JPH03169330A - Composite membrane - Google Patents

Composite membrane

Info

Publication number
JPH03169330A
JPH03169330A JP31153889A JP31153889A JPH03169330A JP H03169330 A JPH03169330 A JP H03169330A JP 31153889 A JP31153889 A JP 31153889A JP 31153889 A JP31153889 A JP 31153889A JP H03169330 A JPH03169330 A JP H03169330A
Authority
JP
Japan
Prior art keywords
layers
separation
composite membrane
layer
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31153889A
Other languages
Japanese (ja)
Inventor
Jun Kamo
純 加茂
Makoto Uchida
誠 内田
Takayuki Hirai
平井 孝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP31153889A priority Critical patent/JPH03169330A/en
Publication of JPH03169330A publication Critical patent/JPH03169330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain good gas separation characteristics by a method wherein separation layers A and porous layers B are alternately laminated and both surfaces of the laminate are composed of the layers B and the void ratio and pore size of the layers B are within a specific range and the thickness and mean minute pore size of the layers A satisfy a specific formula. CONSTITUTION:In a composite membrane wherein separation layers A taking charge of separation function and porous layers B taking charge of reinforcing function are alternately laminated and both surfaces of the laminate are composed of the porous layers B, the void ratio of the porous layers B of the composite membrane is 30-90% and the mean pore size of the minute pores thereof measured by a mercury porosimeter is 0.01-0.5mum while the relation between the thickness (t) of the separation layers A and the mean pore size PI of the pores thereof measured by the mercury porosimeter is characterized by PI<=(log (t)+2.2)/7.8. As the polymer used in the separation layers A of the composite membrane, there are a silicone polymer and a polyolefin polymer and, as the polymer used in the porous layers B, there is a crystalline polymer. This composite membrane has good gas separation characteristics and has no flaw in membrane constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガス分離や溶剤分離等に用いられる複合膜に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite membrane used for gas separation, solvent separation, etc.

〔従来の技術〕[Conventional technology]

物質を分離精製する技術としては昔から数多〈の方法が
開発され改良が重ねられてきた。膜分離技術もその一つ
であるがその改良の経過を見ると優れた膜素材の開発と
効率を高めるための薄膜化技術の開発が大きな技術開発
の流れである。
Many methods for separating and purifying substances have been developed and improved over the years. Membrane separation technology is one such technology, and looking at the progress of its improvements, the major trends in technological development are the development of superior membrane materials and the development of thin film technology to increase efficiency.

薄膜化技術の一つの方向として多孔質の基材の上にコー
ト法や蒸着法によって薄膜を形或させる方法も盛んに行
われてしるが、多孔質基板上にコートするために基板の
細孔に薄膜材料が侵入して実質的な薄膜が得られない。
One direction in thin film technology is to form a thin film on a porous substrate using a coating method or vapor deposition method. Thin film material enters the pores and a substantial thin film cannot be obtained.

壕たこの現象を避けるために多孔基板を予め溶解性物質
で細孔を埋めてbいて表面に薄層を形或したあとに、多
孔質基板内の溶解性物質を溶出する方法もあるが、均質
な薄層が得られ難く!た傷つきやすい。このようにピン
ホールの発生、膜厚の不均一 耐久性がないなどの問題
からなかなか実用化が難しい状況にある。
In order to avoid this phenomenon, there is a method in which the pores of a porous substrate are filled in advance with a soluble substance to form a thin layer on the surface, and then the soluble substance within the porous substrate is eluted. Difficult to obtain a homogeneous thin layer! Vulnerable. Problems such as the occurrence of pinholes, uneven film thickness, and lack of durability have made it difficult to put it into practical use.

分離膜を薄層化して工業的に製造できる膜構造としたも
のとして多層複合中空糸膜及びその製造法(特開昭62
−1404号)がある。
A multilayer composite hollow fiber membrane and its manufacturing method (Japanese Unexamined Patent Application Publication No. 1983-1992
-1404).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら特開昭62−1404号には中間層の機能
を安定に容易に発現させるための空孔率と平均孔径及び
中間層の膜厚から規制される複合膜構造につhては記載
されていない。
However, JP-A-62-1404 does not describe a composite membrane structure that is controlled by the porosity, average pore diameter, and thickness of the intermediate layer in order to stably and easily express the function of the intermediate layer. do not have.

本発明者等が詳細に検討したところ、中間層の機能を充
分発現させるためには中間層の膜厚に応じて多孔質膜の
平均孔径と空孔率及び分離膜の膜厚をある特定の範囲に
設定する必要があることが判明した。
As a result of detailed study by the present inventors, in order to fully realize the function of the intermediate layer, the average pore diameter and porosity of the porous membrane and the membrane thickness of the separation membrane must be adjusted to a certain level depending on the thickness of the intermediate layer. It turns out that I need to set it to a range.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨は、分離機能を受け持つ分離層Aと補強機
能を受け持つ多孔質層Bとが交互に積層され、その両表
面が多孔質層Bから゛なる複合膜において、該複合膜の
多孔質層Bの空孔率が30〜90鳴、水銀ポロシメータ
ーで測定した微小空孔の平均孔径が(LO1〜115μ
mの範囲にあり、分離層Aの膜厚tと水銀ポロシメータ
ーで測定した微小空孔の平均孔径PIの関俤にあること
を特徴とする複合膜にある。
The gist of the present invention is to provide a composite membrane in which a separation layer A having a separation function and a porous layer B having a reinforcing function are alternately laminated, and both surfaces thereof are composed of porous layers B. The porosity of layer B is 30 to 90μ, and the average diameter of micropores measured with a mercury porosimeter is (LO1 to 115μ).
The composite membrane is characterized in that the membrane thickness t of the separation layer A and the average pore diameter PI of the micropores measured with a mercury porosimeter are in the range of m.

本発明の複合膜は多孔質構造の中に薄層の分離層を内在
する構成となってbる。すなわち本質層から成ってシリ
、中間層が分離機能を有するごく薄い嗅から戊っている
。基本的には分離層Aは一層で充分であるが、二層以上
の多層構造とすることは目的に応じて任意に行うことが
出来る。分離膜にかいては分離機能を行う層が最も重要
であり、それが最外層にあると取り扱い時等に表面に傷
をあたえる虞があるが、本発明の複合膜では三層以上の
構造の中間層に分離機能を有する層があるためにこのよ
うな危険性が無い。
The composite membrane of the present invention has a structure in which a thin separation layer is included within a porous structure. In other words, it consists of an essential layer, and an intermediate layer separates from the very thin olfactory layer, which has a separating function. Basically, one layer of the separation layer A is sufficient, but a multilayer structure of two or more layers can be arbitrarily formed depending on the purpose. In a separation membrane, the most important layer is the layer that performs the separation function, and if it is the outermost layer, there is a risk of damaging the surface during handling, but the composite membrane of the present invention has a structure of three or more layers. There is no such danger because there is a layer having a separation function in the intermediate layer.

複合膜の補強機能を受け持つ多孔質層Bぱ、分離機能を
受け持つ分離層Aの膜性能を充分発現するためには、分
離対象物質の透過の抵抗にならない程度の空孔率が必要
であり、その値はかよそ50e6以上である。又複合膜
の機械的強度を維持するために多孔質層Bの空孔率は9
01以下であることが要求される。
In order to fully demonstrate the membrane performance of the porous layer B, which has the reinforcing function of the composite membrane, and the separation layer A, which has the separation function, it is necessary to have a porosity that does not become a resistance to the permeation of the substance to be separated. Its value is approximately 50e6 or more. In order to maintain the mechanical strength of the composite membrane, the porosity of porous layer B is 9.
01 or less is required.

分離機能を受け持つ分離層Aの分離性能を極力向上させ
るためには分離層の膜厚をできるだけ薄く形威させる必
要がある。
In order to improve the separation performance of the separation layer A which performs the separation function as much as possible, it is necessary to make the thickness of the separation layer as thin as possible.

本発明者等は分#ll層の膜厚と多孔質層の微小孔径と
の関係と分離層の欠陥発生との関係を詳細に解析した。
The present inventors analyzed in detail the relationship between the thickness of the #ll layer and the micropore diameter of the porous layer, and the relationship between the occurrence of defects in the separation layer.

その結果多孔質層の微小空孔は流体透過の抵抗を大きく
しないためにl(11μm以上が必要であり、又、分離
層に欠陥を発生させないためには小さい方が好筐し((
15μm以下にすればいいことが明らかとなった。即ち
、分離層Aの膜厚tμmと水銀ポロシメーターで測定し
た徽小空孔の平均孔径PI7jmの関係が?工≦■ (
 lo g(t)+ 2−2 )z8 にあるものが、分離mAに欠陥の無い複合膜である。
As a result, the micropores in the porous layer need to be at least 11 μm in diameter to avoid increasing the resistance to fluid permeation, and the smaller the better to prevent defects in the separation layer ((
It became clear that the thickness should be 15 μm or less. That is, what is the relationship between the film thickness tμm of the separation layer A and the average pore diameter PI7jm of the small pores measured with a mercury porosimeter? Engineering ≦■ (
The one at log(t)+2-2)z8 is a composite membrane with no defects in separation mA.

本発明の複合膜にシーて分離層▲に用いられる重合体A
′としては、シリコンゴム、シリコンとポリカーボネー
トの共重合体等シリコン系重合体、ボリ4−メチルベン
テン−1、リニアローデンシテイポリエチレン等のポリ
オレフイン系重合体、バー7ロロアルキル系フッ素含有
重合体、ポリウレタン系重合体、エチルセルロース等の
セルロース系重合体、ホリフエニレンオキサイド、ボリ
4−ビニルビリジン及びこれら重合体素材の共重合体あ
るーはブレンド体があげられる。
Polymer A used for the separation layer ▲ in the composite membrane of the present invention
Examples include silicone rubber, silicone-based polymers such as copolymers of silicone and polycarbonate, polyolefin-based polymers such as poly-4-methylbentene-1, linear low-density polyethylene, bar 7 loloalkyl-based fluorine-containing polymers, and polyurethane-based polymers. Polymers, cellulose polymers such as ethyl cellulose, polyphenylene oxide, poly-4-vinylpyridine, and copolymers or blends of these polymer materials can be mentioned.

多孔質層Bに用いられる重合体B′としては、延伸操作
によって多孔質化が可能な素材であればどの重合体を使
用してもよいが、ポリエチレン、ポリプロピレン、ボリ
4−メチルペンテン−1等ポリオレフイン系、及びボリ
フツ化ビニリデン、テトラフロロエチレン等の結晶性ポ
リマーが好1しい。
As the polymer B' used for the porous layer B, any polymer may be used as long as it is a material that can be made porous by a stretching operation, such as polyethylene, polypropylene, poly-4-methylpentene-1, etc. Preferred are polyolefins, polyvinylidene difluoride, tetrafluoroethylene, and other crystalline polymers.

本発明の複合膜は、次のようにして製造される。The composite membrane of the present invention is manufactured as follows.

複合形或するにあたり重合体B′及び重合体A′を交互
にして溶融賦形温度150℃〜300℃の範囲、ドラフ
ト5〜9000の範囲でサンドインチ状に形成する。
To form the composite, polymer B' and polymer A' are alternately formed into a sandwich shape at a melt-forming temperature of 150° C. to 300° C. and a draft of 5 to 9000° C.

溶融複合形威された未延伸多層複合膜は必要に応じて了
二−ル処理した後、重合体B′の層力工延伸多孔化され
る。延伸多孔化の方法としては10〜2004冷延伸を
行い総延伸倍率が30〜400優になるように熱延伸し
、最後に熱セットを行うことによって、補強機能を受け
持つ多孔質層Bのみを多孔化し徽小空孔を安定化させる
方法が好1しい。
The unstretched multilayer composite film formed by melting and forming the composite film is subjected to a resin treatment if necessary, and then the polymer B' is layer-stretched to make it porous. The method of stretching to make porous layer is to cold stretch from 10 to 2004, hot stretch to make the total stretching ratio 30 to 400, and finally heat set to make only porous layer B which has reinforcing function porous. A method in which the small pores are stabilized by oxidation is preferred.

〔実施例〕〔Example〕

以下、実施例により説明する。 Examples will be explained below.

実施例1及び2 同心円状に配置された3つの吐出口を有する中空糸製造
用ノズルに対し、内層と外層に供給するポリマー素材と
して密度(L 9 6 8 t/cc,メルトインデッ
クス値が5.5の高密度ボリエチレン(三井石油化学@
製、ハイゼツクス2200J)を、中間層に供給するボ
リマー素材としてセグメント化ポリウレタン(サーメデ
ツクス社製、テコフレックスgG−soA)を用い、吐
出温度165℃、巻取り速度205m/minで紡糸し
た。得られた中空未延伸糸は内径250μmであり、最
内層から各AI5μへQ.15μへ及び14μmの厚さ
を有する同心円状に配された三層からなっていた。この
中空未延伸糸を115℃で1時間アニール処理をした。
Examples 1 and 2 A polymer material with a density (L 9 6 8 t/cc and a melt index value of 5.0) was used as the polymer material supplied to the inner and outer layers of a hollow fiber manufacturing nozzle having three discharge ports arranged concentrically. No. 5 high-density polyethylene (Mitsui Petrochemical @
(Hisex 2200J) was spun at a discharge temperature of 165°C and a winding speed of 205 m/min using segmented polyurethane (Tecoflex gG-soA, Thermedex) as the polymer material supplied to the intermediate layer. The obtained hollow undrawn yarn has an inner diameter of 250 μm, and is coated from the innermost layer to each AI5 μm. It consisted of three concentrically arranged layers with a thickness of 15μ and 14μm. This hollow undrawn yarn was annealed at 115° C. for 1 hour.

次いでアニール処理糸を室温下で60係(実施例1)、
1204(実施例2)の2通りの冷延伸を行h1引き続
き105℃に加熱された加熱炉中で総延伸量が150憾
になる1で熱延伸を行い、更に120℃の加熱された加
熱炉中で熱セットを行った。
Then, the annealed yarn was heated to 60% at room temperature (Example 1),
1204 (Example 2) was carried out in two ways. I did a heat setting inside.

このようにして得られた複合中空糸膜の膜性能を評価し
第1表の結果を得た。細孔容積(空孔率)は水銀ポロシ
メーターで測定し、細孔径と細孔容量の関係から細孔容
量が172の時の細孔径を平均孔径PIとした。酸素透
過係数と窒素透過係数の比を測定して分離係数αを求め
、又分離層の膜厚は電子w4微鏡観察で測定した。
The membrane performance of the composite hollow fiber membrane thus obtained was evaluated, and the results shown in Table 1 were obtained. The pore volume (porosity) was measured using a mercury porosimeter, and from the relationship between the pore diameter and the pore volume, the pore diameter when the pore volume was 172 was taken as the average pore diameter PI. The ratio of the oxygen permeability coefficient to the nitrogen permeability coefficient was measured to determine the separation coefficient α, and the film thickness of the separation layer was measured by electron W4 microscopic observation.

第1表よりbずれの実施例の場合もPI≦PICの条件
を満足してかり、良好な気体分g!係数を示しているこ
とがわかる。
From Table 1, even in the case of the example with deviation b, the condition of PI≦PIC is satisfied, and a good gas content g! It can be seen that it shows the coefficient.

比較例1及び2 実施例1と同様のボリマーを用いて吐出温度165℃、
巻取り速度133mlminで紡糸した。得られた中空
未延伸糸は内径270μmであり、最内層から18μm
,  1、0μm1及び16μmの厚さを有する同心円
状に配された三層からなってbた。この中空未延伸糸を
115℃で1時間アニール処理をした。次いでアニール
処理糸を室温下で40憾(比較例1)、5004が50
0優になる筐で熱延伸を行い、更に120℃の加熱炉中
で熱セットを行った。得られた複合中空糸膜の脱性能を
第1表に示した。
Comparative Examples 1 and 2 Using the same polymer as in Example 1, the discharge temperature was 165°C,
Spinning was carried out at a winding speed of 133 ml min. The obtained hollow undrawn yarn has an inner diameter of 270 μm, and a distance of 18 μm from the innermost layer.
It consisted of three concentrically arranged layers with thicknesses of 1, 0 μm and 16 μm. This hollow undrawn yarn was annealed at 115° C. for 1 hour. Next, the annealed yarn was heated to 40% at room temperature (Comparative Example 1), and 5004 was heated to 50%
Hot stretching was carried out in a casing with a temperature of 0.00 mm, and heat setting was further carried out in a heating furnace at 120°C. Table 1 shows the removal performance of the composite hollow fiber membrane obtained.

小一ざ〈、分離係数は[lL94又ぱ[19Bであり、
分離膜本来の分離係数が発現してしないことがわかる。
Koichiza〈, the separation coefficient is [lL94mata[19B,
It can be seen that the original separation coefficient of the separation membrane is not expressed.

〔発明の効夾〕[Effects of invention]

実施例の結果から明らかなように多孔質層の平均孔径と
空孔率及び分離層の膜厚が特許請求の要件を満たす複合
膜は良好な気体分離特性を有するものであり膜構造に欠
陥のない複合膜であることがわかる。
As is clear from the results of the examples, a composite membrane in which the average pore diameter and porosity of the porous layer and the membrane thickness of the separation layer meet the claimed requirements has good gas separation properties and has no defects in the membrane structure. It can be seen that it is a composite membrane with no

Claims (1)

【特許請求の範囲】 分離機能を受け持つ分離層Aと補強機能を受け持つ多孔
質層Bとが交互に積層され、その両表面が多孔質層Bか
らなる複合膜において、該複合膜の多孔質層Bの空孔率
が30〜90%、水銀ポロシメーターで測定した微小空
孔の平均孔径が0.01〜0.5μmの範囲にあり、分
離層Aの膜厚tと水銀ポロシメーターで測定した微小空
孔の平均孔径PIの関係が PI≦1/7.8(log(t)+2.2)にあること
を特徴とする複合膜。
[Scope of Claims] A composite membrane in which a separation layer A having a separation function and a porous layer B having a reinforcing function are alternately laminated, and both surfaces thereof are composed of the porous layer B, the porous layer of the composite membrane The porosity of B is 30 to 90%, the average pore diameter of micropores measured with a mercury porosimeter is in the range of 0.01 to 0.5 μm, and the film thickness t of separation layer A and the micropores measured with a mercury porosimeter are in the range of 0.01 to 0.5 μm. A composite membrane characterized in that the relationship between the average pore diameter PI of pores is PI≦1/7.8 (log(t)+2.2).
JP31153889A 1989-11-30 1989-11-30 Composite membrane Pending JPH03169330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31153889A JPH03169330A (en) 1989-11-30 1989-11-30 Composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31153889A JPH03169330A (en) 1989-11-30 1989-11-30 Composite membrane

Publications (1)

Publication Number Publication Date
JPH03169330A true JPH03169330A (en) 1991-07-23

Family

ID=18018444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31153889A Pending JPH03169330A (en) 1989-11-30 1989-11-30 Composite membrane

Country Status (1)

Country Link
JP (1) JPH03169330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760081A (en) * 1991-03-22 1995-03-07 Ube Ind Ltd Production of hollow fiber membrane
WO1999046034A1 (en) * 1998-03-13 1999-09-16 Mitsubishi Rayon Co., Ltd. Composite hollow fiber membrane and its manufacture
JPWO2009054460A1 (en) * 2007-10-26 2011-03-10 旭化成ケミカルズ株式会社 Gas separation membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760081A (en) * 1991-03-22 1995-03-07 Ube Ind Ltd Production of hollow fiber membrane
WO1999046034A1 (en) * 1998-03-13 1999-09-16 Mitsubishi Rayon Co., Ltd. Composite hollow fiber membrane and its manufacture
JPWO2009054460A1 (en) * 2007-10-26 2011-03-10 旭化成ケミカルズ株式会社 Gas separation membrane
JP2015037791A (en) * 2007-10-26 2015-02-26 旭化成ケミカルズ株式会社 Gas separation membrane

Similar Documents

Publication Publication Date Title
US4802942A (en) Method of making multilayer composite hollow fibers
US4741829A (en) Composite hollow fibers and method of making same
KR100409017B1 (en) Multi-component composite membrane and method for preparing the same
CN106159159B (en) Composite separation membrane for secondary battery and preparation method thereof
JPS6244046B2 (en)
JPS6279806A (en) Porous separation membrane and its production
JPH03169330A (en) Composite membrane
JPS60179102A (en) Carbon membrane and its preparation
JPH07171360A (en) Modified cross-section multilayer composite separation membrane
JPH03174452A (en) Porous article of polytetrafluoroethylene and preparation thereof
JP2942867B2 (en) Multilayer composite membrane
JPH0440222A (en) Multilayer composite separation membrane
JPH06339617A (en) Hollow fiber composite membrane and its preparation
JPS62117811A (en) Production of conjugated hollow fiber membrane
JPS63230173A (en) Hollow yarn membrane type artificial lung
JP2934902B2 (en) Manufacturing method of composite hollow fiber membrane
JPS63274433A (en) Preparation of oxygen enriching multilayer composite hollow yarn membrane
JPH02164425A (en) Multilayer hollow fiber membrane
JPS5836603B2 (en) Heat-resistant separation membrane for mixed gas
JPH04215828A (en) Multilayer composite membrane and production thereof
JPS6297980A (en) Composite hollow fiber membrane
JPS63296823A (en) Oxygen-enriching membrane and production thereof
JPS63302904A (en) Multi-layered composite hollow fiber containing fluid and its production
JPH022846A (en) Production of porous ceramic multilayer hollow yarn
JPH0217927A (en) Multilayer film and preparation thereof