JPH06333559A - Nonaqueous lithium ion secondary battery - Google Patents

Nonaqueous lithium ion secondary battery

Info

Publication number
JPH06333559A
JPH06333559A JP5291117A JP29111793A JPH06333559A JP H06333559 A JPH06333559 A JP H06333559A JP 5291117 A JP5291117 A JP 5291117A JP 29111793 A JP29111793 A JP 29111793A JP H06333559 A JPH06333559 A JP H06333559A
Authority
JP
Japan
Prior art keywords
carbon
black
carbon fiber
carbon black
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5291117A
Other languages
Japanese (ja)
Inventor
Masanori Niiyama
正徳 新山
Koji Murai
剛次 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP5291117A priority Critical patent/JPH06333559A/en
Publication of JPH06333559A publication Critical patent/JPH06333559A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance discharge capacity by forming a negative electrode by a composition in which 1-30wt.% of carbon black is contained in a graphitized gas phase developing carbon fiber having a carbon lattice spacing of less than 0.345nm. CONSTITUTION:A negative electrode is formed by a composition in which 1-30wt.% of carbon black is contained in a graphitized gas phase developing carbon fiber having a carbon lattice spacing d002 of less than 0.345nm, preferably, less than 0.338nm. As the carbon black to be used, acetylene black is suitably used, but thermal black and furnace black may be also used. The mixing ratio of carbon black in the gas phase developing carbon fiber is 2-12wt.% when electrolyte mainly consists of LiPF6, and 4-20wt.% when it mainly consists of LiClO4. A part of the gas phase developing carbon fiber is substituted by carbon black, whereby a discharge capacity value exceeding the theoretical charge capacity of the gas phase developing carbon fiber alone can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水リチウムイオン二次
電池の改良に関し、特に従来より容量の大きい高性能の
二次電池を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a non-aqueous lithium ion secondary battery, and particularly to provide a high performance secondary battery having a larger capacity than ever before.

【0002】[0002]

【従来の技術と解決すべき課題】近年は多種類の電子機
器の発達に伴い、高性能の二次電池への要求が高まって
いる。なかでもその高容量の点からリチウム二次電池が
注目されていたが、金属リチウムを電極に使用していた
ために、安全性に問題があるとの認識が高まり、現在は
炭素、特に黒鉛を負極に使用し、炭素とリチウムイオン
の層間化合物形成能を利用した非水リチウムイオン二次
電池の研究が増加しており、一部は実用化の段階に入っ
ている。しかしこの電極も、リチウムと炭素の層間化合
物の中のリチウム濃度は金属リチウム中のリチウム濃度
と較べてかなり低いために、容量が小さくなるという欠
点を有する。炭素〜リチウム層間化合物は中に包含する
リチウム量が最も多い第1ステージでも炭素原子とリチ
ウム原子の数の比は6対1であり、その時の電極の理論
的に充電可能な電気容量は372mA.Hr/gであ
り、この理論値の放電容量を持った電池の開発のために
多くの努力が払われてきたが、未だにこの目標値は達成
されていない。一説によれば上記比率で層間化合物を形
成するのは炭素の内の黒鉛結晶部分のみであるから、充
電容量は黒鉛化度で補正されるべきであるともされてい
る。本願発明はこの目標値の達成はおろか、それを越え
た高容量二次電池を提供する。
2. Description of the Related Art In recent years, the demand for high-performance secondary batteries has increased with the development of various types of electronic equipment. Among them, lithium secondary batteries have been attracting attention because of their high capacity, but since metal lithium was used for the electrodes, it was recognized that there was a problem with safety, and now carbon, especially graphite, is used as the negative electrode. The number of researches on non-aqueous lithium-ion secondary batteries, which utilize the ability to form an intercalation compound of carbon and lithium ions, is increasing, and some of them are in the stage of practical application. However, this electrode also has a drawback that the capacity becomes small because the lithium concentration in the intercalation compound of lithium and carbon is considerably lower than the lithium concentration in metallic lithium. In the carbon-lithium intercalation compound, the ratio of the number of carbon atoms to the number of lithium atoms was 6 to 1 even in the first stage, which contained the largest amount of lithium, and the theoretical chargeable electric capacity of the electrode at that time was 372 mA. It is Hr / g, and many efforts have been made to develop a battery having a discharge capacity of this theoretical value, but this target value has not yet been achieved. According to one theory, since it is only the graphite crystal part of carbon that forms the intercalation compound at the above ratio, the charging capacity should be corrected by the degree of graphitization. The present invention not only achieves this target value, but also provides a high-capacity secondary battery that exceeds the target value.

【0003】[0003]

【課題を解決する手段】本願発明の二次電池は炭素格子
面間隔d002が0.345nm以下、好ましくは0.
338nm以下の黒鉛化された気相成長炭素繊維にカー
ボンブラックを1〜30重量%含有した組成物から負極
を形成したことを特徴とする。気相成長炭素繊維は公知
である。これは例えばフエロセンとベンゼンと水素の混
合ガスを約1000℃に加熱された炉に注入することに
より、浮遊状態で繊維を得る流動法、セラミック基板に
鉄の超微粒子を形成させて水素気流を流した炉に入れ、
ベンゼンを注入することにより基板から生えた繊維を得
る基板法が知られている。これらの気相繊維炭素繊維は
炭素格子面が、繊維軸を中心とした年輪状に配列してい
ることもよく知られている。これらの気相成長炭素繊維
は黒鉛化が進んでいればそのまま使用してもよいが、通
常は不活性気体中2000℃以上で黒鉛化処理して、格
子面間隔d002を0.345nm以下とする。d00
2が0.338以下の方がさらに電気容量が大きくな
る。また繊維を粉砕・切断する時は、黒鉛化前ではな
く、黒鉛化後に行った方が本発明の効果が大きくて好ま
しい。繊維の直径は1.0〜3.0μmが好ましく、長
さは3.0〜200.0μm,アスペクト比は3.0〜
100.0が好ましい。
In the secondary battery of the present invention, the carbon lattice spacing d002 is 0.345 nm or less, preferably 0.
It is characterized in that the negative electrode is formed from a composition containing 1 to 30% by weight of carbon black in graphitized vapor-grown carbon fiber of 338 nm or less. Vapor grown carbon fibers are known. This is, for example, by injecting a mixed gas of ferrocene, benzene, and hydrogen into a furnace heated to about 1000 ° C. to obtain fibers in a suspended state, a method of forming ultrafine iron particles on a ceramic substrate, and flowing a hydrogen stream. Put it in the furnace
A substrate method for obtaining fibers grown from a substrate by injecting benzene is known. It is also well known that the carbon lattice planes of these vapor phase carbon fibers are arranged in an annual ring shape around the fiber axis. These vapor-grown carbon fibers may be used as they are as long as graphitization has progressed, but they are usually graphitized in an inert gas at 2000 ° C. or higher to set the lattice spacing d002 to 0.345 nm or less. . d00
When 2 is 0.338 or less, the electric capacity is further increased. Further, when the fibers are crushed and cut, it is preferable to carry out after the graphitization, not before graphitization, because the effect of the present invention is large. The fiber diameter is preferably 1.0 to 3.0 μm, the length is 3.0 to 200.0 μm, and the aspect ratio is 3.0 to
100.0 is preferable.

【0004】本発明で使用するカーボンブラックには特
に限定はない。できるだけ電気伝導度が高くて粒子径の
小さなものが好ましい。その意味ではアセチレンブラッ
クが適当であるが、サーマルブラック、フアーネスブラ
ック、チヤンネルブラックなども使用できる。表面が黒
鉛化されたケッチェンブラックなども使用可能である。
カーボンブラックのなかには粒子が凝集して鎖状構造
(ストラクチャー)をとるものがあるが、良好に使用で
きる。気相成長炭素繊維中のカーボンブラックの混合比
率は1〜30重量%である。すなわち全炭素の70〜9
9%を気相成長炭素繊維、1〜30%をカーボンブラッ
クとする。この範囲外でももちろん電極として立派に使
用できるが、この範囲内では放電容量が気相成長炭素繊
維の理論値より大きい。さらに好ましい範囲は使用する
電解質によって異なるが、電解質がLiPF主体異の
場合は2〜12重量%、電解質がLiClOを主体と
する場合は4〜20重量%のカーボンブラックを使用す
るのが好ましい。ここでの重量比率は全炭素中の割合を
しめし、電極材料としては他に結着材を含む。
The carbon black used in the present invention is not particularly limited. It is preferable that the electric conductivity is as high as possible and the particle size is small. In that sense, acetylene black is suitable, but thermal black, furnace black, channel black and the like can also be used. Ketjen black whose surface is graphitized can also be used.
Some carbon blacks have a chain structure in which particles are aggregated, but they can be used favorably. The mixing ratio of carbon black in the vapor grown carbon fiber is 1 to 30% by weight. That is, 70 to 9 of total carbon
9% is vapor grown carbon fiber and 1 to 30% is carbon black. Of course, it can be used as an electrode outside this range, but within this range, the discharge capacity is larger than the theoretical value of the vapor grown carbon fiber. A more preferable range depends on the electrolyte used, but it is preferable to use 2 to 12% by weight of carbon black when the electrolyte is mainly LiPF 6 and 4 to 20% by weight when the electrolyte is mainly LiClO 4. . The weight ratio here indicates the ratio in the total carbon, and the electrode material includes a binder as well.

【0005】電極の製造に当たって、上記混合物を15
%以下の結着材としての樹脂と混合して成形する。樹脂
としてはポリビニリデンフロライド、フッ素化ポリエチ
レン類、ポリエチレン、ポリプロピレン、ナイロンな
ど、反応性基を持たない熱可塑性樹脂を使用する。混合
は粒状の樹脂にあっては三者をニーダや自動乳鉢などの
高せん断性攪拌器で混合し、溶剤を使用する場合は樹脂
溶液を高せん断攪拌器で混合し、集電材としてのニッケ
ルメッシュに塗ったり乗せたりし、必要により軽くホッ
トプレスして仕上げる。この時プレス圧を50kg/c
m以上の高圧とすることも可能である。電池組立前には
十分乾燥して水分や溶剤を除去しておくことが好まし
い。樹脂その他の添加物はその目的を達成できる範囲で
できるだけ少ないことが好ましい。
In the manufacture of electrodes, the above mixture was used
% Or less and a resin as a binder is mixed and molded. As the resin, a thermoplastic resin having no reactive group such as polyvinylidene fluoride, fluorinated polyethylenes, polyethylene, polypropylene and nylon is used. For granular resin, mix the three with a high shear agitator such as a kneader or an automatic mortar.If a solvent is used, mix the resin solution with a high shear agitator and use nickel mesh as a current collector. Apply or apply on, and if necessary, lightly hot press to finish. At this time, press pressure is 50 kg / c
It is also possible to make the pressure higher than m. Before assembling the battery, it is preferable to dry it sufficiently to remove water and solvent. It is preferable that the amount of resin and other additives is as small as possible within the range where the purpose can be achieved.

【0006】電池の正極としては非水リチウムイオン二
次電池用として公知の各種の材料が使用可能である。M
nO、LiMn、LiCoMn2−Y
、α−V、TiS、LiCoOなどを公
知の方法で好適に使用できる。電池における電解質とし
てはLiClO、LiPF、LiAsO、LiB
、トリフロロメタスルフオン酸リチウムなどを擧げ
ることができる。電解質の溶剤中の濃度は0.2〜5.
0mol./リットルの範囲が好ましい。カーボンブラ
ックの添加効果は、電解質としてLiPFを使用する
時が特に大きい。
As the positive electrode of the battery, various known materials for non-aqueous lithium ion secondary batteries can be used. M
nO 2, Li X Mn 2 O 4, Li X Co Y Mn 2-Y O
4 , α-V 2 O 5 , TiS 2 , Li X CoO 2 and the like can be preferably used by a known method. LiClO 4 , LiPF 6 , LiAsO 6 , LiB as the electrolyte in the battery
F 4, and the like trifluoropropyl meta Ruch lithium propionic acid. The concentration of the electrolyte in the solvent is 0.2 to 5.
0 mol. The range of / liter is preferred. The effect of adding carbon black is particularly great when LiPF 6 is used as the electrolyte.

【0007】溶媒としてはプロピレンカーボネート、ジ
エチレンカーボネート、エチレンカーボネート、アセト
ニトリル、酢酸メチル、テトラハイドロフラン、γ−ブ
チロラクトン、ヂメトキシエタン、ジオキソラン、2−
メチルジオキソラン、4−メチルジオキソラン、蟻酸メ
チルなどを単独または混合して使用できる。気相成長炭
素繊維の黒鉛化度の高いものでは、プロピレンカーボネ
ートの単独使用は溶剤の分解が起こって、クーロン効率
を低下させることがあるのであまり好ましくはない。溶
液は酸素や水分を含有していることは好ましくなく、で
きるだけ精製しておく必要があることは知られている通
りである。
As the solvent, propylene carbonate, diethylene carbonate, ethylene carbonate, acetonitrile, methyl acetate, tetrahydrofuran, γ-butyrolactone, dimethoxyethane, dioxolane, 2-
Methyldioxolane, 4-methyldioxolane, methyl formate and the like can be used alone or in combination. For vapor-grown carbon fibers having a high degree of graphitization, the use of propylene carbonate alone is not preferable because the decomposition of the solvent may occur and the Coulomb efficiency may be reduced. As is known, it is not preferable that the solution contains oxygen and water, and it is necessary to purify the solution as much as possible.

【0008】電池の組立は公知の方法をそのまま利用で
きる。実施例ではいわゆる3電極法により本発明の効果
を説明したが、公知の方法により、ボタン型電池、コイ
ン型電池、単1〜単5の円筒形電池、積層型電池に組み
上げることができる。充電および放電によりガスを発生
することがないので、空気や水分のシールさえ完全であ
れば、容易に高エネルギー密度の二次電池とすることが
できる。
A known method can be directly used for assembling the battery. Although the effects of the present invention have been described in the examples by the so-called three-electrode method, they can be assembled into a button type battery, a coin type battery, a cylindrical battery of single to single size cells, or a stacked type battery by a known method. Since no gas is generated by charging and discharging, a secondary battery having a high energy density can be easily obtained as long as air and moisture are completely sealed.

【0009】[0009]

【実施例】【Example】

(実施例1)ポリビニリデンフロライド(PVDF;呉
羽化学(株)製のKF#1000)0.05gを正確に
計り取り、瑪瑙乳鉢に入れ、それに1−メチル−2−ピ
ロリドン(NMP)0.5ccをシリンジで計り取って
加えて完全に溶解した。アセチレンブラック(電気化学
工業(株)製デンカブラック)0.05gを正確に計
り取り、上記乳鉢に添加して十分に混練し、ペースト状
とした。別に流動法で製造した気相成長炭素繊維を28
00℃で黒鉛化し(d002=0.336nm)、その
後粉砕した平直径2.1μm、平均長約20μmのもの
0.9gを正確に計りとって上記ペースト状物にさらに
加えて十分に混合した。一方十分にアセトンで洗浄した
10×40mmのニッケルメッシュ上に上記混合ペース
トを10×10mmの範囲に塗布し、100℃で2時間
真空乾燥した。このようにして得られた電極を作用極と
して、酸素と水分を十分に除去したアルゴンガス下のグ
ローブボックス内でルギン管を使用して3電極セルを組
んだ。対極と参照極には10×40×2mmの金属リチ
ウムを、電解液には濃度1mol./リットルでLiP
をエチレンカーボネートとジエチルカーボネート1
対1混合溶媒に溶解して使用した。各極を充放電装置に
接続し、電圧が一定になるまで放置し、その後作用極と
参照極の電位差が0〜2.5Vの間で、電流密度25m
AHr/gで充放電を繰り返した。その結果を第1表に
示す。
(Example 1) 0.05 g of polyvinylidene fluoride (PVDF; KF # 1000 manufactured by Kureha Chemical Co., Ltd.) was accurately weighed and placed in an agate mortar, and 1-methyl-2-pyrrolidone (NMP) 0. 5 cc was weighed out with a syringe and added to dissolve completely. Precisely weighed 0.05 g of acetylene black (Denka Black R manufactured by Denki Kagaku Kogyo Co., Ltd.), added it to the mortar and kneaded it sufficiently to form a paste. Separately, 28
Graphitized at 00 ℃ (d 002 = 0.336nm) , then ground flat diameter 2.1 .mu.m, and mixed well further added to the paste product weighed exactly 0.9g an average length of about 20μm . On the other hand, the above mixed paste was applied in a range of 10 × 10 mm on a 10 × 40 mm nickel mesh thoroughly washed with acetone, and vacuum dried at 100 ° C. for 2 hours. Using the electrode thus obtained as a working electrode, a 3-electrode cell was assembled using a Luggin tube in a glove box under argon gas from which oxygen and water were sufficiently removed. 10 × 40 × 2 mm metallic lithium was used for the counter electrode and the reference electrode, and the electrolyte solution had a concentration of 1 mol. / Liter in LiP
F 6 as ethylene carbonate and diethyl carbonate 1
It was dissolved in a 1: 1 mixed solvent and used. Each electrode is connected to a charging / discharging device and left to stand until the voltage becomes constant, and then the potential difference between the working electrode and the reference electrode is 0 to 2.5 V, and the current density is 25 m.
Charge and discharge were repeated at AHr / g. The results are shown in Table 1.

【表1】 [Table 1]

【0010】(比較例1)実施例1においてPVDFを
0.1g、NMP0.5ccとし、アセチレンブラック
を使用しない以外は全く同様にして3電極セルを組んで
電池特性を測定した。その結果を第表2に示す。
(Comparative Example 1) The battery characteristics were measured in the same manner as in Example 1, except that PVDF was 0.1 g and NMP was 0.5 cc, and acetylene black was not used, and a three-electrode cell was assembled. The results are shown in Table 2.

【表2】 [Table 2]

【0011】(比較例2)実施例1においてPVDF
0.33g,アセチレンブラック0.66g、NMP
0.25ccとし、炭素繊維を使用しなかった以外は全
く同様にして3電極セルを組んで電池特性を測定した。
結果を第3表に示す。
Comparative Example 2 PVDF in Example 1
0.33g, acetylene black 0.66g, NMP
The battery characteristics were measured in the same manner except that the carbon fiber was 0.25 cc and no carbon fiber was used.
The results are shown in Table 3.

【表3】 [Table 3]

【0012】(実施例2)実施例1においてアセチレン
ブラックと黒鉛化された気相成長炭素繊維の比率を変更
した以外は全く同様にして、0〜2.5Vの充放電を繰
り返した。放電容量が安定する3サイクル目の放電容量
とアセチレンブラック比率との関係を第1図に示す。こ
こで理論充電容量1は炭素が全て黒鉛であるとみなした
時の理論充電容量であり、理論充電容量2は上記でアセ
チレンブラックの充電容量を0とした時の理論充電容量
である。アセチレンブラックの量が増加するにしたがっ
て理論放電容量2は低下するが、実測放電容量はアセチ
レンブラック2〜13%では理論充電容量2を上まわっ
ており、2〜12%で理論充電容量1を上まわっている
ことがわかる。
(Example 2) Charge and discharge of 0 to 2.5 V were repeated in exactly the same manner as in Example 1 except that the ratio of acetylene black and graphitized vapor grown carbon fiber was changed. FIG. 1 shows the relationship between the discharge capacity at the third cycle in which the discharge capacity is stable and the acetylene black ratio. Here, the theoretical charge capacity 1 is the theoretical charge capacity when it is assumed that all the carbon is graphite, and the theoretical charge capacity 2 is the theoretical charge capacity when the charge capacity of acetylene black is 0 in the above. The theoretical discharge capacity 2 decreases as the amount of acetylene black increases, but the measured discharge capacity exceeds the theoretical charge capacity 2 for acetylene black 2 to 13%, and exceeds the theoretical charge capacity 1 for 2 to 12%. You can see that it is turning.

【0013】(実施例3)実施例1において電解質をL
iClOに変更し、アセチレンブラックと黒鉛化され
た気相成長炭素繊維の比率を変更させた以外は全く同様
にして、0〜2.5Vの充放電を繰り返した。3サイク
ル目の放電容量とアセチレンブラック比率との関係を第
2図に示す。これよりアセチレンブラック4%以上で各
理論充容電量を上まわった放電容量を得られることが明
かである。
(Example 3) In Example 1, the electrolyte was changed to L
Charge / discharge of 0 to 2.5 V was repeated in exactly the same manner except that iClO 4 was changed and the ratio of acetylene black and graphitized vapor grown carbon fiber was changed. The relationship between the discharge capacity at the third cycle and the acetylene black ratio is shown in FIG. From this, it is clear that a discharge capacity exceeding each theoretical charge capacity can be obtained with acetylene black of 4% or more.

【0014】[0014]

【効果】実施例と比較例から明かなように、炭素成分そ
れぞれ単独では気相成長炭素繊維の放電容量がやや高
く、カーブンブラックのそれは非常に低いが、気相成長
炭素繊維の一部をカーボンブラックに置き換えることに
より、放電容量が加重平均的に減少するのではなく逆に
増加し、気相成長炭素繊維単独時の理論充電容量を越え
た放電容量値が得られるという効果が見いだされた。
[Effect] As is clear from the examples and comparative examples, the discharge capacity of the vapor-grown carbon fiber is slightly high when carbon components are used alone, and the discharge capacity of the carbon black is very low. It was found that by replacing with carbon black, the discharge capacity does not decrease in a weighted average, but rather increases, and a discharge capacity value that exceeds the theoretical charge capacity of vapor grown carbon fiber alone is obtained. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2における放電容量とアセチレンブラッ
ク比率の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a discharge capacity and an acetylene black ratio in Example 2.

【図2】実施例3における放電容量とアセチレンブラッ
ク比率の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a discharge capacity and an acetylene black ratio in Example 3.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】炭素格子面間隔d002が0.345nm
以下の黒鉛化された気相成長炭素繊維にカーボンブラッ
クを1〜30重量%含有させた組成物から負極を形成し
たことを特徴とする非水リチウムイオン二次電池。
1. A carbon lattice spacing d002 is 0.345 nm.
A non-aqueous lithium ion secondary battery characterized in that a negative electrode is formed from the following composition containing 1 to 30% by weight of carbon black in graphitized vapor-grown carbon fiber.
【請求項2】カーボンブラックがアセチレンブラックで
ある請求項1記載の非水リチウムイオン二次電池。
2. The non-aqueous lithium ion secondary battery according to claim 1, wherein the carbon black is acetylene black.
【請求項3】カーボンブラックを2〜12重量%含有さ
せ、電解質が主としてLiPFからなる請求項1記載
の非水リチウムイオン二次電池。
3. The non-aqueous lithium ion secondary battery according to claim 1, wherein the carbon black is contained in an amount of 2 to 12% by weight, and the electrolyte mainly comprises LiPF 6 .
【請求項4】カーボンブラックを4〜20重量%含有さ
せ、電解質が主としてLiClOからなる請求項1記
載の非水リチウムイオン二次電池。
4. The non-aqueous lithium ion secondary battery according to claim 1, wherein carbon black is contained in an amount of 4 to 20% by weight, and the electrolyte mainly comprises LiClO 4 .
JP5291117A 1993-03-26 1993-10-18 Nonaqueous lithium ion secondary battery Pending JPH06333559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5291117A JPH06333559A (en) 1993-03-26 1993-10-18 Nonaqueous lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-105199 1993-03-26
JP10519993 1993-03-26
JP5291117A JPH06333559A (en) 1993-03-26 1993-10-18 Nonaqueous lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH06333559A true JPH06333559A (en) 1994-12-02

Family

ID=26445532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5291117A Pending JPH06333559A (en) 1993-03-26 1993-10-18 Nonaqueous lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH06333559A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833398A1 (en) * 1996-09-24 1998-04-01 PETOCA, Ltd Surface graphitized carbon material, process for producing the same and negative electrode for lithium-ion secondary battery using the carbon material
KR100951388B1 (en) * 2001-09-25 2010-04-08 쇼와 덴코 가부시키가이샤 Carbon material, production method and use thereof
JP2014517459A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High energy density lithium secondary battery with improved energy density characteristics
US10902968B2 (en) 2017-06-08 2021-01-26 Lg Chem, Ltd. Composite conductive material having excellent dispersibility, slurry for forming lithium secondary battery electrode using the same, and lithium secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833398A1 (en) * 1996-09-24 1998-04-01 PETOCA, Ltd Surface graphitized carbon material, process for producing the same and negative electrode for lithium-ion secondary battery using the carbon material
KR100951388B1 (en) * 2001-09-25 2010-04-08 쇼와 덴코 가부시키가이샤 Carbon material, production method and use thereof
JP2014517459A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High energy density lithium secondary battery with improved energy density characteristics
US10902968B2 (en) 2017-06-08 2021-01-26 Lg Chem, Ltd. Composite conductive material having excellent dispersibility, slurry for forming lithium secondary battery electrode using the same, and lithium secondary battery
US11837376B2 (en) 2017-06-08 2023-12-05 Lg Energy Solution, Ltd. Composite conductive material having excellent dispersibility, slurry for forming lithium secondary battery electrode using the same, and lithium secondary battery

Similar Documents

Publication Publication Date Title
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3823683B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2000003724A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2008181850A (en) Nonaqueous electrolyte secondary battery
JP3276983B2 (en) Anode material for lithium secondary battery and method for producing the same
CN114552125B (en) Nondestructive lithium supplement composite diaphragm and preparation method and application thereof
EP3896758B1 (en) Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
JPH0714582A (en) Electrode black mix and nonaqueous electrolytic battery
CN109768226A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP3430691B2 (en) Lithium secondary battery
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4045644B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JPH0529019A (en) Lithium secondary battery
JPH04162357A (en) Nonaqueous secondary battery
JP4167809B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP3289098B2 (en) Non-aqueous secondary battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JPH06333559A (en) Nonaqueous lithium ion secondary battery
JPH0896852A (en) Nonaqueous electrolytic secondary battery
JPH11214001A (en) Nonaqueous electrolytic solution secondary battery
JP2001143691A (en) Graphite carbon material, method for manufacturing the same, negative electrode material for lithium secondary cell and lithium secondary cell
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JPH10247495A (en) Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery