JPH0440222A - Multilayer composite separation membrane - Google Patents

Multilayer composite separation membrane

Info

Publication number
JPH0440222A
JPH0440222A JP14551890A JP14551890A JPH0440222A JP H0440222 A JPH0440222 A JP H0440222A JP 14551890 A JP14551890 A JP 14551890A JP 14551890 A JP14551890 A JP 14551890A JP H0440222 A JPH0440222 A JP H0440222A
Authority
JP
Japan
Prior art keywords
layer
membrane
separation
porous
separation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14551890A
Other languages
Japanese (ja)
Other versions
JPH082412B2 (en
Inventor
Jun Kamo
純 加茂
Makoto Uchida
誠 内田
Takayuki Hirai
平井 孝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP14551890A priority Critical patent/JPH082412B2/en
Publication of JPH0440222A publication Critical patent/JPH0440222A/en
Publication of JPH082412B2 publication Critical patent/JPH082412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enlarge the effective membrane area of a separation layer and to increase transmission speed by receiving the separation layer in a porous layer as a layer whose cross section has a corrugated shape. CONSTITUTION:A porous layers B1 having reinforcing function are arranged to inner and outer surfaces. The porous layers B1 are formed using a material capable of being made porous by stretching operation such as polyethylene or polypropylene. A separation layer A2 having separating function is formed between the porous layers B1 as a layer whose cross section has a corrugated shape to be laminated to the porous layers B1. The separation layer A2 is formed from a silicone polymer or a polyolefin. The polymer materials of the respective layers A, B are alternately laminated so that the layer A has a corrugated shape to form a precursor of a composite mombrane in a molten state and the precursor is subjected to annealing treatment if necessary and subsequently subjected to stretching treatment to make the layers B porous. By this method, the effective membrane area of the separation layer A is made large.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガス分離、溶剤分離、脱気等に用いられる高
性能な多層複合分離膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-performance multilayer composite separation membrane used for gas separation, solvent separation, degassing, etc.

[従来の技術] 物質を分離精製する技術は、古くから数多くの方法が開
発され改良が重ねられてきた。膜分離技術もその一つで
あるが、その改良の経通を見ると優れた膜素材の開発と
分離効率を高めるための薄膜化技術の開発が大きな技術
開発の流れであつた。
[Prior Art] Since ancient times, many methods have been developed and repeatedly improved in techniques for separating and purifying substances. Membrane separation technology is one such technology, and looking at the history of its improvements, the major trends in technological development have been the development of superior membrane materials and the development of thin film technology to increase separation efficiency.

薄膜化技術の一つとして、多孔質の基材の上にコート法
や蒸着法によって薄膜を形成させる方法が盛んに行われ
ているが、多孔質基材上にコートするために、基材の細
孔に薄膜材料が侵入して実質的な薄膜が得られにくかっ
た。また、この欠点を解消するものとして、多孔質基材
の細孔を予め溶解性物質で埋めておいて表面に薄膜層を
形成した後に、多孔質基材内の溶解性物質を溶出する方
法がある。しかし、この方法においても、均質な薄膜層
が得られ難く、また溶出過程で薄膜層が傷つきやすかり
たり、得られた複合膜から薄膜層が剥れやすく、適用て
きる膜形態にも制限があるという問題点かあった。
As one of the thin film forming technologies, the method of forming a thin film on a porous base material by coating method or vapor deposition method is widely used. The thin film material invaded the pores, making it difficult to obtain a substantial thin film. In addition, to overcome this drawback, there is a method in which the pores of the porous base material are filled in advance with a soluble substance, a thin film layer is formed on the surface, and then the soluble substance within the porous base material is eluted. be. However, even with this method, it is difficult to obtain a homogeneous thin film layer, the thin film layer is easily damaged during the elution process, the thin film layer is easy to peel off from the obtained composite film, and there are limitations on the membrane form that can be applied. There was a problem.

分離膜を薄膜化して工業的に製造できる膜構造としたも
のとして特開昭62−1404号公報に開示された多層
複合膜中空糸膜などが知られている。これらの複合膜の
膜構造は、第4図、第5図に示すように、補強機能を受
け持つ多孔質層1と、分離機能を受け持つ分離層2が交
互に積層された構造になっている。
A multilayer composite hollow fiber membrane disclosed in JP-A No. 62-1404 is known as a membrane structure that can be produced industrially by thinning a separation membrane. As shown in FIGS. 4 and 5, the membrane structure of these composite membranes is such that a porous layer 1 having a reinforcing function and a separation layer 2 having a separating function are alternately laminated.

[発明が解決しようとするB題] しかしながら、これらの複合膜の膜構造は、第4図、第
5図から明らかなように、分離機能を受け持つ分離層1
が、中空糸タイプの複合膜では同心円状に、また、平服
タイプの複合膜では平面状に補強機能を受け持つ多孔質
層2中に収納されていた。
[Problem B to be solved by the invention] However, as is clear from FIGS. 4 and 5, the membrane structure of these composite membranes is such that the separation layer 1 which takes charge of the separation function is
However, in a hollow fiber type composite membrane, they are housed concentrically, and in a plain clothes type composite membrane, they are housed in a planar shape in the porous layer 2, which has a reinforcing function.

多層複合分離膜としての性能指標の一つに透過速度があ
るが、膜素材が同じであれば透過速度を高くするために
は分離層をより薄膜化するとともに分離層の膜面積を増
大させることが重要である。更に、補強機能を受け持つ
多孔質層の孔径、空孔率、膜厚を透過の抵抗にならない
ように設定することも重要である。
One of the performance indicators of a multilayer composite separation membrane is the permeation rate, but in order to increase the permeation rate if the membrane material is the same, it is necessary to make the separation layer thinner and increase the membrane area of the separation layer. is important. Furthermore, it is also important to set the pore diameter, porosity, and film thickness of the porous layer that performs the reinforcing function so as not to cause permeation resistance.

分離層を薄膜化していくと膜欠陥の発生率が大きくなる
ためV#膜化には限界がある。従って、分離層の有効膜
面積を大きくすることは非常に有効な手段である。
As the separation layer is made thinner, the rate of occurrence of film defects increases, so there is a limit to forming a V# film. Therefore, increasing the effective membrane area of the separation layer is a very effective means.

[課題を解決するための手段コ すなわち、本発明は、分離機能を受け持つ分離層Aと補
強機能を受け持つ多孔質層Bとが交互に積層され、その
両面が多孔質層Bからなる多層複合分離膜において、該
分離層Aがその断面が波形を有する形態の層として多孔
質層B中に収納されていることを特徴とする多層複合分
離膜!膜である。
[Means for Solving the Problems] In other words, the present invention provides a multilayer composite separation system in which separation layers A having a separation function and porous layers B having a reinforcing function are alternately laminated, and both sides of the layers are composed of porous layers B. A multilayer composite separation membrane characterized in that the separation layer A is housed in the porous layer B as a layer having a corrugated cross section! It is a membrane.

[作 用] 本発明は、多層複合分離膜の外観形態を従来と同様に保
ちながら、分離層をその断面が波形を有する形態の層と
することによりその有効膜面積を増大させ、透過速度を
従来の多層複合分離膜のそれよりも高くした多層複合分
離膜を提供するものである。
[Function] The present invention increases the effective membrane area and increases the permeation rate by making the separation layer a layer with a corrugated cross section while maintaining the external appearance of the multilayer composite separation membrane as before. The present invention provides a multilayer composite separation membrane that is higher than that of conventional multilayer composite separation membranes.

以下、図面を参照しつつ本発明の多層複合分離膜(以下
、「複合膜」と略称する)について説明する。
Hereinafter, the multilayer composite separation membrane (hereinafter abbreviated as "composite membrane") of the present invention will be explained with reference to the drawings.

第1図は中空糸状の複合膜の断面図の例であり、第2図
はフィルム状の複合膜の断面図の例を示したものである
。このように本発明の複合膜の膜形態は中空糸状膜でも
平膜でもよい。内表面と外表面あるいは内外表面には補
強機能を有する多孔質層Bが配され、これら多孔質層B
の間に分離機能を有する分離層Aがその断面が波形を有
する形態の層として形成されて積層された膜構造を有し
ている。
FIG. 1 shows an example of a cross-sectional view of a hollow fiber-like composite membrane, and FIG. 2 shows an example of a cross-sectional view of a film-like composite membrane. As described above, the membrane form of the composite membrane of the present invention may be either a hollow fiber membrane or a flat membrane. A porous layer B having a reinforcing function is arranged on the inner surface and the outer surface or on the inner and outer surfaces, and these porous layers B
A separation layer A having a separation function between the two is formed as a layer having a corrugated cross section and has a laminated membrane structure.

すなわち、本発明の複合膜は、少なくとも三層構造から
なっている。基本的には分離層Aは一層で充分であるが
、目的に応じて二層以上の多層構造としてもよい。分離
膜においては分離機能を行う層が最も重要であり、この
分離層が最外層にあると取り扱い時等に表面に傷が生ず
るおそれがあるが、本発明の複合膜では多孔質層中に収
納された形で分離層が配されているためにこのような危
険性が無い。
That is, the composite membrane of the present invention has at least a three-layer structure. Basically, one layer of the separation layer A is sufficient, but it may have a multilayer structure of two or more layers depending on the purpose. In a separation membrane, the layer that performs the separation function is the most important, and if this separation layer is the outermost layer, there is a risk of scratches on the surface during handling, but in the composite membrane of the present invention, the layer that performs the separation function is stored in the porous layer. There is no such danger because the separation layer is arranged in a closed manner.

複合膜としての膜性能(分離性能)は、多孔質層の空孔
率、孔径、厚みが同じであれば、多孔質層中に収納され
た分離層Aの膜厚と膜面積によフて決定される。したが
って、分離層Aを薄膜化し、収納される膜面積を大きく
することにより膜性能は高くなる。膜厚を薄くする方法
は、製造方法あるいは素材等により限界がある。また、
薄膜化すればするほど膜欠陥発生の危険性が増加する。
Membrane performance (separation performance) as a composite membrane depends on the membrane thickness and membrane area of separation layer A housed in the porous layer, if the porosity, pore diameter, and thickness of the porous layer are the same. It is determined. Therefore, by making the separation layer A thinner and increasing the area of the membrane to be accommodated, the membrane performance can be improved. There are limits to how to reduce the film thickness depending on the manufacturing method, material, etc. Also,
The thinner the film is, the greater the risk of film defects occurring.

したがって:a膜化が限界に近くなった場合、あるいは
膜欠陥発生の危険性を少なくし、複合膜としての膜性能
を高度なものとするには、多孔質層中に収納されている
分離層の膜面積を増加させることが有効である。
Therefore: When the formation of a membrane approaches its limit, or in order to reduce the risk of membrane defects and improve membrane performance as a composite membrane, it is necessary to It is effective to increase the membrane area.

本発明の複合膜においては、分離層の膜面積を増加させ
るために、従来はその横断面で観察した場合にほぼ直線
状を呈する平膜(第5図)あるいは平滑な円や楕円状を
呈する円筒状膜(第4図)の形態であった分離層を、そ
の断面が波形を有する形態の層として形成している。こ
こで、波形を有する形態とは、正弦波が代表的なもので
あるが、例えば第2図に示したパルス状波、第3図に示
した三角状波のような形態のものであフてもよい。また
複合膜が中空糸状膜の場合には、分離層の断面がこれら
の波形を有しつつ全体としては閉じた円または楕円状の
層を形成するものをいう。
In the composite membrane of the present invention, in order to increase the membrane area of the separation layer, conventionally, when observed in its cross section, a flat membrane exhibits an almost linear shape (Fig. 5), or a smooth circular or elliptical shape. The separation layer, which was in the form of a cylindrical membrane (FIG. 4), is now formed as a layer with a corrugated cross section. Here, the form having a waveform is typically a sine wave, but examples include a pulse wave shown in Fig. 2 and a triangular wave shown in Fig. 3. It's okay. In addition, when the composite membrane is a hollow fiber membrane, the cross section of the separation layer has these waveforms, and the membrane forms a closed circular or elliptical layer as a whole.

なお、本発明にいう波形を有する形態とは、同寸法の複
合膜の分離層が単なる平服あるいは単なる平滑な円筒膜
である場合に比べて、少なくとも20%以上膜面積が増
大するように上記の波形形態を有していることをいう。
In addition, the form having a corrugated shape as referred to in the present invention refers to the above-mentioned form in which the membrane area is increased by at least 20% compared to the case where the separation layer of the composite membrane of the same size is a simple plain cloth or a simple smooth cylindrical membrane. It means that it has a waveform form.

また、その断面が波形を有する形態とは、必ずしも複合
膜の任意の切断面において波形が表われる必要はなく、
特定の切断面において波形が表われればよい。通常は、
本発明の複合膜を製造する際の延伸方向に対して垂直な
切断面において波形が表われる。さらに、分離層Aが多
孔質層B中に収納されているとは、多孔質層Bの分離層
との境界面も分離層とほぼ同形の波形を有する表面形態
で、かつ内層がほぼ密着する状態で形成されており、多
孔質層と分離層との間に特別な空隙部が存在しない状態
をいうものとする。
Furthermore, the term "waveform in cross section" does not necessarily mean that the waveform appears on any cut surface of the composite membrane.
It is sufficient if the waveform appears on a specific cut plane. Normally,
Waveforms appear on the cut plane perpendicular to the stretching direction when manufacturing the composite membrane of the present invention. Furthermore, the separation layer A is housed in the porous layer B, which means that the interface between the porous layer B and the separation layer has a surface morphology having a waveform approximately the same as that of the separation layer, and the inner layer is in close contact with the porous layer B. This refers to a state where no special voids exist between the porous layer and the separation layer.

分離層Aは分離機能を有する部分であり、透過速度を高
い値に維持するにはできるだけ薄いことが好ましい。し
たがって、この分離層の厚みが2.0μmを超えると複
合膜による薄膜化の意味が薄れる。一方、分離層の厚み
の下限値は特に限定されないが、およそ0.005μm
以上であることが好ましく、0.01μm以上であるこ
とがより好ましい。
The separation layer A is a part having a separation function, and is preferably as thin as possible in order to maintain a high permeation rate. Therefore, if the thickness of this separation layer exceeds 2.0 μm, the significance of making the composite film thinner is diminished. On the other hand, the lower limit of the thickness of the separation layer is not particularly limited, but is approximately 0.005 μm.
It is preferably at least 0.01 μm, more preferably at least 0.01 μm.

分離層Aが多孔質層B中に収納される位置範囲としては
、分離層Aを取り扱い時等の外傷から保護するためにも
、多孔質層Bの外表面より1μm、より好ましくは2μ
m以上内側の部分に収納することが好ましい。
The position range in which the separation layer A is housed in the porous layer B is 1 μm, more preferably 2 μm from the outer surface of the porous layer B, in order to protect the separation layer A from damage during handling.
It is preferable to store it in a part that is more than m inside.

補強機能を有する多孔質層Bは、補強、保護を受け持つ
以外に分離層Aを薄膜化させる際に膜欠陥の発生防止に
効果を発揮する層である。複合膜において分離層Aを薄
くする場合、分離層Aが薄膜になればなるほど多孔質層
Bの孔径を小さく設定しなければ分離層Aに欠陥が発生
しゃすくなる。したがって、分離層Aの分離機能を膜欠
陥の発生がない状態で充分発現でき、更に分離層Aの分
離機能発現のための抵抗にならないような多孔質層Bの
好ましい多孔質構造は、孔径が0.005〜0.5μm
、好ましくは0.01〜0.3μm、空孔率が20〜9
0%、好ましくは30〜70%、複合膜全体の膜厚が1
0〜1000μm、好ましくは20〜500μlである
。孔径が0.005μm未満では分離対象物質の透過の
抵抗が増大し、0.5μmを超えると分離層の膜欠陥発
生の原因となりやすい。空孔率が20%未満では多孔質
層の細孔の開口部に臨む分離層の割合が少なすぎて分離
層の有効利用率が著しく減少し、90%を超えると複合
膜の補強保持が難しくなる。複合膜の膜厚が10μm未
満では強度的に不十分となりやすい。
The porous layer B having a reinforcing function is a layer that not only serves as reinforcement and protection but also is effective in preventing film defects when the separation layer A is made thin. When making the separation layer A thinner in a composite membrane, the thinner the separation layer A becomes, the more likely defects will occur in the separation layer A unless the pore diameter of the porous layer B is set small. Therefore, a preferable porous structure of the porous layer B is such that the separation function of the separation layer A can be fully expressed without the occurrence of membrane defects, and furthermore, it does not become a resistance to the expression of the separation function of the separation layer A. 0.005~0.5μm
, preferably 0.01-0.3 μm, porosity 20-9
0%, preferably 30-70%, and the thickness of the entire composite membrane is 1
0 to 1000 μm, preferably 20 to 500 μl. If the pore diameter is less than 0.005 μm, the resistance to permeation of the substance to be separated increases, and if it exceeds 0.5 μm, it tends to cause membrane defects in the separation layer. If the porosity is less than 20%, the ratio of the separation layer facing the pore openings of the porous layer will be too small, and the effective utilization rate of the separation layer will decrease significantly, and if it exceeds 90%, it will be difficult to reinforce and maintain the composite membrane. Become. If the thickness of the composite membrane is less than 10 μm, the strength tends to be insufficient.

多孔質層中に波状に収納された分離層の膜面積を増加さ
せるには、複合膜の膜厚が大きい方が有利であるが、1
000μmを超えると分離対象物質の多孔層での抵抗が
過大となりやすい。なお、ここでいう細孔の孔径とは、
水銀ポロシメーターで測定し、細孔径と細孔容量の関係
から細孔容量が%となる孔径をいう。
In order to increase the membrane area of the separation layer housed in a wave-like manner in the porous layer, it is advantageous to increase the membrane thickness of the composite membrane.
If it exceeds 000 μm, the resistance of the substance to be separated in the porous layer tends to be excessive. Note that the pore diameter referred to here is
The pore diameter is measured using a mercury porosimeter and the pore volume is expressed as % from the relationship between the pore diameter and the pore volume.

本発明の複合膜において分離層Aに用いられる重合体A
°としては、シリコーンゴム、シリコーンとポリカーボ
ネートの共重合体等シリコーン系重合体:ボリ4−メチ
ルペンテン−1、線状低密度ポリエチレン等のポリオレ
フィン系重合体;パーフロロアルキル系フッ素含有重合
体;ポリウレタン系重合体:エチルセルロース等のセル
ロース系重合体:ポリフェニレンオキシド、ボッ4−ビ
ニルピリジン;おびこれら重合体を構成する千ツマ−の
共重合体;およびこれらの混合物があげられる。
Polymer A used for separation layer A in the composite membrane of the present invention
Examples include silicone polymers such as silicone rubber and copolymers of silicone and polycarbonate; polyolefin polymers such as poly-4-methylpentene-1 and linear low-density polyethylene; perfluoroalkyl fluorine-containing polymers; polyurethane. Polymers: Cellulose polymers such as ethyl cellulose: polyphenylene oxide, 4-vinylpyridine; and copolymers of these polymers; and mixtures thereof.

多孔質層Bに用いられる重合体B゛とじては、延伸操作
によフて多孔化が可能な素材であればどの重合体を使用
してもよいが、ポリエチレン、ポリプロピレン、ポリ4
−メチルペンテン−1等のポリオレフィン;およびポリ
フッ化ビニリデン、テトラフロロエチレン等ハロゲン含
有ポリオレフィン等の結晶性ポリマーが好ましい。
As for the polymer B used for the porous layer B, any polymer may be used as long as it is a material that can be made porous by a stretching operation, but polyethylene, polypropylene, and poly(4-4) may be used.
- Polyolefins such as methylpentene-1; and crystalline polymers such as halogen-containing polyolefins such as polyvinylidene fluoride and tetrafluoroethylene are preferred.

本発明の複合膜は、例えば次のようにして製造される。The composite membrane of the present invention is manufactured, for example, as follows.

重合体B゛及び重合体A′を交互に積層し、かつ重合体
A′層の断面が波形を有する形態を呈するようにして積
層した複合膜の先駆体を、溶融賦形温度150℃〜30
0”Cの範囲、ドラフト比5〜9000の範囲で形成す
る。
A precursor of a composite film in which polymer B' and polymer A' are alternately laminated so that the polymer A' layer has a corrugated cross section is melt-formed at a temperature of 150°C to 30°C.
It is formed in the range of 0''C and the draft ratio in the range of 5 to 9000.

溶融形成された複合膜先駆体は、必要に応じてアニール
処理した後、延伸処理により重合体B′の層を多孔化す
る。延伸多孔化の方法としては、ポリオレフィンて行わ
れている公知の方法が採用できる。すなわち、常温付近
での少量の延伸によって重合体B′層にミクロクラック
を発生させて白化させ、続いて加熱延伸によって孔の拡
大と花形状の安定化を図ることができる。この間、重合
体A°は多孔化されないので延伸倍率の増加に伴いfl
li化される。
The melt-formed composite membrane precursor is optionally annealed and then stretched to make the layer of polymer B' porous. As a method for forming pores by stretching, a known method used for polyolefins can be adopted. That is, microcracks are generated in the polymer B' layer to whiten it by a small amount of stretching at around room temperature, and then the pores can be enlarged and the flower shape can be stabilized by heating stretching. During this time, polymer A° is not made porous, so as the stretching ratio increases, fl
It is made into li.

延伸条件も特に限定されず、重合体の種類に応じて最適
条件を設定しうるが、例えば重合体B。
The stretching conditions are not particularly limited either, and optimal conditions can be set depending on the type of polymer; for example, for Polymer B.

にポリエチレンを用いる場合には、冷延伸条件としては
常温下で40〜200%、熱延伸条件としては80〜1
25℃、好ましくは90〜105℃で全延伸倍率が10
θ〜300%程度とする条件が採用される。更に、熱安
定性を改良するために、80〜125℃、好ましくは1
05〜120℃で定長若しくは緩和熱処理してもよい。
When using polyethylene, the cold stretching conditions are 40 to 200% at room temperature, and the hot stretching conditions are 80 to 1%.
The total stretching ratio is 10 at 25°C, preferably 90 to 105°C.
A condition of approximately θ˜300% is adopted. Furthermore, to improve thermal stability, the temperature is 80-125°C, preferably 1
Fixed length or relaxation heat treatment may be performed at 05 to 120°C.

[実施例] 以下、実施例により説明する。[Example] Examples will be explained below.

実施例1 外層の外表面と内層の内表面とが同心円を形成し、この
外層と内層の間に中間層(分離層)が波形を有する閉じ
た円型層を形成するように配置された3つの吐出口を有
する中空糸製造用ノズルに対し、外層と内層に供給する
ポリマー素材として密度0.968g/cc 、メルト
インデックス値が5.5の高密度ポリエチレン(三井石
油化学■製、ハイゼックス2200J )を、中間層に
供給するポリマー素材としてセグメント化ポリウレタン
(サーメデックス社製、テコフレックスEG−8OA)
を用い、吐出温度165℃、巻取り速度205 m/l
ll1nで溶融紡糸した。得られた中空未延伸糸は、第
1図のような膜形態を有し、中間層が波形を有する閉じ
円型層としてポリエチレン層内に収納された三層構造で
あり、内径230μm、膜厚35μm、最内表面側及び
最外表面側に位置する中間層の内、外表面からの距離は
それぞれ5μmであり、中間層の膜厚は1.0μmであ
った。この中空未延伸糸を115℃で1時間アニール処
理をした。次いでアニール処理系を常温下で140%冷
延伸を行い、引き続き105℃に加熱された加熱炉中で
総延伸倍率が170%になるまで熱延伸を行い、更に1
20℃の加熱された加熱炉中で総延伸倍率が100%に
なるように緩和熱セットを行った。
Example 1 The outer surface of the outer layer and the inner surface of the inner layer formed a concentric circle, and an intermediate layer (separation layer) was arranged between the outer layer and the inner layer to form a closed circular layer having a corrugated shape. High-density polyethylene with a density of 0.968 g/cc and a melt index value of 5.5 (manufactured by Mitsui Petrochemical Co., Ltd., HIZEX 2200J) is used as the polymer material supplied to the outer and inner layers of a hollow fiber manufacturing nozzle with two discharge ports. Segmented polyurethane (manufactured by Thermedex, Tecoflex EG-8OA) is used as the polymer material supplied to the intermediate layer.
with a discharge temperature of 165°C and a winding speed of 205 m/l.
Melt spinning was carried out using ll1n. The obtained hollow undrawn yarn has a membrane form as shown in Fig. 1, and has a three-layer structure in which the intermediate layer is a closed circular layer with a corrugated shape and is housed within a polyethylene layer, and has an inner diameter of 230 μm and a membrane thickness. The distance from the inner and outer surfaces of the intermediate layer located on the innermost surface side and the outermost surface side was 5 μm, respectively, and the thickness of the intermediate layer was 1.0 μm. This hollow undrawn yarn was annealed at 115° C. for 1 hour. Next, the annealed system was cold stretched to 140% at room temperature, followed by hot stretching in a heating furnace heated to 105°C until the total stretching ratio reached 170%, and further 140%.
Relaxation heat setting was performed in a heating furnace heated at 20° C. so that the total stretching ratio was 100%.

このようにして得られた複合中空糸膜の膜性能を評価し
た結果、空孔率は40.2%、平均孔径0.155 μ
m 、内径200utn、膜厚30μm、中間層の膜厚
0.7μm、最内表面側および最外表面側に位置する中
間層の内、外表面からのそれぞれの距離は3.0μmで
あった。また、得られた複合中空糸膜の空気透過速度を
測定したところ、室温で酸素透過速度(QO2)は1.
47X 10−5cm3/cm2−sec−cmHg、
窒素透過速度(QN2)は5.37X 10−’c+n
’/cm2・sec″cmHgであり、分離係数(QO
2/QN2)は2.7であった。空孔率と平均孔径は水
銀ポロシメーターで測定し、細孔径と細孔容量の関係か
ら細孔容量が%のときの細孔径を平均孔径とした。また
、中間層の膜厚は電子顕微鏡観察で測定した。
As a result of evaluating the membrane performance of the composite hollow fiber membrane thus obtained, the porosity was 40.2%, and the average pore diameter was 0.155μ.
m, the inner diameter was 200 utn, the film thickness was 30 μm, the thickness of the intermediate layer was 0.7 μm, and the distances from the inner and outer surfaces of the intermediate layers located on the innermost and outermost surfaces were 3.0 μm. Furthermore, when the air permeation rate of the obtained composite hollow fiber membrane was measured, the oxygen permeation rate (QO2) at room temperature was 1.
47X 10-5cm3/cm2-sec-cmHg,
Nitrogen permeation rate (QN2) is 5.37X 10-'c+n
'/cm2・sec''cmHg, and the separation coefficient (QO
2/QN2) was 2.7. The porosity and average pore diameter were measured with a mercury porosimeter, and from the relationship between pore diameter and pore volume, the pore diameter when the pore volume was expressed as % was taken as the average pore diameter. Further, the thickness of the intermediate layer was measured by electron microscopic observation.

比較例1 同心円状に配置された3つの吐出口を有する中空糸製造
用ノズルで実施例1と同様のポリマーを用いて、同様の
紡糸条件で紡糸した。得られた中空未延伸糸は内径23
0μmであり、最内層から各々17.54z+o 、 
1.0 μmおよび16.5μmの厚さを有する同心円
状に配された第3図のような三層からなフている。この
中空未延伸糸を実施例1と同様のアニール、冷延伸、熱
延伸、緩和熱セットを行い膜性能を評価した。得られた
複合中空糸膜を評価した結果、空孔率40.2%、平均
孔径0.155μm、内径200μmてあり、最内層か
ら各々15.0μm、0.7μmおよび14.3μmの
厚さを有する同心円状に配された三層からなっていた。
Comparative Example 1 The same polymer as in Example 1 was used for spinning under the same spinning conditions using a hollow fiber manufacturing nozzle having three discharge ports arranged concentrically. The obtained hollow undrawn yarn had an inner diameter of 23
0 μm, respectively 17.54z+o from the innermost layer,
It consists of three layers as shown in FIG. 3 arranged concentrically with thicknesses of 1.0 .mu.m and 16.5 .mu.m. This hollow undrawn yarn was subjected to annealing, cold stretching, hot stretching, and relaxation heat setting in the same manner as in Example 1, and the membrane performance was evaluated. As a result of evaluating the obtained composite hollow fiber membrane, it was found that the porosity was 40.2%, the average pore diameter was 0.155 μm, and the inner diameter was 200 μm, and the thicknesses were 15.0 μm, 0.7 μm, and 14.3 μm from the innermost layer, respectively. It consisted of three layers arranged in concentric circles.

又、得られた複合中空糸膜の空気透過性能を測定したと
ころ、室温下で酸素透過速度(QO2)は8.65X 
10−’cm3/cm”sec−cmHg、窒素透過速
度(QN2)は3.20X 10−’cm3/cm2−
sec−cm)Igであり、分離係数(QO2/QN2
)は2.7であった。
In addition, when the air permeation performance of the obtained composite hollow fiber membrane was measured, the oxygen permeation rate (QO2) was 8.65X at room temperature.
10-'cm3/cm"sec-cmHg, nitrogen permeation rate (QN2) is 3.20X 10-'cm3/cm2-
sec-cm) Ig, and the separation coefficient (QO2/QN2
) was 2.7.

[発明の効果] 実施例からも明らかなように、本発明の多層複合分離膜
においては、多孔質層中に分離層が波形を有する形態の
層として収納されているので、多孔質層の細孔構造と分
離層の膜厚が従来の多層複合分離膜と同一であってもガ
ス透過性能が1.7倍程度大きくなっており、分離層の
膜面積が増加したことによる膜性能の向上が図られた。
[Effects of the Invention] As is clear from the examples, in the multilayer composite separation membrane of the present invention, the separation layer is housed in the porous layer as a layer having a waveform. Even if the pore structure and separation layer thickness are the same as conventional multilayer composite separation membranes, the gas permeation performance is about 1.7 times higher, indicating that the membrane performance has improved due to the increased membrane area of the separation layer. It was planned.

また、本発明の複合膜を用いることで、従来の複合膜を
用いた各種の膜モジュールをさらに小型化することが可
能となる。
Further, by using the composite membrane of the present invention, it is possible to further downsize various membrane modules using conventional composite membranes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、分離層が多孔質層中に波状に収納された本発
明の多層複合分離中空糸膜の模式断面図であり、第2図
および第3図は、分離層が多孔質層中にパルス状波また
は三角状の形で収納された本発明の多層複合分離平服の
模式断面図である。 第4図および第5図は、従来の多層複合分1m膜の模式
断面図である。
FIG. 1 is a schematic cross-sectional view of a multilayer composite separation hollow fiber membrane of the present invention in which a separation layer is housed in a porous layer in a wave shape, and FIGS. 2 and 3 show a separation layer in a porous layer. FIG. 2 is a schematic cross-sectional view of the multi-layer composite separate uniform of the present invention packed in a pulsed wave or triangular shape. FIGS. 4 and 5 are schematic cross-sectional views of a conventional multilayer composite 1 m membrane.

Claims (1)

【特許請求の範囲】[Claims] 1)分離機能を受け持つ分離層Aと補強機能を受け持つ
多孔質層Bとが交互に積層され、その両表面が多孔質層
Bからなる多層複合分離膜において、該分離層Aがその
断面が波形を有する形態の層として多孔質層B中に収納
されていることを特徴とする多層複合分離膜。
1) In a multilayer composite separation membrane in which a separation layer A having a separation function and a porous layer B having a reinforcing function are alternately laminated, and both surfaces thereof are composed of the porous layers B, the separation layer A has a corrugated cross section. 1. A multilayer composite separation membrane characterized in that the layer having the following structure is housed in a porous layer B.
JP14551890A 1990-06-05 1990-06-05 Multilayer composite separation membrane Expired - Fee Related JPH082412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14551890A JPH082412B2 (en) 1990-06-05 1990-06-05 Multilayer composite separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14551890A JPH082412B2 (en) 1990-06-05 1990-06-05 Multilayer composite separation membrane

Publications (2)

Publication Number Publication Date
JPH0440222A true JPH0440222A (en) 1992-02-10
JPH082412B2 JPH082412B2 (en) 1996-01-17

Family

ID=15387087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14551890A Expired - Fee Related JPH082412B2 (en) 1990-06-05 1990-06-05 Multilayer composite separation membrane

Country Status (1)

Country Link
JP (1) JPH082412B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063122A1 (en) * 1999-04-20 2000-10-26 Asahi Kasei Kogyo Kabushiki Kaisha Method for purifying turbid water
KR100349601B1 (en) * 1998-12-17 2002-10-19 주식회사 엘지화학 Microporous membrane and its manufacturing method_
JP2008272696A (en) * 2007-05-02 2008-11-13 Mitsubishi Rayon Eng Co Ltd Degassing composite hollow fiber membrane and its manufacturing method
US7735660B2 (en) 2002-10-23 2010-06-15 Sumitomo Electric Fine Polymer, Inc. Porous multilayered hollow fiber and filtration module, and method of manufacturing porous multilayered hollow fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349601B1 (en) * 1998-12-17 2002-10-19 주식회사 엘지화학 Microporous membrane and its manufacturing method_
WO2000063122A1 (en) * 1999-04-20 2000-10-26 Asahi Kasei Kogyo Kabushiki Kaisha Method for purifying turbid water
US6322703B1 (en) 1999-04-20 2001-11-27 Asahi Kasei Kabushiki Kaisha Method for purifying aqueous suspension
US6495041B2 (en) 1999-04-20 2002-12-17 Asahi Kasei Kogyo Kabushiki Kaisha Method for purifying aqueous suspension
US7735660B2 (en) 2002-10-23 2010-06-15 Sumitomo Electric Fine Polymer, Inc. Porous multilayered hollow fiber and filtration module, and method of manufacturing porous multilayered hollow fiber
JP2008272696A (en) * 2007-05-02 2008-11-13 Mitsubishi Rayon Eng Co Ltd Degassing composite hollow fiber membrane and its manufacturing method

Also Published As

Publication number Publication date
JPH082412B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
US4713292A (en) Multilayer composite hollow fibers and method of making same
US4741829A (en) Composite hollow fibers and method of making same
KR100409017B1 (en) Multi-component composite membrane and method for preparing the same
US5192320A (en) Artificial lung and method of using it
JP3381538B2 (en) Manufacturing method of laminated porous polyolefin film
JPH07304110A (en) Laminated porous film and production thereof
JPS60139815A (en) Conjugate hollow yarn and production thereof
JPH07171360A (en) Modified cross-section multilayer composite separation membrane
JPH0440222A (en) Multilayer composite separation membrane
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
JP2942867B2 (en) Multilayer composite membrane
JPH06339617A (en) Hollow fiber composite membrane and its preparation
JPH03169330A (en) Composite membrane
JPS63230173A (en) Hollow yarn membrane type artificial lung
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JP3955643B2 (en) Composite tube with great flexibility
JP2934902B2 (en) Manufacturing method of composite hollow fiber membrane
JPS63296823A (en) Oxygen-enriching membrane and production thereof
JPH04215828A (en) Multilayer composite membrane and production thereof
JPH02164425A (en) Multilayer hollow fiber membrane
JPS63274433A (en) Preparation of oxygen enriching multilayer composite hollow yarn membrane
JPS5836603B2 (en) Heat-resistant separation membrane for mixed gas
JPH01127023A (en) Composite hollow fiber membranes
JPH02268816A (en) Laminated hollow fiber membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees