JPS63274433A - Preparation of oxygen enriching multilayer composite hollow yarn membrane - Google Patents

Preparation of oxygen enriching multilayer composite hollow yarn membrane

Info

Publication number
JPS63274433A
JPS63274433A JP11015887A JP11015887A JPS63274433A JP S63274433 A JPS63274433 A JP S63274433A JP 11015887 A JP11015887 A JP 11015887A JP 11015887 A JP11015887 A JP 11015887A JP S63274433 A JPS63274433 A JP S63274433A
Authority
JP
Japan
Prior art keywords
polymer
oxygen
membrane
multilayer composite
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11015887A
Other languages
Japanese (ja)
Inventor
Toru Takemura
武村 徹
Jun Kamo
純 加茂
Makoto Uchida
誠 内田
Takayuki Hirai
平井 孝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP11015887A priority Critical patent/JPS63274433A/en
Publication of JPS63274433A publication Critical patent/JPS63274433A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve durability and to increase a permeation speed, by forming a multilayer composite hollow yarn membrane by alternately laminating a separation membrane layer having a thickness of 1mum or less composed of an oxygen permeable polymer and a porous membrane layer composed of a crystalline polymer. CONSTITUTION:A polymer (polymer a') having oxygen separation factor of 3 or more and a crystalline polymer (polymer b') having a m.p. of 170-250 deg.C are alternately arranged and the polymer b' is arranged on inner and outer surface sides and the polymers a', b' are subjected to melt composite spinning using a multiple cylindrical nozzle. Subsequently, the composite spun yarn is stretched to make the part of the polymer b' of the polymer a' porous to obtain an oxygen enriching multilayer composite hollow yarn membrane wherein a separation membrane layer A' with a thickness of 1mum or less composed of the polymer a' and porous membrane layer B' composed of the polymer b' are alternately laminated and said layers B' are arranged on the inner and outer surface sides. As the polymer a', poly-4-methylpentene-1 having thermal deformation temp. of 75-85 deg.C is pref.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃焼効率の向上、酸素療法等に利用可能な酸素
富化能を肩する分離膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a separation membrane that improves combustion efficiency and has an oxygen enrichment ability that can be used for oxygen therapy and the like.

〔従来技術〕[Prior art]

膜を用いて気体混合物よV特定の気体を分離、鎖線せる
方法はすでによく知られているが、空気から酸素富化空
気を得る場合にも、小型の装置で、大量の気体透過量を
得ることが大きな技術的課題である。通常均質膜中を通
過する酸素及び窒素の透過速度QOz及びQNz、又分
離係数(α)は次式で表される。
The method of separating specific gases from gas mixtures using membranes is already well known, but when obtaining oxygen-enriched air from air, it is also possible to obtain a large amount of gas permeation with a small device. This is a major technical challenge. Normally, the permeation rates QOz and QNz of oxygen and nitrogen passing through a homogeneous membrane, and the separation coefficient (α) are expressed by the following equations.

QOz二PO2/ L、 QNz = PN2 / L
α=PO鵞/ PN2= QN! / QOzQ:気体
の透過速度(cm’ −cm−” ・5ec−’ sc
tnHg−’ ]P:気体の透過係数〔crl −cm
・cm−” ・5ea−’ ・m1g−五〕α:分離係
数 L:膜厚 つま9、PO,、PN、 、αは膜素材で決定される因
子で65、PO,及びαの大きい素材の開発と、その素
材の膜厚りを小さくする技術が重要である。更に、実用
的には膜の形態も重要であり、単位体稍当りの膜面積の
大きい中空糸膜が平膜よりも有利である、 薄膜化技術の一つの方向として、多孔質基板の上にコー
ティング法、プラズマ重合法や蒸着法等によって薄膜を
形成する方法が知られている。
QOz2PO2/L, QNz = PN2/L
α=PO goose/PN2= QN! / QOzQ: Gas permeation rate (cm' - cm-"・5ec-' sc
tnHg-']P: Gas permeability coefficient [crl-cm
・cm-"・5ea-' ・m1g-5] α: Separation coefficient L: Film thickness 9, PO,, PN, , α is a factor determined by the membrane material. 65, for materials with large PO and α Development and technology to reduce the membrane thickness of the material are important.Furthermore, the form of the membrane is also important in practical terms, and hollow fiber membranes with a large membrane area per unit body are more advantageous than flat membranes. As one direction of thin film technology, a method is known in which a thin film is formed on a porous substrate by a coating method, a plasma polymerization method, a vapor deposition method, or the like.

〔発明が解決しようとする問題点」 しかしながら、コーティング法や蒸着法等の方法では、
分離機能をMする薄膜成分が多孔質基板上にコートされ
る為に、基板の細孔に薄膜成分が侵入して実質的に薄い
薄膜が得られないという問題がある。また、この現象を
避けるために、多孔質基板の細孔を予しめ溶解性物質で
埋めておき、その表面に薄膜全形成した後に多孔質基板
内の溶解性物質を溶出する方法もあるが、均一な′II
I膜層が得られ難く、また、傷つき易いという問題があ
る。更にピアホールの発住、膜厚の不均一性、耐久性が
な^、基板との接層性が不充分である等の問題もあり、
実用化が難しい状況にある、 不発明は上記問題点を解決すべくなされたものであり、
分離機能を有する層の厚みが薄くて耐久性に優れ、透過
速度が大きい酸素富化能を有する多層複合中空糸膜の製
法を提供するものである。
[Problems to be solved by the invention] However, with methods such as coating methods and vapor deposition methods,
Since the thin film component that provides the separation function is coated on the porous substrate, there is a problem that the thin film component invades the pores of the substrate, making it impossible to obtain a substantially thin film. In addition, to avoid this phenomenon, there is a method in which the pores of a porous substrate are filled with a soluble substance in advance, and the soluble substance within the porous substrate is eluted after a thin film is completely formed on the surface. Uniform 'II
There is a problem that the I film layer is difficult to obtain and is easily damaged. Furthermore, there are other problems such as formation of peer holes, non-uniform film thickness, poor durability, and insufficient contact with the substrate.
The non-invention was made to solve the above problem, which is difficult to put into practical use.
The present invention provides a method for producing a multilayer composite hollow fiber membrane having a thin layer having a separation function, excellent durability, high permeation rate, and oxygen enrichment ability.

〔問題点を解決する九めの手段」 本発明の要旨は、多重円筒型紡糸ノズルを用いて、酸素
透過係数8 X 10−10aIr″”cmacfR−
” 5oC−t・6RHg−”以上の重合体(以下「1
合体a」という)と融点170〜250℃の結晶性重合
体以下「重合体b」という)とを交互に配、置し、かつ
重合体すを内表面側と外表面側に配置して溶融複合紡糸
し、次いで延伸により該重合体aの部分全薄層化し、該
重合体すの部分を多孔質化することを特徴とする、重合
体aからなる膜厚゛ 1μm以下の分離膜層^と重合体
すからなる多孔膜層Bとが交互に積層され、かつBが内
表面及び外表面に配されてなる酸素富化多層複合中空糸
膜の製法にあジ、更に、多1円筒型紡糸ノズルを用いて
酸素分離係数3以上の重合体(以下「重合体、′」とい
う)と融点170〜250℃の結晶性重合体(以下「重
合体b/ Jという)と金交互に配置し、かつ重合体b
′を内表面側と外表面仰に配置して溶融複合紡糸し、次
いでは伸により該重合体a′の部分を薄層化し、該重合
体dの部分を多孔質化することを%徴とする、重合体a
′からなる膜厚1μm以下の分離膜層A′と重合体b′
からなる多孔膜層B′とが交互に積層され、かつぎが内
表面及び外表面に配されてなる酸素富化多層複合中空糸
膜の製法にある。
[Ninth Means for Solving the Problems] The gist of the present invention is to obtain an oxygen permeability coefficient of 8 x 10-10aIr''cmacfR-
Polymers of "5oC-t・6RHg-" or more (hereinafter referred to as "1
A crystalline polymer having a melting point of 170 to 250°C (hereinafter referred to as "polymer b") is arranged and placed alternately, and the polymers are arranged on the inner surface side and the outer surface side and melted. A separation membrane layer having a thickness of 1 μm or less consisting of polymer a, which is characterized by composite spinning, and then stretching to make the entire part of the polymer a thinner layer, and making the part of the polymer porous. and porous membrane layers B made of a polymer are alternately laminated, and B is arranged on the inner surface and the outer surface. Using a spinning nozzle, a polymer with an oxygen separation coefficient of 3 or more (hereinafter referred to as ``polymer,''), a crystalline polymer with a melting point of 170 to 250 ° C. (hereinafter referred to as ``polymer b/J''), and gold were arranged alternately. , and polymer b
' is arranged on the inner surface side and on the outer surface side and subjected to melt composite spinning, and then the part of the polymer a' is made into a thin layer by stretching, and the part of the polymer d is made porous. Polymer a
Separation membrane layer A′ with a thickness of 1 μm or less consisting of ′ and polymer b′
The present invention provides a method for producing an oxygen-enriched multilayer composite hollow fiber membrane in which porous membrane layers B' consisting of the following are alternately laminated, and crosspieces are disposed on the inner and outer surfaces.

不発明の方法において便用される酸素透過係数が8X1
0−″” (cm” * cm ・cps−” ・θe
c−” ・an Hg−’ )以上の酸素富化機能を有
する重合体aとしては、シリコンゴム、シリコンとポリ
カーボネートの共重合体等シリコン系重合体、ポリ−4
−メチルペンテン−1等ポリオレフィン系重合体、パー
70口アルキル系フッ素含有重合体、エチルセルロース
等セルロース系重合体、ホリフエニレンオキサイド、ポ
リ−4−ビニルピリジン及びこれら重合体素材の共重合
体あるいはブレンド物を挙げることかできる。これらの
中でも成型の容易さ、機械的強度、酸素透過係数を考照
すると、特に好ましい重合体としてシリコンとポリカー
ボネートの共重合体を挙げることができる。尚、酸素透
過係数が大きいものはボイラー等での燃焼効率金玉ける
のに好適である。
The oxygen permeability coefficient conveniently used in the uninvented method is 8X1
0-″” (cm” * cm ・cps-” ・θe
Examples of the polymer a having an oxygen enrichment function of c-"・an Hg-') include silicone rubber, silicone-based polymers such as copolymers of silicone and polycarbonate, poly-4
- Polyolefin polymers such as methylpentene-1, per-70 alkyl fluorine-containing polymers, cellulose polymers such as ethyl cellulose, polyphenylene oxide, poly-4-vinylpyridine, and copolymers or blends of these polymer materials. I can name things. Among these, a copolymer of silicone and polycarbonate can be cited as a particularly preferable polymer in consideration of ease of molding, mechanical strength, and oxygen permeability coefficient. Incidentally, those having a large oxygen permeability coefficient are suitable for improving combustion efficiency in boilers and the like.

又、11!素分離係数が3以上の酸素冨化機能金有する
重合体a′としては、シリコン系重合体、ポリ−4−メ
チルペンテン−1、リニアローデンシティポリエチレン
等ポリオレフィン系重合体、バー70口アルキル系フッ
素含有重合体、エチルセルロース等セルロース系重合体
、ポリフェニレンオキサイド、ポリ−4−ビニルピリジ
ン及びこれら重合体素材の共重合体あるいはブレンド物
管挙げることができる。これらの中でも成型の容易さ、
酸素の選択透過性等全考慮すると、特に好ましい重合体
として熱変形温度(ムSTM  D648)が75〜8
5℃であり、延伸時に多孔質化しないポリ−4−メチル
ペンテ7−1を挙げることができる。
Also, 11! Examples of the oxygen-enriching functional polymer a' having an elementary separation coefficient of 3 or more include silicone polymers, polyolefin polymers such as poly-4-methylpentene-1, linear low density polyethylene, and bar 70 alkyl fluorine polymers. Containing polymers, cellulose polymers such as ethyl cellulose, polyphenylene oxide, poly-4-vinylpyridine, and copolymers or blends of these polymer materials can be mentioned. Among these, ease of molding,
Considering all factors such as oxygen permselectivity, particularly preferred polymers have a heat distortion temperature (MuSTM D648) of 75 to 8.
5° C. and does not become porous during stretching, poly-4-methylpente 7-1 can be mentioned.

尚、酸素分離係数が大きいものは医療用途の酸素富化膜
に適して^る。
Note that membranes with a large oxygen separation coefficient are suitable for oxygen enrichment membranes for medical use.

融点が170〜250℃の結晶性重合体b(又はb/ 
)としては、延伸操作によって多孔質化が可能な素材で
あればどの重合体を使用してもよいが、ポリエチレン、
ポリプロピレン、ポリ−4−メチルペンテン−1等ポリ
オレフィン糸、及びポリフッ化ビニリデン、テトラ70
口エチレン等結晶性ポリマーを用いることが好ましい。
Crystalline polymer b (or b/
), any polymer can be used as long as it can be made porous by stretching, but polyethylene,
Polypropylene, polyolefin thread such as poly-4-methylpentene-1, and polyvinylidene fluoride, Tetra 70
It is preferable to use a crystalline polymer such as ethylene.

又、重合体a(又は&/ )としてシリコンとポリカー
ボネートの共重合体を使用する場合は融点が170〜2
50℃の間にあるポリ−4−メチルペンテン−1及びポ
リフッ化ビニリデンが適している。
In addition, when a copolymer of silicone and polycarbonate is used as polymer a (or &/ ), the melting point is 170 to 2.
Poly-4-methylpentene-1 and polyvinylidene fluoride between 50°C are suitable.

本発明゛においては、多重円筒型紡糸ノズルを用いて多
層複合中空糸膜上製造するが、通常は三層以上の層構造
が形成可能な同心円状に配置された吐出口を有する中空
糸製造用ノズルが使用される。
In the present invention, a multilayer composite hollow fiber membrane is manufactured using a multi-cylindrical spinning nozzle, but normally a hollow fiber manufacturing method having concentrically arranged discharge ports capable of forming a layer structure of three or more layers is used. nozzle is used.

ノズルの最外層及び最内層には1合体b(又は重合体b
’ > @供給し、中間層には三層構造のときは重合体
a(又は1合体a/ )を、それより多層のときは更に
重合体b(又は重合体b/ )を供給し、多層の未延伸
中空糸を得る、 紡糸条件は特に限定されず各層を構成する重合体の種類
に応じて最適条件を設定しうるか、九とえは1合体′b
(又は重合体b′)としてポリ−4−メチルペンテン−
1を用いる場合は、紡糸温度は220〜300℃程度、
紡糸ドラフトは100〜3000程度、紡糸時のクエン
チ温度は常温程度の条件が採用される。
The outermost layer and the innermost layer of the nozzle contain 1 polymer b (or polymer b
'> @supplied, and in the middle layer, when the structure is three-layered, polymer a (or 1 polymer a/ ) is supplied, and when the structure is more than that, polymer b (or polymer b/ ) is further supplied, and the multi-layer structure is To obtain undrawn hollow fibers, the spinning conditions are not particularly limited, and the optimum conditions can be set depending on the type of polymer constituting each layer.
(or polymer b') as poly-4-methylpentene-
1, the spinning temperature is about 220 to 300°C,
The spinning draft is about 100 to 3000, and the quench temperature during spinning is about room temperature.

紡糸された未延伸中空糸は、続いて延伸多孔化されるが
、延伸による多孔化は、ポリオレフィンで行われている
公知の方法が採用される。
The spun undrawn hollow fibers are then stretched to make them porous, and the known method used for polyolefins is used to make them porous by stretching.

即ち、常温付近での少量の延伸によって重合体b(又は
重合体b′)の1−に微小空孔を発生させて白化させ、
続いて訓熱延伸によって孔の拡大と孔形状の安定化を図
ることができる。この間、重合体a(又は重合体、r 
)の層は多孔質化されないので延伸倍率の増加に比例し
て薄層化される。その際、重合体a(又は重合体a’ 
)からなる分離膜層ム(又はAI )の膜厚か1μm以
下となるように延伸条件を適宜コントロールすることが
必要である。
That is, by a small amount of stretching at around room temperature, micropores are generated in 1- of polymer b (or polymer b') and whitened.
Subsequently, the pores can be enlarged and the pore shape stabilized by preheated stretching. During this time, polymer a (or polymer, r
) is not made porous, and therefore becomes thinner in proportion to the increase in stretching ratio. At that time, polymer a (or polymer a'
It is necessary to appropriately control the stretching conditions so that the film thickness of the separation membrane layer (or AI) consisting of ) is 1 μm or less.

延伸条件も特に限定されず、重合体の種類に応じて最適
条件を設定しうるが、たとえば重合体b(又は重合体b
′)としてポリ−4−メチルペンテン−1を用いる場合
は、冷延伸条件として常温下1.2〜165倍を熱延伸
条件として100〜125℃程度の条件を採用し、全延
伸倍率をzO〜五〇倍程度とする条件が採用される。
The stretching conditions are also not particularly limited, and the optimal conditions can be set depending on the type of polymer, but for example, for polymer b (or polymer b
') When poly-4-methylpentene-1 is used, the cold stretching conditions are 1.2 to 165 times at room temperature, the hot stretching conditions are about 100 to 125°C, and the total stretching ratio is zO to A condition of approximately 50 times the amount is adopted.

不発明の方法によって得られる多層複合中空糸膜は少な
くとも三層構造から成っている。三層構造である場合、
外表面及び内表面が多孔膜層B(又はB’ )であり、
中間層が分離機能を有する分離展層A(又はA’ )で
ある。多孔膜層B(又はB’ )は分I@膜層A(又は
AI )を補強し、損傷から保護する役割を有している
。基本的には、分離膜層A(又はA’ )層は一層で充
分であるか、目的に応じて二層以上の多層構造とするこ
とか出来る。又、分離膜層ム(又はA′)の厚みは1μ
m以下であることが必要であり、1μmを越えると酸素
透過速度の向上か図れないので好ましくない。
The multilayer composite hollow fiber membrane obtained by the inventive method has at least a three-layer structure. If it has a three-layer structure,
The outer surface and the inner surface are porous membrane layer B (or B'),
The intermediate layer is a separation layer A (or A') having a separation function. The porous membrane layer B (or B') has the role of reinforcing the membrane layer A (or AI) and protecting it from damage. Basically, one layer of the separation membrane layer A (or A') is sufficient, or a multilayer structure of two or more layers may be used depending on the purpose. Also, the thickness of the separation membrane layer (or A') is 1μ.
If it exceeds 1 μm, it is not preferable because the oxygen permeation rate cannot be improved.

〔実施例〕〔Example〕

以下、実施例により説明する。 Examples will be explained below.

実施例1 三層構造を形成可能なた#窩亨同心円状に配(置された
吐出口を肩する中空糸製造用ノズルを用い、内層と外層
の部分にポリ4−メチルペ/テン−1(三井石油化学社
裂TPX MXOO7) 、中間層の部分にシリコンと
ポリカーボネートの共重合体(G、 B、社製Cope
d I4R,3320)l用い、吐出温度250℃、吐
出線速度3 cm / win−巻取速度30m/mi
nで紡糸し比、得られた未延伸中空糸は内径250μm
であり、内側から各々30% α2.30μmの厚さを
有する層が同心円状に配されて−た。
Example 1 A hollow fiber manufacturing nozzle was used that could form a three-layer structure, and the inner and outer layers were coated with poly-4-methylpentene-1 ( Copolymer of silicon and polycarbonate (G, B, Cope manufactured by Mitsui Petrochemical Co., Ltd.) in the middle layer part
d I4R, 3320) l, discharge temperature 250°C, discharge linear velocity 3 cm/win-winding speed 30 m/mi
The resulting undrawn hollow fibers had an inner diameter of 250 μm.
The layers each having a thickness of 30% α2.30 μm were arranged concentrically from the inside.

該未延伸中空糸を160℃で1時間アニール処理をした
。更に該アニール糸上室温下で40嗟延伸し、引き続@
120℃の加熱炉中で総延伸量が250チになる1で熱
延伸を行い、更に140℃の加熱炉で熱セラトラ行い多
層複合中空糸膜を得た。
The unstretched hollow fibers were annealed at 160° C. for 1 hour. Furthermore, the annealed yarn was stretched for 40 minutes at room temperature, and then
Hot stretching was carried out in a heating furnace at 120° C. in Step 1 to give a total stretching amount of 250 inches, and further heat celatra was carried out in a heating furnace at 140° C. to obtain a multilayer composite hollow fiber membrane.

この多層複合中空糸膜は、内径か200μmで内側から
25、α1.25μmの厚さtWする層か同心円状に配
されており、電子顕微鏡で観察した結果、内表向と外表
面には孔の幅が各々no8μmのスリット形状の孔が形
成されていた。また、酸素富化能を測定したところ、酸
素透過速度は7.8 X 10−’ (cm” (ST
P )/crn”・sec −cmHg J % II
素素通過速度19 X 10−’ [3”(8TP)/
c*”−sac−mHg〕であり、酸素選択性は20で
あった。
This multilayer composite hollow fiber membrane has an inner diameter of 200 μm, and layers 25 and α1.25 μm thick tW from the inside are arranged in concentric circles, and as a result of observation with an electron microscope, holes are formed on the inner and outer surfaces. Slit-shaped holes each having a width of 8 μm were formed. In addition, when the oxygen enrichment ability was measured, the oxygen permeation rate was 7.8 x 10-'(cm" (ST
P)/crn”・sec -cmHg J% II
Element passing rate 19 x 10-' [3” (8TP)/
c*”-sac-mHg], and the oxygen selectivity was 20.

実施例2 実施例1と同様の中空糸製造用ノズルを用い、内層と外
層にポリフッ化ビニリデン(呉羽化学社製KF−100
0)、中間層にシリコンとポリカーボネートの共重合体
(G、 ffi、社製0opel L。
Example 2 Using the same hollow fiber manufacturing nozzle as in Example 1, polyvinylidene fluoride (KF-100 manufactured by Kureha Chemical Co., Ltd.) was used for the inner and outer layers.
0), a copolymer of silicon and polycarbonate (G, ffi, 0opel L manufactured by Co., Ltd.) for the intermediate layer.

R,5520)を用い、吐出温度245℃、吐出線速度
3 cM/ min 、巻取速度30 m / min
で紡糸した。得られた未延伸中空糸は内径230μmで
あり、内側から各々28、α3.28μmの厚さを有す
る層が同心円状に配されていた。
R, 5520), the discharge temperature was 245°C, the discharge linear velocity was 3 cM/min, and the winding speed was 30 m/min.
It was spun with The obtained undrawn hollow fiber had an inner diameter of 230 μm, and layers having thicknesses of 28 μm and α3.28 μm were arranged concentrically from the inside.

紋未延伸甲空糸t−140℃で1時間アニール処理をし
た。更に該アニール系を室温下で40係地伸し、引き続
き120℃の加熱炉中で総延伸量が250係になるまで
熱延伸を行い、更に140℃の加熱炉で熱セットを行い
多層複合中空糸膜を得た。
The unstretched hollow fibers were annealed at t-140° C. for 1 hour. Further, the annealed system was stretched by 40 degrees at room temperature, then hot stretched in a heating furnace at 120°C until the total amount of stretching reached 250 degrees, and further heat set in a heating furnace at 140°C to form a multilayer composite hollow. A thread membrane was obtained.

この多層複合中空糸膜は内径が190μmで内側から2
5、α2.25μmの淳さt−有する層が同心円状に配
されており、電子顕微鏡で観察した結果、内表面と外表
面には孔の幅か各々006μmのスリット形状の孔が形
成されていた。また、酸素透過速度はl 5 X 10
−’ [cIn”(STP) 7cm” * sea 
−cmHg ]、窒窒素透過度は1.3X10−’(c
m” (STP)761M”・sec−mHg)であり
、酸素選択性は2.0であった。
This multilayer composite hollow fiber membrane has an inner diameter of 190 μm and a
5. Layers with a thickness of α2.25 μm are arranged concentrically, and as a result of observation with an electron microscope, slit-shaped pores with a width of 0.06 μm are formed on the inner and outer surfaces. Ta. Also, the oxygen permeation rate is l 5 × 10
-' [cIn”(STP) 7cm” * sea
-cmHg], nitrogen permeability is 1.3X10-' (c
m'' (STP) 761 M''·sec-mHg), and the oxygen selectivity was 2.0.

実施例3 実施例1と同様の中空糸製造用ノズルを用い、内層と外
層のポリマー素材にポリ4−メチルベ/テン−1(三井
石油化学社gTPX  MXO07熱変形温度90℃)
、中間層のポリマー素材にポリ4−メチルペンテン−1
(三井石油化学社1TPX  MXOOI熱変形温度8
0℃)を用い、吐出温度250℃、吐出線速度5 cm
 / min、巻取速度50 m / minで紡糸し
た。得られた未延伸中空糸は内径250μmであり、内
側から各々30、α2.30μmの厚さ’kWする層が
同心円状に配されていた。
Example 3 Using the same hollow fiber manufacturing nozzle as in Example 1, poly4-methylbe/ten-1 (Mitsui Petrochemical Co., Ltd. gTPX MXO07 heat distortion temperature 90°C) was used as the polymer material for the inner and outer layers.
, poly-4-methylpentene-1 is used as the polymer material of the middle layer.
(Mitsui Petrochemical Co., Ltd. 1TPX MXOOI heat distortion temperature 8
0°C), discharge temperature 250°C, and discharge linear velocity 5 cm.
/min, and the winding speed was 50 m/min. The obtained undrawn hollow fiber had an inner diameter of 250 μm, and layers each having a thickness of 30 and α of 2.30 μm and having a thickness of kW were arranged concentrically from the inside.

該未延伸中空糸’1160℃で1時間アニール処理をし
た。更に該アニール糸上室温下で40チ延伸し、引き続
@120℃の加熱炉中で総延伸量が250憾になるまで
熱蝋伸を行A1更に140℃の加熱炉で熱セットを行い
多層複合中空糸膜を得た。
The undrawn hollow fibers were annealed at 1160° C. for 1 hour. Further, the annealed yarn was stretched by 40 inches at room temperature, and then hot-waxed in a heating furnace @ 120°C until the total amount of stretching reached 250 cm. A composite hollow fiber membrane was obtained.

この多層複合中空糸膜は、内径が200μmで内側から
25、α1.25μmの厚さを有する層が同心円状に配
されており、電子顕微鏡で観察した結果、内表面と外表
面には孔の幅が各々α08μmのスリット形状の孔か形
成されていた、また、酸素透過速度は7. OX 10
″″’(3”(8TP)7m”・sec−ctRHgJ
、窒素透過速度は1、6 X 1 0−’ (cm”(
8,T P、)/z”・sea ・onHg 3であ夕
、酸素選択性は4.1であった。また、この膜に空気を
流し透過気体中の酸素濃度を測定し友ところ酸素濃度は
40チであり、医療用途として充分使用可能な膜であっ
た。
This multilayer composite hollow fiber membrane has an inner diameter of 200 μm, and layers having a thickness of 25 μm and α1.25 μm from the inside are arranged concentrically, and as a result of observation with an electron microscope, there are holes on the inner and outer surfaces. Slit-shaped holes each having a width of α08 μm were formed, and the oxygen permeation rate was 7. OX10
″″’(3”(8TP)7m”・sec-ctRHgJ
, the nitrogen permeation rate is 1,6 x 10-'(cm")
8, T P, )/z”・sea・onHg 3, the oxygen selectivity was 4.1.In addition, air was flowed through this membrane and the oxygen concentration in the permeated gas was measured. was 40 cm, and the membrane was sufficiently usable for medical purposes.

実施例4 実施例1と同様の中空糸製造用ノズルを用い、内層と外
層にポリフッ化ビニリデン(呉羽化学社製IP−100
0)、中間層にポリ4−メチルベンfy−1C三井石油
化学社製TPX  MXOOl)を用い、吐出温度24
5℃、吐出線速度BaI&/min 、巻取速度S O
an / minで紡糸した。得られた未延伸糸は内径
230μmであり、内側から各々2B、α3.28μm
の厚さを有する層が同心円状に配されていた、 該未延伸中空糸1140℃で1時間アニール処理をした
。更に該アニール糸を室温下で40係延伸し、引き続き
120℃の加熱炉中で総延伸量か250係になる1で熱
延伸を行い、更に140℃の加熱炉で熱セラ)1−行い
複合中空糸膜を得た。
Example 4 Using the same hollow fiber manufacturing nozzle as in Example 1, polyvinylidene fluoride (Kureha Kagaku Co., Ltd. IP-100) was used for the inner and outer layers.
0), poly4-methylbenfy-1C Mitsui Petrochemicals TPX MXOOl) was used for the intermediate layer, and the discharge temperature was 24
5°C, discharge linear velocity BaI &/min, winding speed S O
The yarn was spun at an/min. The obtained undrawn yarn has an inner diameter of 230 μm, and 2B and α3.28 μm from the inside.
The unstretched hollow fibers were annealed at 1140° C. for 1 hour. Further, the annealed yarn was stretched by 40 degrees at room temperature, then hot-stretched in a heating furnace at 120° C. at a rate of 250 degrees, and then heated at 140° C. in a heating furnace (heat cera). A hollow fiber membrane was obtained.

この多層複合中空糸膜は内径が190μmで内側から2
5、α2.25μmの厚さを肩する層が同心円状に配さ
れており、電子顕微鏡で観察した結果、内表面と外表面
には孔の幅が各々α06μmのスリット形状の孔が形成
されていた。また、酸素透過速度は2.8X10”[副
”(ST P ) /yR” ・sea * cmHg
 ]、窒窒素透過度は07×10−’ [cfR” (
8TF )151” ・sec ・anHgJであり、
酸素選択性は40であった。′!た、この膜に空気を流
し透過気体中の酸素dI度を測定したところ酸素濃度は
40%であつ几。
This multilayer composite hollow fiber membrane has an inner diameter of 190 μm and a
5. Layers with a thickness of α2.25 μm are arranged concentrically, and as a result of observation with an electron microscope, slit-shaped pores with a width of α06 μm are formed on the inner and outer surfaces, respectively. Ta. In addition, the oxygen permeation rate is 2.8X10"[sub" (STP) /yR" ・sea * cmHg
], nitrogen permeability is 07×10−' [cfR” (
8TF) 151” ・sec ・anHgJ,
Oxygen selectivity was 40. ′! In addition, when air was flowed through this membrane and the oxygen dI degree in the permeated gas was measured, the oxygen concentration was 40%.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は、溶融紡糸延伸法によV酸素富化機能1
に!する層を容易に薄層化でき、該薄膜層の損傷が抑制
可能で、かつ眉間の接着性が問題とされることのない中
空糸状の積層構造が形成できるという優れ次効果t−奏
するものであり、不発明の方法によれば、中間層にピン
ホールがなく、酸素透過速度が104〜10−5のオー
ダーで、かつ酸素選択性が2.0−40以上という酸累
冨化能か優れた多層複合中空糸膜を得ることかできる。
The method of the present invention provides V oxygen enrichment function 1 by melt spinning drawing method.
To! It has the following excellent effects: it is possible to easily thin the thin film layer, suppress damage to the thin film layer, and form a hollow fiber-like laminated structure in which adhesion between the eyebrows is not a problem. However, according to the uninvented method, there is no pinhole in the intermediate layer, the oxygen permeation rate is on the order of 104 to 10-5, and the oxygen selectivity is on the order of 2.0-40 or higher. A multilayer composite hollow fiber membrane can be obtained.

この膜は、ボイラー等における燃焼効率向上のための酸
素富化や慢性呼吸不全等の酸素療法を必要とする医療分
野への適用が可能である。
This membrane can be applied to oxygen enrichment to improve combustion efficiency in boilers and the like, and to medical fields that require oxygen therapy for chronic respiratory failure and other conditions.

手続補正書 昭和62年 8月28日 特願昭62−110158号 2、発明の名称 酸素富化多層複合中空糸膜の製法 3、補正をする者 事件との関係  特許出願人 東京都中央区京橋二丁目3番19号 (603)三菱レイヨン株式会社 取締役社長 河 崎 晃 夫 4、代理人 東京都中央区京橋二丁目3番19号 自発 6、補正の対象 明細書の発明の詳細な説明の欄 (1)  明細書第12頁第13行のr7,8XIOJ
をr4,0XIOJと補正する。
Procedural amendment filed August 28, 1988, Japanese Patent Application No. 110158/1982 2, Name of the invention: Process for manufacturing oxygen-enriched multilayer composite hollow fiber membrane 3, Relationship with the person making the amendment case Patent applicant: Kyobashi, Chuo-ku, Tokyo 2-3-19 (603) Mitsubishi Rayon Co., Ltd. President Akio Kawasaki 4, Agent 2-3-19 Kyobashi, Chuo-ku, Tokyo Sponsored by 6 Column for detailed description of the invention in the specification subject to amendment (1) r7,8XIOJ on page 12, line 13 of the specification
is corrected to r4,0XIOJ.

(2)  明細書第12頁第14行のr3,9X10J
をr2,0XIOJと補正する。
(2) r3,9X10J on page 12, line 14 of the specification
is corrected as r2,0XIOJ.

(3)明細書第13頁第18行の[3,5X10Jを「
2.6X10Jと補正する。
(3) [3,5X10J on page 13, line 18 of the specification]
Correct it to 2.6X10J.

Claims (5)

【特許請求の範囲】[Claims] (1)多重円筒型紡糸ノズルを用いて、酸素透過係数8
×10^−^1^0cm^3・cm・cm^−^2・s
ec^−^1・cmHg^−^1以上の重合体(以下「
重合体a」という)と融点170〜250℃の結晶性重
合体(以下「重合体b」という)とを交互に配置し、か
つ重合体bを内表面側と外表面側に配置して溶融複合紡
糸し、次いで延伸により該重合体aの部分を薄層化し、
該重合体bの部分を多孔質化することを特徴とする、重
合体aからなる膜厚1μm以下の分離膜層Aと重合体b
からなる多孔膜層Bとが交互に積層され、かつBが内表
面及び外表面に配されてなる酸素富化多層複合中空糸膜
の製法。
(1) Using multiple cylindrical spinning nozzles, the oxygen permeability coefficient is 8.
×10^-^1^0cm^3・cm・cm^-^2・s
ec^-^1・cmHg^-^1 or more polymer (hereinafter referred to as "
Polymer a") and a crystalline polymer with a melting point of 170 to 250°C (hereinafter referred to as "polymer b") are arranged alternately, and polymer b is arranged on the inner surface side and the outer surface side and melted. Composite spinning and then stretching to make the polymer a thin layer,
A separation membrane layer A having a thickness of 1 μm or less and consisting of polymer a and polymer b, characterized in that a portion of the polymer b is made porous.
A method for producing an oxygen-enriched multilayer composite hollow fiber membrane, in which porous membrane layers B and B are alternately laminated, and B is arranged on the inner and outer surfaces.
(2)重合体をがポリ−4−メチルペンテン−1または
ポリフッ化ビニリデンであることを特徴とする特許請求
の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the polymer is poly-4-methylpentene-1 or polyvinylidene fluoride.
(3)多重円筒型紡糸ノズルを用いて、酸素分離係数3
以上の重合体(以下「重合体a′」という)と融点17
0〜250℃の結晶性重合体(以下「重合体b′」とい
う)とを交互に配置し、かつ重合体b′を内表面側と外
表面側に配置して溶融複合紡糸し、次いで延伸により該
重合体a′の該重合体b′の部分を多孔質化することを
特徴とする、重合体a′からなる膜厚1μm以下の分離
膜層A′と重合体b′からなる多孔膜層B′とが交互に
積層され、かつB′が内表面及び外表面に配されてなる
酸素富化多層複合中空糸膜の製法。
(3) Using multiple cylindrical spinning nozzles, the oxygen separation coefficient is 3.
The above polymer (hereinafter referred to as "polymer a'") and a melting point of 17
Crystalline polymers at 0 to 250°C (hereinafter referred to as "polymer b'") are arranged alternately, and polymer b' is arranged on the inner surface side and the outer surface side for melt composite spinning, and then stretched. A porous membrane comprising a separation membrane layer A' having a thickness of 1 μm or less comprising polymer a' and polymer b', characterized in that a portion of the polymer b' of the polymer a' is made porous by A method for producing an oxygen-enriched multilayer composite hollow fiber membrane in which layers B' and B' are alternately laminated and B' is arranged on the inner and outer surfaces.
(4)重合体a′が熱変形温度(ASTM D648)
75〜85℃のポリ−4−メチルペンテン−1であるこ
とを特徴とする特許請求の範囲第3項記載の方法。
(4) Polymer a' has a heat distortion temperature (ASTM D648)
The method according to claim 3, characterized in that the poly-4-methylpentene-1 is 75-85°C.
(5)重合体b′がポリ−4−メチルペンテン−1また
はポリフッ化ビニリデンであることを特徴とする特許請
求の範囲第3項記載の方法。
(5) The method according to claim 3, wherein the polymer b' is poly-4-methylpentene-1 or polyvinylidene fluoride.
JP11015887A 1987-05-06 1987-05-06 Preparation of oxygen enriching multilayer composite hollow yarn membrane Pending JPS63274433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11015887A JPS63274433A (en) 1987-05-06 1987-05-06 Preparation of oxygen enriching multilayer composite hollow yarn membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11015887A JPS63274433A (en) 1987-05-06 1987-05-06 Preparation of oxygen enriching multilayer composite hollow yarn membrane

Publications (1)

Publication Number Publication Date
JPS63274433A true JPS63274433A (en) 1988-11-11

Family

ID=14528520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11015887A Pending JPS63274433A (en) 1987-05-06 1987-05-06 Preparation of oxygen enriching multilayer composite hollow yarn membrane

Country Status (1)

Country Link
JP (1) JPS63274433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288315A (en) * 1988-05-12 1989-11-20 Idemitsu Kosan Co Ltd Permselective gas permeable membrane
JPH02164425A (en) * 1988-12-19 1990-06-25 Mitsubishi Rayon Co Ltd Multilayer hollow fiber membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288315A (en) * 1988-05-12 1989-11-20 Idemitsu Kosan Co Ltd Permselective gas permeable membrane
JPH02164425A (en) * 1988-12-19 1990-06-25 Mitsubishi Rayon Co Ltd Multilayer hollow fiber membrane

Similar Documents

Publication Publication Date Title
JPS621404A (en) Poly-composite hollow fiber membrane and its manufacturing process
KR100409017B1 (en) Multi-component composite membrane and method for preparing the same
US4741829A (en) Composite hollow fibers and method of making same
JPH07507237A (en) supported microporous membrane
JPS60139815A (en) Conjugate hollow yarn and production thereof
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPS63274433A (en) Preparation of oxygen enriching multilayer composite hollow yarn membrane
JPH04265132A (en) Production of porous hollow fiber membrane
JP2942867B2 (en) Multilayer composite membrane
JPH07171360A (en) Modified cross-section multilayer composite separation membrane
JPS59199001A (en) Composite membrane for gas separation and its manufacture
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JPH03169330A (en) Composite membrane
JPS63296823A (en) Oxygen-enriching membrane and production thereof
JPH0440222A (en) Multilayer composite separation membrane
JPH06339617A (en) Hollow fiber composite membrane and its preparation
JP2934902B2 (en) Manufacturing method of composite hollow fiber membrane
JPS63256118A (en) Oxygen enriching membrane and its production
JPH02164425A (en) Multilayer hollow fiber membrane
JPS62117811A (en) Production of conjugated hollow fiber membrane
JPH0217927A (en) Multilayer film and preparation thereof
JP2622629B2 (en) Manufacturing method of hollow fiber membrane
JPH0798136B2 (en) Multilayer composite film and method for producing the same
JPH01127023A (en) Composite hollow fiber membranes
JPS6253813A (en) Manufacture of laminated porous film