JPH0633261A - Electro-discharge coated composite body - Google Patents

Electro-discharge coated composite body

Info

Publication number
JPH0633261A
JPH0633261A JP20948392A JP20948392A JPH0633261A JP H0633261 A JPH0633261 A JP H0633261A JP 20948392 A JP20948392 A JP 20948392A JP 20948392 A JP20948392 A JP 20948392A JP H0633261 A JPH0633261 A JP H0633261A
Authority
JP
Japan
Prior art keywords
boride
film
discharge
discharge coating
borides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20948392A
Other languages
Japanese (ja)
Other versions
JP2959912B2 (en
Inventor
Makoto Murai
誠 村井
Shinji Shirai
伸二 白井
Nobuyuki Shinohara
信幸 篠原
Tadao Watanabe
忠雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP20948392A priority Critical patent/JP2959912B2/en
Publication of JPH0633261A publication Critical patent/JPH0633261A/en
Application granted granted Critical
Publication of JP2959912B2 publication Critical patent/JP2959912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain a coated composite body excellent in mechanical strength and thermal shock resistance without deteriorating the function of borides by executing electro-discharge coating using a boride sintered body having a specified componental compsn. contg. binary borides and having high strength as an electrode. CONSTITUTION:The electrode constituted of, by weight, 40 to 98% of one or more kinds among binary borides expressed by MxBy and 2 to 60% ternary complex borides of one or more kinds among Mo2FeB2, Mo2CoB2, Mo2NiB2, W2FeB2, W2CoB2, W2NiB2, MoCoB, WFeB and WCoB is used; where M denotes Ti, Zr, Ta, Nb, Cr and V as well as x=1 to 2 and y=1 to 4. Then, on a substrate such as steel having sufficient strength, a film having 5 to 300mum thickness is formed by an electro-discharge coating method. In this way, the coated composite body high in mechanical strength and excellent in wear resistance can be obtd. without deteriorating the characteristics of borides such as corrosion resistance, wear resistance and wetting resistance to molten metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は硼化物系セラミックスの
脆いという欠陥を補い、しかも、硼化物系セラミックス
の持つ高硬度で、耐摩耗性に優れ、かつ溶融金属や溶液
に対する耐食性に優れるという特長を活かした放電被覆
法による複合構造用部材に関する。特に、硼化物が高温
特性に優れ、かつアルミニウムをはじめとする低融点非
鉄金属と濡れ難くかつ耐食性に優れているという特長を
活かして、低融点非鉄金属の鋳造機や加工機械に用いら
れる材料に関する。
BACKGROUND OF THE INVENTION The present invention compensates for the brittle defect of boride-based ceramics, has high hardness and excellent wear resistance of boride-based ceramics, and has excellent corrosion resistance to molten metal and solution. The present invention relates to a member for a composite structure by a discharge coating method utilizing the above. In particular, regarding the materials used for casting machines and processing machines for low melting point non-ferrous metals, taking advantage of the fact that boride has excellent high-temperature characteristics, and is difficult to wet with low-melting point non-ferrous metals such as aluminum and has excellent corrosion resistance. .

【0002】[0002]

【従来の技術】硼化物系セラミックスは一般に、高硬度
で、耐摩耗性に優れ、溶融金属や溶液に対する耐食性に
も優れ、しかも炭化物系と比較して高温特性にも優れて
いる。このために硼化物系セラミックスを、構造用耐食
耐摩耗部材として実用化する多くの試みがなされてき
た。その多くは粉末冶金法によるもので、成形方法に関
しては、熱間静水圧プレス(HIP)やホットプレスの
利用、焼結方法に関しては焼結助材の開発などが行われ
てきた。このようにして、例えば、特公昭61−195
93、特公昭61−50909などのようなTiB2
ZrB2などを主成分とした高耐摩耗性超硬質材料をは
じめとして、数多くの硼化物系セラミックスが提案され
ている。
2. Description of the Related Art Generally, boride-based ceramics have high hardness, excellent wear resistance, corrosion resistance to molten metal and solution, and high temperature characteristics as compared with carbides. For this reason, many attempts have been made to put the boride-based ceramics into practical use as a structural corrosion-resistant wear-resistant member. Most of them are based on powder metallurgy, and hot isostatic pressing (HIP) and hot pressing have been used for forming methods, and sintering aids have been developed for sintering methods. Thus, for example, Japanese Patent Publication No. Sho 61-195
A large number of boride-based ceramics have been proposed, including high wear-resistant superhard materials containing TiB 2 or ZrB 2 as a main component, such as No. 93 and Japanese Patent Publication No. 61-50909.

【0003】このように粉末冶金法で作られた硼化物系
セラミックスも鋼材と比較すれば、強度、靱性、耐熱衝
撃性などの点でまだ充分とはいえず、通常の工具鋼、高
速度鋼、ステンレス鋼などが用いられているような構造
用部材に広く適用することは難しいとされている。
Compared with steel materials, boride-based ceramics produced by powder metallurgy are not sufficient in terms of strength, toughness, thermal shock resistance, etc., and ordinary tool steels and high-speed steels can be used. It is said that it is difficult to apply it widely to structural members such as stainless steel.

【0004】一方、硼化物セラミックスは一般に溶融金
属との濡れ性が小さいことから、ダイカスト機械部品と
しての利用が考えられる。例えば、アルミニウムのダイ
カスト部品にはSKD61などの鋼材にガス窒化やイオ
ン窒化などの窒化処理を施した材料が主に使用されてい
る。しかし、これらの材料は鋼材が溶融金属と反応しや
すく長期間使用すると次第に浸食されるため、焼き付き
が起こったり、さらに鋼材の成分がダイカスト製品中に
混入して品質低下を招いたりする。また、溶融金属を押
し出すプランジャースリーブとチップの場合、摺動部に
溶融金属が強固に付着して剥がれず、焼き付きやかじり
といった事故が発生することがある。そこで、潤滑剤や
離型剤を大量に塗布したり、短期間で部品を交換しなが
ら使うなど作業性や経済性が非常に悪い。また潤滑剤や
離型剤を使用すると、これらが製品中へ混入して製品の
品質低下を招くばかりでなく作業環境を著しく損なうこ
とにもなる。
On the other hand, since boride ceramics generally have low wettability with molten metal, they can be used as die-casting machine parts. For example, a material such as SKD61 obtained by subjecting a steel material such as SKD61 to a nitriding treatment such as gas nitriding or ion nitriding is mainly used for aluminum die casting parts. However, since steel materials easily react with molten metal and gradually corrode with these materials when used for a long period of time, seizure occurs, and further, the components of the steel materials are mixed in the die-cast product, resulting in deterioration of quality. Further, in the case of the plunger sleeve and the tip for extruding the molten metal, the molten metal is firmly attached to the sliding portion and is not peeled off, and an accident such as seizure or galling may occur. Therefore, workability and economic efficiency are very poor, such as applying a large amount of lubricant or mold release agent and replacing parts in a short period of time. Further, when a lubricant or a mold release agent is used, they are mixed in the product, which not only deteriorates the product quality but also significantly impairs the working environment.

【0005】そこで溶融金属に対する耐食性に優れたセ
ラミックスの焼結体で低融点金属ダイカスト機用部材を
作成するという試みがなされているが、セラミックスは
焼結や機械加工が困難で、複雑形状品や大型の部材の製
造が難しく、部品形状によってその適用が大きく制約さ
れている。また、このためにコストがかさむことにもな
る。さらに靱性や耐熱衝撃性が低いために作業中に割
れ、欠けが発生するということも起こる。
Therefore, attempts have been made to produce a member for a low melting point metal die casting machine from a sintered body of ceramics having excellent corrosion resistance against molten metal, but ceramics are difficult to sinter and machine, and ceramics having complicated shapes and It is difficult to manufacture a large-sized member, and its application is largely restricted by the shape of parts. This also adds to the cost. Furthermore, since the toughness and thermal shock resistance are low, cracks and chips may occur during the work.

【0006】セラミックスの持つ耐食性と鋼材の持つ靱
性、経済性を活かし、鋼材の表面上にTiC,TiN,
TiCNなどのセラミックスをPVD法やCVD法によ
って形成する被覆が行われているが、膜厚が薄いと効果
が少なく、厚くすると剥離をおこし易くなり、また製造
費用もかさむなどの問題がある。
Utilizing the corrosion resistance of ceramics and the toughness and economy of steel, TiC, TiN,
The ceramics such as TiCN are coated by the PVD method or the CVD method. However, if the film thickness is thin, the effect is small, and if the film thickness is thick, peeling easily occurs, and the manufacturing cost increases.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上述
のように優れた特長を持つ硼化物系セラミックスを電極
にして鋼材などに放電被覆層を形成し、硼化物の持つ本
来の特長を活かした耐食耐摩耗部材を提供することにあ
る。特に、溶融金属との濡れ性や耐食性に優れている特
長を活用し、ダイカスト機械部材や非鉄工具をはじめと
する構造用機械部材として利用できるようにすることで
ある。
DISCLOSURE OF THE INVENTION The object of the present invention is to form a discharge coating layer on a steel material or the like by using a boride-based ceramics having the above-mentioned excellent characteristics as an electrode and to realize the original characteristics of boride. It is to provide a corrosion-resistant and wear-resistant member that makes full use of it. In particular, it is to utilize the feature of being excellent in wettability with molten metal and corrosion resistance so that it can be used as a structural mechanical member such as a die-cast mechanical member or a non-ferrous tool.

【0008】硼化物系セラミックスの焼結は、他のセラ
ミックスと同様、金属やサーメットなどに比べて、より
高温が必要であるし、しかも、高強度焼結体を得るため
には、上述のように、焼結助材の量と種類を厳密に選択
したり、焼結雰囲気の緻密な制御と焼結と同時に加圧し
たりする成形方法の工夫が必要である。中でも硼化物系
セラミックスは特に難焼結性であることが知られてお
り、肉厚の大きな物や複雑な形状をしたものは製造が極
めて困難である。
The sintering of boride-based ceramics, like other ceramics, requires a higher temperature than that of metals and cermets, and moreover, in order to obtain a high-strength sintered body, In addition, it is necessary to rigorously select the amount and kind of the sintering aid, control the sintering atmosphere precisely, and devise a molding method that applies pressure simultaneously with the sintering. Among them, boride-based ceramics are known to be particularly difficult to sinter, and it is extremely difficult to manufacture a material having a large wall thickness or a material having a complicated shape.

【0009】さらに、それらの機械加工は鋼材など従来
の材料に比較して著しく難しい。このために、製造コス
トはかさみ、従来材とコスト/パフォーマンスの点で太
刀打ちできないのが実状である。これらのことが、数々
の優れた固有の特性をもちながら、セラミックスが工業
的に構造用材料として広く用いられていない大きな理由
である。
Furthermore, their machining is significantly more difficult than conventional materials such as steel. For this reason, the manufacturing cost is high, and it is not possible to compete with conventional materials in terms of cost / performance. These are the main reasons why ceramics have not been widely used industrially as structural materials while having many excellent and unique properties.

【0010】一方、材料を利用する側から見れば、耐摩
耗部材、耐食性部材、耐熱性部材の多くはその表面層の
みがそれらの機能を満たせばよい場合が大多数である。
このために、ろう付けをはじめとする接合、溶射、肉盛
り、めっきなどが行われ、それぞれ目的に応じた利用が
なされている。
On the other hand, from the side of utilizing materials, in many cases, most of wear resistant members, corrosion resistant members, and heat resistant members need only their surface layers to fulfill their functions.
For this purpose, joining such as brazing, thermal spraying, padding, plating, etc. are performed, and they are used depending on their respective purposes.

【0011】しかし、セラミックス単体では、その融点
が高ために、肉盛りは困難であるし、一般にセラミック
スそのもののめっきは非常に難しい。また、熱源と雰囲
気を改良した溶射法が開発されているが、空孔が残留し
たり、接着部や被覆物の特性がセラミックス本来の値よ
り大幅に低下するなどの問題点がある。
However, since the melting point of ceramics is high, it is difficult to build them up, and it is generally very difficult to plate the ceramics themselves. Further, although a thermal spraying method in which a heat source and an atmosphere are improved has been developed, there are problems that pores remain and the characteristics of the bonded portion and the coating are significantly lowered from the original values of ceramics.

【0012】そこでごく一般的には、セラミックス焼結
体を鋼材などにろう付けで接合して用いられることが多
いが、使用時に温度が上昇すると、ろう材の軟化による
強度の低下が免れず、セラミックス独自の特性を十分引
き出すことができない。高温での強度を確保するために
は高融点のろう材を用いればよいが、基材とセラミック
スとをそのろう材の融点以上に加熱するために、接合
後、大きな熱膨張差に起因する残留歪が避けられず、使
用中に欠けや割れなどが発生することが多い。
[0012] Therefore, generally, a ceramic sintered body is often used by being joined to a steel material by brazing, but when the temperature rises during use, the strength of the brazing material is unavoidably reduced due to softening of the brazing material. It is not possible to bring out the characteristics unique to ceramics. A high melting point brazing filler metal may be used to secure the strength at high temperature, but in order to heat the base material and ceramics to a temperature above the melting point of the brazing filler metal, there is a large residual difference in thermal expansion after joining. Distortion is unavoidable, and chips and cracks often occur during use.

【0013】放電被覆法は被加工物を陰極にし、電極を
陽極としてこの電極を振動または回転させながら被加工
物の表面で放電と短絡を繰り返して、電極材料を被加工
物に移行させて被覆する方法である。この電極としては
種々の純金属、合金鋼、非鉄合金や炭化物などが提案さ
れている。しかし、これらは溶融金属に対しては充分な
耐食性を有していない。
In the discharge coating method, a workpiece is used as a cathode, an electrode is used as an anode, and while this electrode is vibrated or rotated, electric discharge and short circuit are repeated on the surface of the workpiece to transfer the electrode material to the workpiece for coating. Is the way to do it. Various pure metals, alloy steels, non-ferrous alloys, and carbides have been proposed for this electrode. However, these do not have sufficient corrosion resistance to molten metal.

【0014】Ti,Zr,Ta等の硼化物の電極による
被覆も報告されているが、工業的に広く採用されるに至
っていない。これは、硼化物の焼結が難しく、放電被覆
用としては強度が充分でなく、電極がその取扱い中や被
覆作業中に折損したりすることが多く、実質的な作業が
できないためである。
Although coating of boride such as Ti, Zr, Ta with an electrode has been reported, it has not been widely adopted industrially. This is because the boride is difficult to sinter, its strength is not sufficient for discharge coating, and the electrode often breaks during its handling or coating operation, making it impossible to perform substantial work.

【0015】[0015]

【課題を解決するための手段】前記の目的を達成するた
めに、2元系硼化物を40%以上含んだ高強度の硼化物
焼結体を電極とし、放電被覆法により、構造材料として
充分な強度を持った鉄鋼などの基材上に被覆を行うこと
により、硼化物の持つ耐食性、耐摩耗性などの機能を損
なうことなく、高い機械的強度と耐熱衝撃性に優れた被
覆複合体を得ることができる。
In order to achieve the above-mentioned object, a high-strength boride sintered body containing 40% or more of a binary boride is used as an electrode, and by a discharge coating method, it is sufficiently used as a structural material. By coating on a base material such as steel having sufficient strength, a coating composite with excellent mechanical strength and thermal shock resistance can be obtained without impairing the functions of boride such as corrosion resistance and wear resistance. Obtainable.

【0016】すなわち、硼化物皮膜を形成するための電
極を、MxBy(ただしMはTi,Zr,Ta,Nb,
Cr,Vを表し、x=1〜2、y=1〜4である)で表
せる2元系硼化物の中から選ばれた少なくとも1種以上
を40〜98%と、Mo2FeB2,Mo2CoB2,Mo
2NiB2,W2FeB2,W2CoB2,W2NiB2,Mo
CoB,WFeB,WCoBの中から選ばれた1種以上
の3元系複硼化物を2〜60%と、これらの合金中に含
まれる不可避的不純物からなる焼結体とすることによ
り、放電被覆の際の衝撃に充分耐えられる電極が得られ
る。
That is, the electrode for forming the boride film is MxBy (where M is Ti, Zr, Ta, Nb,
Cr, V, x = 1 to 2, and y = 1 to 4) 40 to 98% of at least one selected from binary borides represented by Mo 2 FeB 2 and Mo. 2 CoB 2 , Mo
2 NiB 2 , W 2 FeB 2 , W 2 CoB 2 , W 2 NiB 2 , Mo
Discharge coating is performed by forming a sintered body containing 2 to 60% of one or more ternary compound boride selected from CoB, WFeB, and WCoB, and inevitable impurities contained in these alloys. It is possible to obtain an electrode that can sufficiently withstand the impact at the time of.

【0017】また、皮膜を形成するための電極が、Mx
Byで表せる2元系硼化物の中から選ばれた少なくとも
1種以上を30〜78%、Mo2FeB2,Mo2Co
2,Mo2NiB2,W2FeB2,W2CoB2,W2Ni
2,MoCoB,WFeB,WCoBの中から選ばれ
た1種以上の3元系複硼化物を2〜30%、TiC,T
iN,および、C/Nの原子比が0.25〜4.0であ
るTiCNの中から選ばれた少なくとも1種以上を10
〜55%と、これらの合金中に含まれる不可避的不純物
からなる焼結体としても同様の効果が認められる。
The electrodes for forming the film are Mx
At least one selected from binary borides represented by By is 30 to 78%, Mo 2 FeB 2 , Mo 2 Co
B 2 , Mo 2 NiB 2 , W 2 FeB 2 , W 2 CoB 2 , W 2 Ni
2 to 30% of one or more ternary compound boride selected from B 2 , MoCoB, WFeB and WCoB, TiC, T
iN and at least one selected from TiCN having an atomic ratio of C / N of 0.25 to 4.0 is 10 or more.
Similar effects can be observed as a sintered body composed of .about.55% and unavoidable impurities contained in these alloys.

【0018】2元系硼化物としては、TiB2,Zr
2,TaB2,CrB2などが耐摩耗性や溶融金属との
濡れ性の点で好適であり、添加する3元系の硼化物は結
合相的な役割をするものであり、2%以上含まないと、
焼結体の強度が充分ではなく、また、98%を越える
と、耐摩耗性が低下したり溶融金属と濡れやすくなる。
また3元系硼化物に加えて、TiC,TiN,およびT
iCNを添加するのは粒成長を抑制し、焼結体の強度を
向上させる効果があり、これらの量は10%以上ないと
充分な効果が得られない。また、55%を越えると、焼
結体の強度が低下したり、耐摩耗性が低下する。
Binary borides include TiB 2 and Zr.
B 2 , TaB 2 , CrB 2 and the like are preferable in terms of wear resistance and wettability with molten metal, and the added ternary boride plays a binding phase role and is 2% or more. If not included,
The strength of the sintered body is not sufficient, and if it exceeds 98%, the wear resistance is lowered and the molten metal is easily wetted.
In addition to ternary borides, TiC, TiN, and T
Addition of iCN has the effect of suppressing grain growth and improving the strength of the sintered body, and sufficient effects cannot be obtained unless the amount of these is 10% or more. On the other hand, if it exceeds 55%, the strength of the sintered body is lowered and the wear resistance is lowered.

【0019】このような硼化物セラミックスの電極は特
公昭61−19593あるいは特公昭61−50909
などに開示されている粉末冶金法によって製造すること
ができる。例えば、2元系硼化物TiB2 粉末にMo2
NiB2粉末を所定の組成となるように配合し、ボール
ミル等で湿式粉砕混合したのち乾燥する。この混合粉末
を黒鉛型に充填し、真空中またはアルゴンガス、窒素ガ
ス、水素ガスなどの中性または還元性雰囲気中、100
kg/cm2 以上の圧力下において1400℃〜190
0℃の温度で加熱するホットプレスによるか、あるい
は、前記混合粉末を油圧プレスや静水圧プレスで予め圧
粉成形した後上記の真空中や不活性または還元性雰囲気
中で1500℃〜2000℃の温度で加熱する普通焼結
を行うことによって製造することができる。なお、ホッ
トプレスや普通焼結によって得られた焼結体は、強度と
その信頼性を高めるため熱間静水圧プレスをかけてもよ
い。また、混合粉末をキャンニングしたのち直接、熱間
静水圧プレスやシンターヒップで成形して焼結体を得る
こともできる。
Such a boride ceramics electrode is disclosed in Japanese Patent Publication No. 61-19593 or Japanese Patent Publication No. 61-50909.
It can be manufactured by the powder metallurgy method disclosed in, for example. For example, a binary boride TiB 2 powder may be added to Mo 2
NiB 2 powder is blended so as to have a predetermined composition, wet milled and mixed by a ball mill or the like, and then dried. A graphite mold is filled with this mixed powder, and the mixture is vacuumed or in a neutral or reducing atmosphere such as argon gas, nitrogen gas, hydrogen gas, or the like,
1400 ° C to 190 under pressure of kg / cm 2 or more
By hot pressing at a temperature of 0 ° C., or by pre-compacting the mixed powder with a hydraulic press or a hydrostatic press, the mixed powder is heated at 1500 ° C. to 2000 ° C. in the above-mentioned vacuum or in an inert or reducing atmosphere. It can be manufactured by performing ordinary sintering by heating at a temperature. The sintered body obtained by hot pressing or ordinary sintering may be subjected to hot isostatic pressing in order to enhance strength and its reliability. Alternatively, after the mixed powder is canned, it can be directly molded by a hot isostatic press or a sinter hip to obtain a sintered body.

【0020】この電極の形状は被覆する対称物によって
種々の形状があるが、通常は丸棒や円盤状の簡単な形状
のものでよく、成形や焼結も容易である。しかも、焼結
後の機械加工は、特殊な場合を除き不要である。
The electrode may have various shapes depending on the symmetrical object to be coated, but it is usually a simple shape such as a round bar or a disc, and is easy to mold and sinter. Moreover, machining after sintering is not necessary except in special cases.

【0021】これらの硼化物電極を用いて放電被覆を行
うが、被覆は通常用いられる放電被覆装置を用いて行え
ばよく、上記の焼結体を用いれば、被覆加工中に電極の
折損や破壊はなく、作業性は極めて優れている。また、
形成された皮膜は焼結体と同様、高硬度で耐摩耗性に優
れているばかりでなく、溶融金属との濡れ性や耐食性も
焼結体と同様に優れている。
The discharge coating is carried out using these boride electrodes, and the coating may be carried out by using a discharge coating apparatus which is usually used. If the above-mentioned sintered body is used, the electrode may be broken or broken during the coating process. The workability is extremely excellent. Also,
The formed film is not only high in hardness and excellent in wear resistance as in the sintered body, but also excellent in wettability with molten metal and corrosion resistance as in the sintered body.

【0022】さらに、形成された皮膜の基材との密着性
は特に優れており、例えば、厚さ3mmの低炭素鋼板の
上に被覆した皮膜は約180゜の折り曲げでも剥離は見
られない。また、熱衝撃に対する抵抗を、試片温度をT
℃に加熱した後直ちにt℃の水中に投入してクラックの
有無で判定し、クラックを生じない温度差Δθ=T−t
(℃)で評価すると、焼結体ではΔθが200〜400
℃であるに対して、本発明の被覆複合体ではΔθが10
00℃以上もある。
Further, the adhesion of the formed film to the base material is particularly excellent. For example, a film coated on a low carbon steel plate having a thickness of 3 mm does not show peeling even when bent about 180 °. In addition, resistance to thermal shock, T
Immediately after heating to ℃, it is put into water at t ℃ and judged by the presence or absence of cracks.
When evaluated by (° C.), Δθ is 200 to 400 in the sintered body.
° C, the coating composite of the present invention has a Δθ of 10
There is even more than 00 ° C.

【0023】被覆の厚さは5〜300μmが好適であ
る。すなわち、5μmより薄いと耐摩耗性や耐食性が充
分ではなくまた、300μmを越えても耐摩耗性や耐食
性に対する効果はあまり向上しないし、経済的ではな
い。
The thickness of the coating is preferably 5 to 300 μm. That is, if it is thinner than 5 μm, the wear resistance and the corrosion resistance are not sufficient, and if it exceeds 300 μm, the effect on the wear resistance and the corrosion resistance is not improved so much and it is not economical.

【0024】被覆する基材は鋼材などが一般的である
が、導電性があればどんなものでもよく、使用目的によ
って選択できる。
The base material to be coated is generally a steel material or the like, but any material may be used as long as it is electrically conductive and can be selected according to the purpose of use.

【0025】本発明の被覆複合体は、特別な離型剤や潤
滑剤を用いなくても溶融アルミニウムとはほとんど濡れ
ないので、ダイカスト用の金型やプランジャーチップや
スリーブにも無潤滑または減量潤滑下で使用できる。潤
滑剤や離型剤はミストとなって散布されるため、これら
が無くなるか、あるいは少なくなれば作業環境の大幅な
改善にもつながるし、さらにメンテナンスの必要がなく
長寿命化が可能であるためコストの低減もできる。
Since the coated composite of the present invention is hardly wet with molten aluminum without using a special mold release agent or lubricant, it can be applied to a die casting die, a plunger tip or a sleeve without lubrication or weight loss. Can be used under lubrication. Lubricants and mold release agents are sprayed as mist, and if these are eliminated or reduced, it will lead to a significant improvement in the working environment, and further maintenance is not necessary, and the life can be extended. The cost can also be reduced.

【0026】その他に本発明の硼化物被覆複合体は、低
融点金属の鋳造に用いられるストーク、ランナープレー
ト、押出ピン、中子、溶解坩堝、ラドル、攪拌棒、温度
測定用保護管、浸漬ヒーター用保護管にも適用でき、長
寿命化が期待できる。さらにこの被覆はアルミニウムだ
けでなく、亜鉛、マグネシウム、鉛、すずなどの低融点
金属やその合金のダイカスト機械や鋳造機械用部材にも
適用できる。
In addition, the boride-coated composite of the present invention is a stalk, a runner plate, an extrusion pin, a core, a melting crucible, a ladle, a stirring rod, a temperature measuring protection tube, and a dipping heater used for casting a low melting point metal. It can also be applied to protective tubes and can be expected to have a long life. Further, this coating can be applied not only to aluminum but also to members for die casting machines and casting machines of low melting point metals such as zinc, magnesium, lead and tin, and alloys thereof.

【0027】[0027]

【実施例】以下実施例により本発明をさらに詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0028】実施例1 TiB2 粉末85%とMo2NiB2粉末15%を振動ミ
ルにより、アセトン中で52時間、混合粉砕を行った
後、窒素雰囲気中で乾燥造粒した。この混合粉末を黒鉛
型に充填し、アルゴンガス雰囲気中(大気圧)において
ホットプレスを行った。ホットプレス条件は、200k
g/cm2、1550℃で20分とした。得られた焼結
体は相対密度99.0%、抗折力120kg/cm2
ビッカース硬度2400であった。この焼結体からφ3
mmx100mmの丸棒を切り出して、これを電極にし
て、25mmx50mmx5mmの窒化処理をしたSK
D61の表面に35μmの厚さに放電被覆加工を行っ
た。放電被覆は市販の被覆装置を使用し、大気中で、周
波数300Hz、コンデンサー容量70μfで実施し
た。
Example 1 85% TiB 2 powder and 15% Mo 2 NiB 2 powder were mixed and pulverized in acetone for 52 hours in a vibration mill, and then dry granulated in a nitrogen atmosphere. This mixed powder was filled in a graphite mold and hot pressed in an argon gas atmosphere (atmospheric pressure). Hot press condition is 200k
It was 20 minutes at 1550 ° C. and g / cm 2 . The obtained sintered body had a relative density of 99.0%, a transverse rupture strength of 120 kg / cm 2 ,
The Vickers hardness was 2400. Φ3 from this sintered body
A 25 mm x 50 mm x 5 mm nitriding treated SK by cutting out a round bar of mm x 100 mm and using this as an electrode
The surface of D61 was subjected to electric discharge coating to a thickness of 35 μm. The discharge coating was carried out using a commercially available coating device in the atmosphere at a frequency of 300 Hz and a capacitor capacity of 70 μf.

【0029】実施例2 TiB2 粉末50%とTiC粉末45%、Mo2CoB2
粉末5%をアトライターにより、アセトン中で8時間、
混合粉砕を行った後、窒素雰囲気中で乾燥造粒した。こ
の混合粉末を油圧プレスを用いて1.5ton/cm2
で成形し、圧粉体を得た。この圧粉体をアルゴンガス雰
囲気中、1700℃の温度で30分間加熱して焼結体を
得た。これを1800℃、1500気圧で熱間静水圧プ
レスして、相対密度99.5%、抗折力96kg/cm
2、 ビッカース硬度2200の焼結体を得た。この焼結
体からφ3mmx100mmの丸棒を切り出して、これ
を電極にして、窒化処理をしたSKD61の表面に厚さ
20μmの放電被覆を行った。放電被覆条件は実施例1
と同様とし、厚さは作業時間で変えた。
Example 2 50% TiB 2 powder, 45% TiC powder, Mo 2 CoB 2
5% of the powder in an acetone for 8 hours,
After performing mixed pulverization, dry granulation was performed in a nitrogen atmosphere. This mixed powder was pressed at 1.5 ton / cm 2 using a hydraulic press.
And molded into a green compact. This green compact was heated in an argon gas atmosphere at a temperature of 1700 ° C. for 30 minutes to obtain a sintered body. This was hot isostatically pressed at 1800 ° C. and 1500 atm to give a relative density of 99.5% and a transverse rupture strength of 96 kg / cm.
2 , a sintered body with Vickers hardness of 2200 was obtained. A φ3 mm × 100 mm round bar was cut out from this sintered body, and using this as an electrode, the surface of the nitriding-treated SKD61 was subjected to discharge coating with a thickness of 20 μm. The discharge coating conditions are those of Example 1.
Same as above, but the thickness was changed by working time.

【0030】実施例3 ZrB2 粉末70%とMo2NiB2粉末30%を振動ボ
ールミルにより、アセトン中で25時間、混合粉砕を行
った後、窒素雰囲気中で乾燥造粒した。この混合粉末を
黒鉛型に充填し、真空中でホットプレスを行った。ホッ
トプレス条件は、160kg/cm2、 1530℃で3
0分とした。得られた焼結体は相対密度99.2%、抗
折力93kg/cm2、 ビッカース硬度2150であっ
た。この焼結体からφ3mmx100mmの丸棒を切り
出して、これを電極にして、窒化処理をしたSKD61
の表面に厚さ20μmの放電被覆を行った。放電被覆条
件は実施例2と同様とした。
Example 3 70% ZrB 2 powder and 30% Mo 2 NiB 2 powder were mixed and pulverized in acetone by a vibrating ball mill for 25 hours, and then dried and granulated in a nitrogen atmosphere. This mixed powder was filled in a graphite mold and hot pressed in vacuum. The hot press conditions are 160 kg / cm 2 , 1530 ° C. and 3
It was set to 0 minutes. The obtained sintered body had a relative density of 99.2%, a transverse rupture strength of 93 kg / cm 2 , and a Vickers hardness of 2150. A φ3 mm × 100 mm round bar was cut out from this sintered body, and this was used as an electrode for nitriding SKD61.
A 20 μm thick discharge coating was applied to the surface of the. The discharge coating conditions were the same as in Example 2.

【0031】この被覆複合体を750℃の溶融アルミニ
ウム(ADC10:92%Al−10%Cu−8%S
i)に2.5時間浸漬し、腐食減量を測定した。また、
大越式の摩耗試験を実施した。摩擦条件は相手材として
SS41のリングを使用し、摩擦距離400m、摩擦速
度を4.39m/s、最終荷重を18.9kgとした。
試片の摩耗量は比摩耗量で示した。これらの結果をまと
めて表1に示す。
This coated composite was treated with molten aluminum (ADC10: 92% Al-10% Cu-8% S) at 750.degree.
It was immersed in i) for 2.5 hours and the corrosion weight loss was measured. Also,
An Ogoshi-type wear test was performed. As the friction conditions, a SS41 ring was used as the mating material, the friction distance was 400 m, the friction speed was 4.39 m / s, and the final load was 18.9 kg.
The wear amount of the test piece is shown by the specific wear amount. The results are summarized in Table 1.

【0032】表1から分かるように、放電被覆複合体の
溶融アルミニウムによる腐食は電極とした焼結体よりや
や劣っているが、アルミダイカスト部品に多く用いられ
ているSKD61の窒化処理材と比較して格段に優れて
いる。また、硬度は皮膜の厚さが薄いため、下地の鋼材
の影響で低い値を示しているが、その比摩耗量は、いず
れも焼結体と同じ10ー9のオーダーにあり、SKD61
窒化材と比較すれば、はるかに優れているといえる。
As can be seen from Table 1, the corrosion of the discharge coating composite due to molten aluminum is slightly inferior to the sintered body used as an electrode, but compared with the nitriding material of SKD61 which is often used for aluminum die casting parts. And is remarkably excellent. Further, since hardness is thin coating, but indicates a lower value under the influence of steel foundation, the specific wear rate are both located on the same order of 10 @ 9 a sintered body, SKD61
It can be said that it is far superior to the nitride material.

【0033】[0033]

【表1】 比較例1:実施例1の焼結体 比較例2:実施例2の焼結体 比較例3:実施例3の焼結体[Table 1] Comparative Example 1: Sintered body of Example 1 Comparative Example 2: Sintered body of Example 2 Comparative Example 3: Sintered body of Example 3

【0034】実施例4 窒化処理をしたSKD61で、図1に示すような外径8
0mm、内径60mm、深さ60mm、肉厚10mmの
注入容器1の内面に、実施例1〜3の焼結体を電極にし
て放電被覆を行った。被覆条件は実施例1と同様にし
た。
Example 4 A nitriding SKD61 having an outer diameter of 8 as shown in FIG.
The inner surface of the injection container 1 having a diameter of 0 mm, an inner diameter of 60 mm, a depth of 60 mm and a wall thickness of 10 mm was subjected to discharge coating using the sintered bodies of Examples 1 to 3 as electrodes. The coating conditions were the same as in Example 1.

【0035】この注入容器1に3の溶融アルミニウム
(750℃、92%Al−10%Cu−8%Si)を注
湯し、押し型4で、P1=10kg/cm2 で押しなが
らアルミニウムを凝固させ、アルミニウムの温度が30
0℃になってから取り出し棒5によりP2の力を加えて
インゴットを取りだした。最初、溶融アルミニウムが容
器と反応せず、容易に剥離する間はP2の値は小さい
が、この操作を繰り返して、溶融アルミニウムが容器と
反応し始めると、P2は大きな値となってくる。そこで
P2が2kg/cm2 以上の応力になった時点で測定を
中止し、それまでの回数を測定した。
3 molten aluminum (750 ° C., 92% Al-10% Cu-8% Si) was poured into the pouring container 1, and the aluminum was solidified while pressing with a pressing die 4 at P1 = 10 kg / cm 2. And the temperature of aluminum is 30
After reaching 0 ° C., a force of P2 was applied by the take-out rod 5 to take out the ingot. Initially, the value of P2 is small while the molten aluminum does not react with the container and is easily separated, but when this operation is repeated and the molten aluminum begins to react with the container, P2 becomes a large value. Therefore, the measurement was stopped when P2 became a stress of 2 kg / cm 2 or more, and the number of times until that time was measured.

【0036】結果を表2に示す。表から明らかなよう
に、本発明の被覆材は回数が約35,000回を越えて
も良好な特性を示すのに対し、SKD61は短い回数で
抜き出し力が所定の値を越えて、試験中止となった。
The results are shown in Table 2. As is clear from the table, the coating material of the present invention shows good characteristics even when the number of times exceeds about 35,000, whereas SKD61 causes the extraction force to exceed a predetermined value in a short number of times and to stop the test. Became.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】本発明の放電被覆複合体は、硼化物セラ
ミックスを放電被覆法を利用して鋼材などに被覆するこ
とによって、耐摩耗性や耐食性などの本来の機能を損な
うことなく、構造用材料として実用に供することができ
るものである。特に、アルミニウムなど低融点金属ダイ
カスト機用部材などはその部品全体をセラミックスで作
成すると寿命は向上するが、製作費が高価になるだけで
なく割れの心配が常にあり、このために作業性が著しく
低下する。さらに大型品や複雑形状品は製造が非常に困
難である。しかし、本発明の被覆複合体は従来用いられ
ている鋼材などをそのまま基材として用いるので、強度
上の問題もなく、大型品や複雑形状品の製作も容易であ
る。また、基材との密着性も高く、耐熱衝撃性にも優れ
ている。さらに、基材に対する熱などの影響もほとんど
なく、残留応力がかかることもない。しかも皮膜の耐摩
耗性や溶融アルミニウムに対する耐食性に関しても焼結
体と同様に優れている。
EFFECTS OF THE INVENTION The discharge coating composite of the present invention is a structural material which is coated with a boride ceramics on a steel material using a discharge coating method without impairing its original functions such as wear resistance and corrosion resistance. It can be put to practical use as a material. In particular, for low melting point metal die casting machine parts such as aluminum, if the whole parts are made of ceramics, the life will be improved, but not only the manufacturing cost will be expensive but also there is always the concern of cracking, which makes workability remarkable. descend. Furthermore, large-sized products and complicated-shaped products are very difficult to manufacture. However, since the coated composite of the present invention uses a conventionally used steel material or the like as a base material as it is, there is no problem in strength and it is easy to manufacture a large-sized product or a product having a complicated shape. Also, it has high adhesion to the substrate and excellent thermal shock resistance. Further, the base material is hardly affected by heat and the like, and residual stress is not applied. Moreover, the wear resistance of the film and the corrosion resistance to molten aluminum are as good as those of the sintered body.

【0039】[0039]

【図面の簡単な説明】[Brief description of drawings]

【図1】硼化物を被覆した溶融アルミニウム容器の特性
評価試験方法の概略図。
FIG. 1 is a schematic view of a characteristic evaluation test method of a molten aluminum container coated with boride.

【符号の説明】[Explanation of symbols]

1 注入容器(SKD61、イオン窒化材) 2 放電被覆層 3 750℃の溶融アルミニウム(92%Al−10%
Cu−8%Si) 4 押し型 5 アルミニウムインゴット取り出し棒
1 Injection container (SKD61, ion nitride material) 2 Discharge coating layer 3 Molten aluminum at 750 ° C (92% Al-10%
Cu-8% Si) 4 Push type 5 Aluminum ingot take-out rod

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 放電被覆法で基材上に皮膜を形成した被
覆複合体において、皮膜を形成するための電極が、Mx
By(ただしMはTi,Zr,Ta,Nb,Cr,Vを
表し、x=1〜2、y=1〜4である)で表せる2元系
硼化物の中から選ばれた少なくとも1種以上を40〜9
8重量%(以下%は重量%)と、Mo2FeB2,Mo2
CoB2,Mo2NiB2,W2FeB2,W2CoB2,W2
NiB2,MoCoB,WFeB,WCoBの中から選
ばれた1種以上の3元系複硼化物を2〜60%と、これ
らの化合物中に含まれる不可避的不純物からなり、形成
される皮膜の厚さが5〜300μmであることを特徴と
する放電被覆複合体。
1. In a coating composite in which a film is formed on a substrate by an electric discharge coating method, the electrode for forming the film is Mx.
At least one selected from binary borides represented by By (wherein M represents Ti, Zr, Ta, Nb, Cr, V, and x = 1 to 2, y = 1 to 4). 40 to 9
8% by weight (hereinafter% is% by weight), Mo 2 FeB 2 , Mo 2
CoB 2 , Mo 2 NiB 2 , W 2 FeB 2 , W 2 CoB 2 , W 2
2 to 60% of one or more ternary compound boride selected from NiB 2 , MoCoB, WFeB, and WCoB and inevitable impurities contained in these compounds, and the thickness of the film formed. Of 5 to 300 μm.
【請求項2】 MxByをTiB2,ZrB2,Ta
2,CrB2の中から選ばれた少なくとも1種以上の2
元系硼化物とすることを特徴とする請求項1の放電被覆
複合体。
2. MxBy is TiB 2 , ZrB 2 , Ta
2 of at least one selected from B 2 and CrB 2
The discharge-coated composite according to claim 1, wherein the discharge-based composite is an original boride.
【請求項3】 放電被覆法で基材上に皮膜を形成した被
覆複合体において、皮膜を形成するための電極が、Mx
Byで表せる2元系硼化物の中から選ばれた少なくとも
1種以上を30〜78%、Mo2FeB2,Mo2Co
2,Mo2NiB2,W2FeB2,W2CoB2,W2Ni
2,MoCoB,WFeB,WCoBの中から選ばれ
た1種以上の3元系複硼化物を2〜30%、TiC,T
iN,および、C/Nの原子比が0.25〜4.0であ
るTiCNの中から選ばれた少なくとも1種以上を10
〜55%と、これらの化合物中に含まれる不可避的不純
物からなり、形成される皮膜の厚さが5〜300μmで
あることを特徴とする放電被覆複合体。
3. In a coated composite in which a film is formed on a substrate by a discharge coating method, the electrode for forming the film is Mx.
At least one selected from binary borides represented by By is 30 to 78%, Mo 2 FeB 2 , Mo 2 Co
B 2 , Mo 2 NiB 2 , W 2 FeB 2 , W 2 CoB 2 , W 2 Ni
2 to 30% of one or more ternary compound boride selected from B 2 , MoCoB, WFeB and WCoB, TiC, T
iN and at least one selected from TiCN having an atomic ratio of C / N of 0.25 to 4.0 is 10 or more.
The discharge coating composite is characterized by comprising ˜55% and unavoidable impurities contained in these compounds, and forming a film having a thickness of 5 to 300 μm.
【請求項4】 MxByがTiB2,ZrB2,Ta
2,CrB2の中から選ばれた少なくとも1種以上の2
元系硼化物であることを特徴とする請求項3の放電被覆
複合体。
4. MxBy is TiB 2 , ZrB 2 , Ta
2 of at least one selected from B 2 and CrB 2
The discharge coating composite according to claim 3, wherein the discharge coating composite is an original boride.
【請求項5】 放電被覆法で基材上に硼化物皮膜を形成
し、ダイカスト機械部材に使用することを特徴とする請
求項1および請求項2の放電被覆複合体。
5. The discharge coating composite according to claim 1 or 2, wherein a boride film is formed on a base material by a discharge coating method and is used for a die casting machine member.
JP20948392A 1992-07-15 1992-07-15 Discharge coating composite Expired - Fee Related JP2959912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20948392A JP2959912B2 (en) 1992-07-15 1992-07-15 Discharge coating composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20948392A JP2959912B2 (en) 1992-07-15 1992-07-15 Discharge coating composite

Publications (2)

Publication Number Publication Date
JPH0633261A true JPH0633261A (en) 1994-02-08
JP2959912B2 JP2959912B2 (en) 1999-10-06

Family

ID=16573585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20948392A Expired - Fee Related JP2959912B2 (en) 1992-07-15 1992-07-15 Discharge coating composite

Country Status (1)

Country Link
JP (1) JP2959912B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106587A1 (en) * 2003-05-29 2004-12-09 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment electrode, process for producing discharge surface treatment electrode, discharge surface treatment apparatus and discharge surface treatment method
WO2004108990A1 (en) * 2003-06-05 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
JP2005213555A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Electrode for discharge surface treatment and discharge surface treatment method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106587A1 (en) * 2003-05-29 2004-12-09 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment electrode, process for producing discharge surface treatment electrode, discharge surface treatment apparatus and discharge surface treatment method
JPWO2004106587A1 (en) * 2003-05-29 2006-07-20 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment electrode manufacturing method, discharge surface treatment apparatus, and discharge surface treatment method
JP4523545B2 (en) * 2003-05-29 2010-08-11 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment apparatus, and discharge surface treatment method
WO2004108990A1 (en) * 2003-06-05 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
JPWO2004108990A1 (en) * 2003-06-05 2006-07-20 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment electrode manufacturing method and evaluation method, discharge surface treatment apparatus, and discharge surface treatment method
KR100753275B1 (en) * 2003-06-05 2007-08-29 미쓰비시덴키 가부시키가이샤 Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
JP4563318B2 (en) * 2003-06-05 2010-10-13 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment apparatus, and discharge surface treatment method
US7910176B2 (en) 2003-06-05 2011-03-22 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method
JP2005213555A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Electrode for discharge surface treatment and discharge surface treatment method
JP4608220B2 (en) * 2004-01-29 2011-01-12 三菱電機株式会社 Discharge surface treatment electrode and discharge surface treatment method

Also Published As

Publication number Publication date
JP2959912B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US3999952A (en) Sintered hard alloy of multiple boride containing iron
US4617053A (en) Metal reinforced porous refractory hard metal bodies
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
JPH0633261A (en) Electro-discharge coated composite body
GB2253213A (en) Injection part for die-casting machines
JP3260210B2 (en) Die casting injection sleeve and method of casting aluminum or aluminum alloy member
JP2627090B2 (en) Bonded body of boride ceramics and metal-based structural member and bonding method
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP2859967B2 (en) Sleeve for die casting machine
JP2967789B2 (en) High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same
SK5151Y1 (en) Fluid-tight sintered metall parts and production method
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JP4178070B2 (en) Method for canning sintered preform and method for producing sintered material thereby
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JPH03100136A (en) Aluminum alloy material for die
JP6560549B2 (en) Laminated tube and manufacturing method thereof
JP3106196B1 (en) Method for producing TiAl-Ti based alloy sintered joint
JP3396800B2 (en) Composite sintered alloy for non-ferrous metal melt and method for producing the same
JP2002346719A (en) Injection sleeve for diecasting machine
JP3368181B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JPH04247801A (en) Injecting parts for die casting machine
JP2936296B2 (en) Corrosion and wear resistant alloy for non-ferrous molten metal
JPH10204564A (en) Cobalt based sintered alloy for nonferrous molten metal
JPH08158002A (en) Silicon nitride ceramic-metal composite material and parts for molten aluminum
JPH0340099B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees