-stretched and relaxation heat-set in the same manner as in Example 1 to evaluate the membrane performance. As a result of evaluating the obtained composite film, the porosity was 40.
2%, average pore diameter 0.155 μm, outer diameter 260 μm, film thickness 2.8 μm of porous layer (C) laminated on inner surface of separation membrane (B), minimum distance 2 between adjacent separation membranes (B) .8
μm, the thickness of the separation membrane (B) was 0.7 μm, and the inner diameter of the hollow portion was 39.3 μm.

【0044】得られた複合膜の空気透過速度を測定した
ところ、室温で酸素透過速度(QO2 )は3.29×1
-5cm3 /cm2 ・sec・cmHg、窒素透過速度
(QN2 )は1.22×10-5cm3 /cm2 ・sec
・cmHgであり、分離係数(QO2 /QN2 )は2.
7であった。
When the air permeation rate of the obtained composite membrane was measured, the oxygen permeation rate (QO 2 ) at room temperature was 3.29 × 1.
0 -5 cm 3 / cm 2 · sec · cmHg, nitrogen permeation rate (QN 2 ) is 1.22 × 10 -5 cm 3 / cm 2 · sec
CmHg, and the separation factor (QO 2 / QN 2 ) is 2.
It was 7.

【0045】比較例1 補強機能を持つ多孔質層(A)からなる繊維状物体の長
手方向に沿って、内部に分離機能を持つ中空状の分離膜
(B)を多孔質層(A)と同心円状に一本形成し、分離
膜(B)の内表面に補強機能を持つ多孔質層(C)が積
層された形を形成するように配置された複合膜製造用ノ
ズルを用い、実施例1と同様のポリマーを用いて、同様
の紡糸条件で紡糸した。得られた未延伸繊維は外径30
0μmであり、分離膜(B)の内表面に積層された多孔
質層(C)の膜厚17.5μm、分離膜(B)の膜厚は
1μm、中空部内径は230μmであった。
Comparative Example 1 A hollow separation membrane (B) having a separating function inside was formed as a porous layer (A) along the longitudinal direction of a fibrous object composed of a porous layer (A) having a reinforcing function. An example using a composite membrane manufacturing nozzle arranged so as to form a single concentric circle and a porous layer (C) having a reinforcing function laminated on the inner surface of a separation membrane (B) was used. The same polymer as in 1 was used and spun under the same spinning conditions. The resulting undrawn fiber has an outer diameter of 30.
The thickness of the porous layer (C) laminated on the inner surface of the separation membrane (B) was 17.5 μm, the thickness of the separation membrane (B) was 1 μm, and the inner diameter of the hollow portion was 230 μm.

【0046】この未延伸繊維を実施例1と同様のアニー
ル、冷延伸、熱延伸、緩和熱セットを行い、膜性能を評
価した。得られた複合膜を評価した結果、空孔率40.
2%、平均孔径0.155μm、外径260μm、分離
膜(B)の内表面に積層された多孔質層(C)の膜厚1
15μm、分離膜(B)の膜厚0.7μm、中空部内径
は200μmであった。
The unstretched fiber was annealed, cold-stretched, hot-stretched and relaxation heat-set in the same manner as in Example 1 to evaluate the membrane performance. As a result of evaluating the obtained composite film, the porosity was 40.
2%, average pore diameter 0.155 μm, outer diameter 260 μm, film thickness 1 of porous layer (C) laminated on inner surface of separation membrane (B)
15 μm, the thickness of the separation membrane (B) was 0.7 μm, and the inner diameter of the hollow portion was 200 μm.

【0047】得られた複合膜の空気透過性能を測定した
ところ、室温下で酸素透過速度(QO2 )は8.65×
10-6cm3 /cm2 ・sec・cmHg、窒素透過速
度(QN2 )は3.20×10-6cm3 /cm2 ・se
c・cmHgであり、分離係数(QO2 /QN2 )は
2.7であった。
When the air permeation performance of the obtained composite membrane was measured, the oxygen permeation rate (QO 2 ) at room temperature was 8.65 ×.
10 −6 cm 3 / cm 2 · sec · cmHg, nitrogen permeation rate (QN 2 ) is 3.20 × 10 −6 cm 3 / cm 2 · se
c · cmHg, and the separation factor (QO 2 / QN 2 ) was 2.7.

【0048】[0048]

【発明の効果】実施例からも明らかなように本発明のマ
ルチフィラメント型中空繊維状複合膜は、多孔質層
(A)中に中空状の分離膜(B)が複数存在しているの
で多孔質層(A)及び(C)の細孔構造と外径及び分離
膜(B)の膜厚が従来の複合膜と同一であっても、ガス
透過性能が3.8倍程度大きくなっており分離膜(B)
の膜面積が増加したことによる膜性能の向上が図られ
る。また本発明のマルチフィラメント型中空繊維状複合
膜を用いることで従来の複合膜を用いた各種の膜モジュ
ールをさらに小型化することが可能となる。
As is apparent from the examples, the multifilament type hollow fibrous composite membrane of the present invention has a plurality of hollow separation membranes (B) in the porous layer (A), and thus is porous. Even though the pore structure and outer diameter of the quality layers (A) and (C) and the thickness of the separation membrane (B) are the same as those of the conventional composite membrane, the gas permeation performance is increased by about 3.8 times. Separation membrane (B)
The membrane performance is improved due to the increase in the membrane area of the membrane. Further, by using the multifilament type hollow fiber composite membrane of the present invention, it becomes possible to further miniaturize various membrane modules using the conventional composite membrane.

【図面の簡単な説明】[Brief description of drawings]

【図1】[Figure 1]

【図2】多孔質層(A)中にその長手方向に沿って内表
面に多孔質層(C)を積層した中空状の分離膜(B)を
複数存在させた本発明の複合膜の模式断面図である。
FIG. 2 is a schematic diagram of a composite membrane of the present invention in which a plurality of hollow separation membranes (B) having a porous layer (C) laminated on the inner surface along the longitudinal direction thereof are present in the porous layer (A). FIG.

【図3】従来の複合膜の模式断面図である。FIG. 3 is a schematic cross-sectional view of a conventional composite film.

【符号の説明】[Explanation of symbols]

A 多孔質層 B 分離膜 C 多孔質層 A porous layer B separation membrane C porous layer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月15日[Submission date] December 15, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】分離膜(B)同士は接触しても差し支えな
いが、その機能を有効に使用するために隣り合う分離膜
(B)間の距離は、2μm以上あることが好ましい。補
強機能を持つ多孔質層(A)及び多孔質層(C)は、補
強、保護を受け持つ他に、分離膜(B)を薄膜化させる
膜欠陥の発生防止に効果を発揮する。
The separation membranes (B) may be brought into contact with each other, but the separation membranes adjacent to each other in order to effectively use their functions.
The distance between (B) is preferably 2 μm or more . The porous layer (A) and the porous layer (C) having a reinforcing function, in addition to being responsible for reinforcement and protection, exert an effect of preventing the occurrence of a membrane defect when the separation membrane (B) is thinned.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】本発明の複合膜の製造法を以下に記載す
る。中空部の流体を分配するノズルと補強層重合体
(A′)を分配するノズル、分離膜重合体(B′)を分
配するノズル及び補強層重合体(C′)を分配するノズ
ルを組み合わせた紡糸ノズルにより、溶融賦形温度15
0〜300℃の範囲で、分離膜重合体(B′)を補強層
重合体(A′)及び(C′)で挟みこんだ中空状の複合
膜として複数本形成し、更にそれぞれの複合膜を外層の
補強層重合体(A′)により接合一体化ししかるの
ち、ドラフト比5〜9000の範囲で紡糸する。
The method for producing the composite membrane of the present invention is described below. A nozzle for distributing the fluid in the hollow portion, a nozzle for distributing the polymer for reinforcing layer (A '), a nozzle for distributing the polymer for separating membrane (B') and a nozzle for distributing the polymer for reinforcing layer (C ') were combined. Melt shaping temperature of 15 with spinning nozzle
In the range of 0 to 300 ° C., a plurality of separation membrane polymers (B ′) are sandwiched between the reinforcing layer polymers (A ′) and (C ′) to form a hollow composite membrane, and each composite membrane is further formed. Are joined and integrated by the reinforcing layer polymer (A ') of the outer layer , and then spun in a draft ratio of 5 to 9000.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0042[Correction target item name] 0042

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0042】得られた未延伸繊維は図1のような膜形態
を有しており、外径300μm、分離膜(B)の内表面
に積層された多孔質層(C)の膜厚3μm、隣り合う分
離膜(B)間の最小距離3μm、分離膜(B)の膜厚は
1μm、中空部内径は41.7μmであった。
The obtained unstretched fiber has a membrane form as shown in FIG. 1, the outer diameter is 300 μm, the thickness of the porous layer (C) laminated on the inner surface of the separation membrane (B) is 3 μm, Adjacent
The minimum distance between the separation membranes (B) was 3 μm, the thickness of the separation membrane (B) was 1 μm, and the inner diameter of the hollow portion was 41.7 μm.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0046[Correction target item name] 0046

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0046】この未延伸繊維を実施例1と同様のアニー
ル、冷延伸、熱延伸、緩和熱セットを行い、膜性能を評
価した。得られた複合膜を評価した結果、空孔率40.
2%、平均孔径0.155μm外径260μm、分離膜
(B)の内表面に積層された多孔質層(C)の膜厚15
μm、分離膜(B)の膜厚0.7μm、中空部内径は2
00μmであった。
The unstretched fiber was annealed, cold-stretched, hot-stretched and relaxation heat-set in the same manner as in Example 1 to evaluate the membrane performance. As a result of evaluating the obtained composite film, the porosity was 40.
2%, average pore diameter 0.155 μm outer diameter 260 μm, film thickness 15 of the porous layer (C) laminated on the inner surface of the separation membrane (B) 15
μm, thickness of separation membrane (B) 0.7 μm, inner diameter of hollow part is 2
It was 00 μm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 正司 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Okamoto 20-1 Miyuki-cho, Otake-shi, Hiroshima Mitsubishi Rayon Co., Ltd. Central Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 補強機能を持つ多孔質層(A)からなる
繊維状物体の長手方向に沿って、内部に分離機能を持つ
中空状の分離膜(B)が複数存在し、分離膜(B)の内
表面に補強機能を持つ多孔質層(C)が積層されている
ことを特徴とするマルチフィラメント型中空繊維状複合
膜。
1. A plurality of hollow separation membranes (B) having a separation function are present inside a fibrous object composed of a porous layer (A) having a reinforcement function, and the separation membrane (B (3) A multifilament type hollow fibrous composite membrane, wherein a porous layer (C) having a reinforcing function is laminated on the inner surface of (1).
【請求項2】 中空部の流体を分配するノズルと補強層
重合体(A′)を分配するノズル、分離膜重合体
(B′)を分配するノズル、及び補強層重合体(C′)
を分配するノズルを組み合わせた紡糸ノズルを用い、補
強層重合体(A′)と補強層重合体(C′)が分離膜重
合体(B′)をサンドイッチにする形で複数複合紡糸
し、延伸によって少なくとも補強層重合体(A′)及び
補強層重合体(C′)部分を多孔質化させて、請求項1
記載の複合膜を製造することを特徴とするマルチフィラ
メント型中空繊維状複合膜の製造法。
2. A nozzle for distributing a fluid in a hollow portion, a nozzle for distributing a polymer for reinforcing layer (A '), a nozzle for distributing a polymer for separating membrane (B'), and a polymer for reinforcing layer (C ').
Using a spinning nozzle in combination with a nozzle for distributing, the reinforcing layer polymer (A ') and the reinforcing layer polymer (C') are composite-spun in a form of sandwiching the separation membrane polymer (B ') and stretched. At least the reinforcing layer polymer (A ') and the reinforcing layer polymer (C') are made porous by the above method, and
A method for producing a multifilament type hollow fibrous composite membrane, which comprises producing the described composite membrane.
JP27726192A 1992-10-15 1992-10-15 Hollow fiber composite membrane and its preparation Pending JPH06339617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27726192A JPH06339617A (en) 1992-10-15 1992-10-15 Hollow fiber composite membrane and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27726192A JPH06339617A (en) 1992-10-15 1992-10-15 Hollow fiber composite membrane and its preparation

Publications (1)

Publication Number Publication Date
JPH06339617A true JPH06339617A (en) 1994-12-13

Family

ID=17581064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27726192A Pending JPH06339617A (en) 1992-10-15 1992-10-15 Hollow fiber composite membrane and its preparation

Country Status (1)

Country Link
JP (1) JPH06339617A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485620B1 (en) * 2002-01-15 2005-04-27 주식회사 파라 Hollow fiber membrane having supporting material for reinforcement, preparation thereof and spinneret for preparing the same
KR100990473B1 (en) * 2002-07-20 2010-10-29 주식회사 파라 Hollow fiber membrane having porous supporting body and preparation thereof
JP2019513080A (en) * 2016-03-21 2019-05-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method, spinneret and system for producing multilayer membranes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485620B1 (en) * 2002-01-15 2005-04-27 주식회사 파라 Hollow fiber membrane having supporting material for reinforcement, preparation thereof and spinneret for preparing the same
KR100990473B1 (en) * 2002-07-20 2010-10-29 주식회사 파라 Hollow fiber membrane having porous supporting body and preparation thereof
JP2019513080A (en) * 2016-03-21 2019-05-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method, spinneret and system for producing multilayer membranes

Similar Documents

Publication Publication Date Title
US4741829A (en) Composite hollow fibers and method of making same
US4802942A (en) Method of making multilayer composite hollow fibers
US5064593A (en) Process for producing multilayer polytetrafluoroethylene porous membrane
JP2002184381A (en) Manufacturing method of battery cell, and battery separator
JPH07507237A (en) supported microporous membrane
KR100346589B1 (en) Composite Microporous Polyolefin Film and Process for Producing the Same
JPS60139815A (en) Conjugate hollow yarn and production thereof
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPH07116483A (en) Manufacture of hollow fiber dual membrane
JPH07171360A (en) Modified cross-section multilayer composite separation membrane
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
JPS60179102A (en) Carbon membrane and its preparation
JPH06339617A (en) Hollow fiber composite membrane and its preparation
JPH082412B2 (en) Multilayer composite separation membrane
JP2942867B2 (en) Multilayer composite membrane
JPH03169330A (en) Composite membrane
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JPH04215828A (en) Multilayer composite membrane and production thereof
JP2934902B2 (en) Manufacturing method of composite hollow fiber membrane
JPS59229320A (en) Preparation of heterogeneous film by melting, stretching
JPS63296823A (en) Oxygen-enriching membrane and production thereof
JPS63274433A (en) Preparation of oxygen enriching multilayer composite hollow yarn membrane
JPH07100882B2 (en) Hollow fiber for heat exchanger and method for producing the same
JPH01127023A (en) Composite hollow fiber membranes
JPS6297980A (en) Composite hollow fiber membrane