JP6560549B2 - Laminated tube and manufacturing method thereof - Google Patents
Laminated tube and manufacturing method thereof Download PDFInfo
- Publication number
- JP6560549B2 JP6560549B2 JP2015131430A JP2015131430A JP6560549B2 JP 6560549 B2 JP6560549 B2 JP 6560549B2 JP 2015131430 A JP2015131430 A JP 2015131430A JP 2015131430 A JP2015131430 A JP 2015131430A JP 6560549 B2 JP6560549 B2 JP 6560549B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- laminated tube
- spraying
- outer peripheral
- peripheral surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000463 material Substances 0.000 claims description 89
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 34
- 229910052721 tungsten Inorganic materials 0.000 claims description 33
- 239000010937 tungsten Substances 0.000 claims description 33
- 239000011162 core material Substances 0.000 claims description 26
- 230000002093 peripheral effect Effects 0.000 claims description 25
- 229910000831 Steel Inorganic materials 0.000 claims description 23
- 239000010959 steel Substances 0.000 claims description 23
- 238000005507 spraying Methods 0.000 claims description 21
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- 239000000956 alloy Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 229910001105 martensitic stainless steel Inorganic materials 0.000 claims description 3
- 238000007751 thermal spraying Methods 0.000 description 40
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 24
- 230000009466 transformation Effects 0.000 description 24
- 239000000843 powder Substances 0.000 description 21
- 238000005260 corrosion Methods 0.000 description 18
- 230000007797 corrosion Effects 0.000 description 18
- 238000004512 die casting Methods 0.000 description 13
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 10
- 238000001816 cooling Methods 0.000 description 9
- 238000010284 wire arc spraying Methods 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 229910000838 Al alloy Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011163 secondary particle Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000007750 plasma spraying Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910001315 Tool steel Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
- B32B1/08—Tubular products
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/341—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/067—Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/131—Wire arc spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/14—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
- C23C4/16—Wires; Tubes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/14—Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/22—Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/752—Corrosion inhibitor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2311/00—Metals, their alloys or their compounds
- B32B2311/30—Iron, e.g. steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Coating By Spraying Or Casting (AREA)
- Laminated Bodies (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、積層管及びその製造方法に関する。 The present invention relates to a laminated tube and a manufacturing method thereof.
溶融金属と直接接触して用いられる部品として、例えば、金属を成形するためのダイカストマシンの部品などが知られている。ダイカストマシンは、主にプランジャー、スリーブ、成形金型などの部品で構成され、溶融状態にある金属(例えば、アルミニウム、亜鉛、マグネシウム等)と直接接触した状態で使用される。そのため、このような部品に共通して要求される特性としては、溶融金属に対する耐食性、すなわち、溶融金属により溶損してしまうことや、溶融金属と接触することで表面に反応層が形成されてしまうことを防止することができる特性が挙げられる。 As a part used in direct contact with molten metal, for example, a part of a die casting machine for forming a metal is known. The die casting machine is mainly composed of parts such as a plunger, a sleeve, and a molding die, and is used in a state where it is in direct contact with a molten metal (for example, aluminum, zinc, magnesium, etc.). Therefore, the properties required for such parts in common are corrosion resistance to the molten metal, that is, the metal is melted by the molten metal, or a reaction layer is formed on the surface by contact with the molten metal. The characteristic which can prevent this is mentioned.
従来、溶融金属と直接接触する部品用の部材として、機械部品に広く用いられている工具鋼や熱間工具鋼(SKD61等)を使用することも考えられるが、これらの部材は溶融金属に対する耐食性が十分ではないという問題がある。また、熱間工具鋼に対して、耐食性を向上させる目的で窒化処理を施して窒化層を形成する方法も知られているが、窒化処理により形成される窒化層は、厚みが20〜30μm程度と薄く、この材料を用いたとしても、長期間にわたって十分な耐食性を維持することは困難である。このように、耐食性が十分ではない部材を、ダイカストマシンの部品に適用した場合には、溶融金属によって劣化し易く、このような部品を頻繁に取り替えなくてはならず、ダイカストマシンのランニングコストが上昇することに加えて、連続生産性が著しく低下してしまうという問題がある。 Conventionally, it is possible to use tool steel and hot tool steel (such as SKD61) widely used for machine parts as members for parts that are in direct contact with the molten metal, but these members are resistant to corrosion against molten metal. There is a problem that is not enough. In addition, a method of forming a nitrided layer by nitriding the hot tool steel for the purpose of improving the corrosion resistance is also known, but the nitrided layer formed by the nitriding treatment has a thickness of about 20 to 30 μm. Even if this material is used, it is difficult to maintain sufficient corrosion resistance over a long period of time. As described above, when a member having insufficient corrosion resistance is applied to a die casting machine part, it is likely to be deteriorated by molten metal, and such a part must be frequently replaced, and the running cost of the die casting machine is reduced. In addition to the increase, there is a problem that the continuous productivity is significantly decreased.
一方、このような部品用の部材として、耐食性に優れ、常温及び高温において高い硬度を有するセラミックス材料(例えば、サイアロン(SiAlON)等。)も知られている。しかしながら、このようなセラミックス材料は製造コストが高いことに加えて被加工性に乏しく、また、必要以上に高硬度であるために、例えばダイカストマシンのスリーブとして用いた場合に、プランジャーチップのような低硬度の材料に対して摺動すると、その低硬度の材料を摩耗させてしまうという問題がある。 On the other hand, a ceramic material (for example, sialon (SiAlON), etc.) having excellent corrosion resistance and high hardness at normal temperature and high temperature is also known as a component member. However, such a ceramic material has a high manufacturing cost and a low workability, and has a higher hardness than necessary. For example, when used as a sleeve of a die casting machine, it is like a plunger tip. When sliding with respect to such a low hardness material, there is a problem that the low hardness material is worn.
これに対し、このような溶融金属と直接接触して用いられる部品用の部材として、例えば、特許文献1には、高温域で高い硬度を有し、溶融金属に対する高い耐食性と、耐熱衝撃性と、耐摩耗性とに優れる硼化物系タングステン基合金(タングステンを含む硬質相が、3元系複硼化物等からなる結合相のマトリックス中に分散した合金)が開示されている。 On the other hand, as a component member used in direct contact with such a molten metal, for example, Patent Document 1 has high hardness in a high temperature range, high corrosion resistance against molten metal, and thermal shock resistance. And boride-based tungsten-based alloys having excellent wear resistance (alloys in which a hard phase containing tungsten is dispersed in a binder phase matrix made of a ternary double boride).
しかしながら、上記特許文献1に記載の従来技術では、硼化物系タングステン基合金は、焼結温度が1500〜2000℃と高く、ホットプレスや、所定のガスの雰囲気下で加圧しながら焼結することが必要で、部品として成形するには、生産性に乏しく、コスト的に不利であるという問題がある。 However, in the prior art described in Patent Document 1, the boride-based tungsten-based alloy has a sintering temperature as high as 1500 to 2000 ° C., and is sintered while being pressed in a hot press or a predetermined gas atmosphere. In order to form as a part, there is a problem that the productivity is low and the cost is disadvantageous.
本発明の目的は、溶融金属に対する耐食性に優れ、且つコスト的に有利な積層管を提供することである。 An object of the present invention is to provide a laminated tube which is excellent in corrosion resistance against molten metal and is advantageous in cost.
本発明者等は、内層を、タングステンを含む第1材料により形成し、当該内層の外周面に、所定の異なる特性を有する2つの層を積層して積層管を形成することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 The inventors have formed the inner layer by using a first material containing tungsten, and by laminating two layers having predetermined different characteristics on the outer peripheral surface of the inner layer, thereby forming a laminated tube. The inventors have found that this can be achieved and have completed the present invention.
すなわち、本発明によれば、硼化物系タングステン基合金からなる第1層と、前記第1層の外周面に形成され、フェライト系ステンレス鋼材からなる第2層と、前記第2層の外周面に形成され、マルテンサイト系ステンレス鋼材からなる第3層と、を備える積層管であって、前記第2層の厚みが0.1〜0.9mmである積層管が提供される。 That is, according to the present invention, the first layer made of a boride-based tungsten-based alloy , the second layer made of a ferritic stainless steel material formed on the outer peripheral surface of the first layer, and the outer peripheral surface of the second layer And a third layer made of a martensitic stainless steel material , wherein the second layer has a thickness of 0.1 to 0.9 mm .
本発明において、前記第3層の外周面に形成され、前記第3層に固着されているクロムモリブデン鋼鋼材層を、さらに備えることが好ましい。
本発明において、前記第1層の内径Dに対する、前記積層管の長さLの比(L/D)が、2以上であることが好ましい。
In this invention, it is preferable to further provide the chromium molybdenum steel material layer formed in the outer peripheral surface of the said 3rd layer, and being adhere | attached on the said 3rd layer .
In the present invention, the ratio (L / D) of the length L of the laminated tube to the inner diameter D of the first layer is preferably 2 or more.
また、本発明によれば、芯材を準備する第1の工程と、前記芯材の外周面に、硼化物系タングステン基合金を溶射して第1層を形成する第2の工程と、前記第1層の外周面に、フェライト系ステンレス鋼材を溶射して、厚みが0.1〜0.9mmである第2層を形成する第3の工程と、前記第2層の外周面に、マルテンサイト系ステンレス鋼材を溶射して第3層を形成する第4の工程と、前記芯材を除去する第5の工程と、を有する積層管の製造方法が提供される。 Further, according to the present invention, a first step of preparing a core material, a second step of spraying a boride-based tungsten-based alloy on the outer peripheral surface of the core material to form a first layer, A third step of spraying a ferritic stainless steel material on the outer peripheral surface of the first layer to form a second layer having a thickness of 0.1 to 0.9 mm ; and a martensite on the outer peripheral surface of the second layer. There is provided a method of manufacturing a laminated tube, which includes a fourth step of spraying a site-based stainless steel material to form a third layer and a fifth step of removing the core material.
本発明の製造方法において、前記第5の工程により前記芯材を除去した後に、前記第3層の外周面に、クロムモリブデン鋼鋼材を焼嵌めしてクロムモリブデン鋼鋼材層を形成する第6の工程を、さらに有することが好ましい。 In the manufacturing method of the present invention, after the core material is removed by the fifth step, a chromium molybdenum steel material layer is formed by shrink fitting a chromium molybdenum steel material on the outer peripheral surface of the third layer. It is preferable to further include a step.
本発明では、内層を、タングステンを含む第1材料で形成し、当該内層の外周面に、所定の特性を有する第2層及び第3層を形成するため、溶融金属に対する耐食性に優れ、且つコスト的に有利な積層管を提供することができる。 In the present invention, the inner layer is formed of the first material containing tungsten, and the second layer and the third layer having predetermined characteristics are formed on the outer peripheral surface of the inner layer. A particularly advantageous laminated tube can be provided.
以下、図面に基づいて本発明の一実施の形態について説明する。本発明に係る積層管は、高温環境における耐食性や、高い硬度が求められる部品として用いることができ、例えば、図1に示すようなダイカスト装置のスリーブとして用いることができる。以下においては、ダイカスト装置のスリーブに本発明に係る積層管を用いた実施形態にて、本発明を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The laminated tube according to the present invention can be used as a component that requires corrosion resistance in a high temperature environment and high hardness. For example, it can be used as a sleeve of a die casting apparatus as shown in FIG. In the following, the present invention will be described in an embodiment in which the laminated tube according to the present invention is used for a sleeve of a die casting apparatus.
図1は、本発明に係る積層管を適用したスリーブ11を用いたダイカスト装置1の一実施の形態を示す断面図である。本例におけるダイカスト装置1は、アルミニウムなどの溶融金属を成形するためのダイカスト装置である。 FIG. 1 is a cross-sectional view showing an embodiment of a die casting apparatus 1 using a sleeve 11 to which a laminated tube according to the present invention is applied. The die casting apparatus 1 in this example is a die casting apparatus for forming a molten metal such as aluminum.
図1に示すダイカスト装置1は、スリーブ11と、プランジャー12と、流路13と、ダイキャビティ14と、第1金型15と、第2金型16とを備えている。スリーブ11は、プランジャー12が移動するための通路を形成するものであり、スリーブ11が形成する通路は、流路13及びダイキャビティ14と連結されている。プランジャー12は、スリーブ11が形成する通路を前後に往復運動し、スリーブ11内に流し込まれた溶融金属を、スリーブ11から、流路13を通じて、ダイキャビティ14内に射出するものである。 A die casting apparatus 1 shown in FIG. 1 includes a sleeve 11, a plunger 12, a flow path 13, a die cavity 14, a first mold 15, and a second mold 16. The sleeve 11 forms a passage for the plunger 12 to move, and the passage formed by the sleeve 11 is connected to the flow path 13 and the die cavity 14. The plunger 12 reciprocates back and forth in the passage formed by the sleeve 11, and injects the molten metal poured into the sleeve 11 from the sleeve 11 into the die cavity 14 through the flow path 13.
本実施形態のスリーブ11は、図2に示す積層管2を用いて形成される。図2は、本発明に係る積層管の一実施の形態を示す斜視図である。図2においては、積層管2の内径をD、長さをLで示している。本実施形態の積層管2は、図3の断面図で示すように、内層を構成する第1層21と、第1層21の外周面に形成された第2層22と、さらに第2層22の外周面に形成された第3層23とからなる三層構造を有している。 The sleeve 11 of this embodiment is formed using the laminated tube 2 shown in FIG. FIG. 2 is a perspective view showing an embodiment of the laminated tube according to the present invention. In FIG. 2, the inner diameter of the laminated tube 2 is indicated by D and the length is indicated by L. As shown in the cross-sectional view of FIG. 3, the laminated tube 2 of the present embodiment includes a first layer 21 constituting an inner layer, a second layer 22 formed on the outer peripheral surface of the first layer 21, and a second layer. 22 has a three-layer structure composed of a third layer 23 formed on the outer peripheral surface of 22.
本実施形態の積層管2は、図4に示すように、鉄、銅、アルミニウムといった安価で加工が容易な材料からなる芯材3に対して、溶射により、第1層21、第2層22及び第3層23をこの順で形成した後、芯材を機械加工で除去することにより得ることができる。 As shown in FIG. 4, the laminated tube 2 of the present embodiment has a first layer 21 and a second layer 22 by thermal spraying on a core material 3 made of an inexpensive and easy-to-process material such as iron, copper, and aluminum. And after forming the 3rd layer 23 in this order, it can obtain by removing a core material by machining.
<第1層21>
内層を構成する第1層21は、タングステンを含む第1材料から構成される。第1材料としては、硼化物系タングステン基合金が挙げられる。硼化物系タングステン基合金は、主としてタングステンからなる硬質相と、主として3元系複硼化物からなる結合相とで構成される。
<First layer 21>
The first layer 21 constituting the inner layer is made of a first material containing tungsten. An example of the first material is a boride-based tungsten-based alloy. The boride-based tungsten-based alloy is composed of a hard phase mainly made of tungsten and a binder phase mainly made of ternary double boride.
結合相を構成する3元系複硼化物としては、特に限定されないが、Mo2FeB2、Mo2CoB2、Mo2NiB2、W2FeB2、W2CoB2、W2NiB2、MoCoB、WFeB、WCoBのうち、1種又は2種以上を混合したものを用いることができる。 The ternary double boride constituting the binder phase is not particularly limited, but Mo 2 FeB 2 , Mo 2 CoB 2 , Mo 2 NiB 2 , W 2 FeB 2 , W 2 CoB 2 , W 2 NiB 2 , MoCoB , WFeB, WCoB or a mixture of two or more of them can be used.
また、結合相には、上述した3元系複硼化物に加えて、2元系硼化物が含まれていてもよい。2元系硼化物としては、例えば、MxByで表される硼化物(Mは、例えばTi、Zr、Ta、Nb、Cr、Vのいずれであり、x=1〜2、y=1〜4である。)のうち、1種又は2種以上を混合したものを用いることができる。 Further, the binder phase may contain a binary boride in addition to the above-described ternary double boride. As the binary boride, for example, a boride represented by M x B y (M is, for example, any one of Ti, Zr, Ta, Nb, Cr, and V, and x = 1 to 2, y = 1. ~ 4.) Or a mixture of two or more of them can be used.
結合相における2元系硼化物の含有割合は、好ましくは1〜20体積%、より好ましくは3〜15体積%である。結合相に上記割合で2元系硼化物を含有させることにより、得られる積層管2の第1層21について、耐食性を損なうことなく、常温環境下及び高温環境下での硬度が高くなり、耐摩耗性を向上させることができる。 The content ratio of the binary boride in the binder phase is preferably 1 to 20% by volume, more preferably 3 to 15% by volume. By including the binary boride in the above-mentioned ratio in the binder phase, the hardness of the first layer 21 of the laminated tube 2 obtained is increased in a normal temperature environment and a high temperature environment without impairing the corrosion resistance. Abrasion can be improved.
また、上述した3元系複硼化物や2元系硼化物を含む結合相について、第1層21中における含有割合は、好ましくは1〜30体積%、より好ましくは3〜20体積%である。第1層21中における結合相の含有割合を上記割合とすることにより、得られる第1層21について、タングステンの持つ優れた耐食性及び靭性を損なうことなく、常温環境下及び高温環境下での硬度が高くなるとともに、耐摩耗性、耐凝着性、熱衝撃抵抗及び被加工性を向上させることができる。 Moreover, about the binder phase containing the ternary double boride and binary boride mentioned above, the content rate in the 1st layer 21 becomes like this. Preferably it is 1-30 volume%, More preferably, it is 3-20 volume%. . By setting the content ratio of the binder phase in the first layer 21 to the above ratio, the hardness under normal temperature environment and high temperature environment without damaging the excellent corrosion resistance and toughness of tungsten for the first layer 21 obtained. And the wear resistance, adhesion resistance, thermal shock resistance and workability can be improved.
<第2層22>
第2層22は、融点より1000℃以上高い温度から室温である25℃まで冷却した場合において、体積の膨張を伴う変態が生じない特性を有する第2材料を、第1層21上に溶射することにより形成することができる。すなわち、上記温度範囲で冷却している間に、結晶構造や結晶粒度の変化により膨張を伴う変態が起こらない特性を有する第2材料によって、第2層22は形成される。これにより、溶射によって第1層21上に第2層22を形成する際に、第2材料が、溶射の温度(すなわち、融点より1000℃以上高い温度)である約2500℃程度から、室温である25℃まで冷却される過程で、膨張が抑制され、第1層21と第2層22との界面における剥離の発生が防止される。なお、第2材料は、第2層22として形成される過程において、必ずしも、融点より1000℃以上高い温度まで加熱される必要はなく、また、25℃以下まで冷却される必要もない。例えば、本実施形態では、第2層22を形成する際に、第2材料を、融点以上の温度であって、融点から1000℃を超えない温度で溶融させて、溶射を行うようにしてもよい。また、本実施形態では、溶射により形成された第2層22を、溶射後に25℃以下まで冷却することなく、25℃よりも高い温度で保持してもよい。本実施形態では、第2材料としては、あくまで、「融点より1000℃以上高い温度から25℃まで冷却した場合に膨張を伴う変態が生じない」という特性を有する材料を用いればよい。
<Second layer 22>
When the second layer 22 is cooled from a temperature higher than the melting point by 1000 ° C. or higher to 25 ° C. which is room temperature, the second layer 22 is sprayed on the first layer 21 with a property that does not cause transformation accompanied by volume expansion. Can be formed. That is, the second layer 22 is formed of the second material having such a characteristic that the transformation accompanied by expansion does not occur due to the change of the crystal structure and the crystal grain size during the cooling in the above temperature range. Thus, when the second layer 22 is formed on the first layer 21 by thermal spraying, the second material is heated at room temperature from about 2500 ° C., which is a temperature of spraying (that is, a temperature higher than the melting point by 1000 ° C.). In the process of cooling to a certain 25 ° C., the expansion is suppressed, and the occurrence of peeling at the interface between the first layer 21 and the second layer 22 is prevented. In the process of forming the second layer 22, the second material does not necessarily have to be heated to a temperature higher than the melting point by 1000 ° C. or higher and does not need to be cooled to 25 ° C. or lower. For example, in the present embodiment, when the second layer 22 is formed, the second material is melted at a temperature not lower than the melting point and not exceeding 1000 ° C. to perform the thermal spraying. Good. Moreover, in this embodiment, you may hold | maintain the 2nd layer 22 formed by thermal spraying at the temperature higher than 25 degreeC, without cooling to 25 degrees C or less after thermal spraying. In the present embodiment, as the second material, a material having a characteristic that “a transformation accompanied by expansion does not occur when cooled from a temperature higher than the melting point by 1000 ° C. to 25 ° C.” may be used.
本実施形態では、このような第2層22と、後述する第3層23とを組合せることで、すなわち、それぞれ所定の異なる特性を有する第2層22及び第3層23を積層することにより、積層管2における、第2層22及び第3層23の総厚を厚くすることが可能となり、これにより、得られる積層管2の強度を向上させることができる。 In the present embodiment, by combining such a second layer 22 and a third layer 23 described later, that is, by laminating the second layer 22 and the third layer 23 each having a predetermined different characteristic. The total thickness of the second layer 22 and the third layer 23 in the laminated tube 2 can be increased, whereby the strength of the obtained laminated tube 2 can be improved.
なお、本実施形態においては、変態は、結晶構造や結晶粒度の変化によって、材料の構造が変化することが挙げられる。本実施形態の第2材料は、上記温度範囲で冷却される過程で、変態が生じないものであってもよいし、実質的に体積が膨張しなければ、変態が生じるものであってもよい。すなわち、第2材料においては、体積が収縮するような変態や、体積がほとんど変化しない変態であれば生じてもよい。あるいは、第2材料においては、変態時の膨張率(膨張率(%)=((膨張後体積−膨張前体積)÷膨張前体積×100)が0.03%以下であって、実質的に膨張を伴わない変態であれば、生じてもよい。 In the present embodiment, the transformation includes a change in the structure of the material due to a change in crystal structure or crystal grain size. The second material of the present embodiment may be one that does not undergo transformation in the process of cooling in the above temperature range, or one that undergoes transformation if the volume does not substantially expand. . That is, in the second material, the transformation may occur as long as the transformation shrinks in volume or the transformation hardly changes in volume. Alternatively, in the second material, the coefficient of expansion at the time of transformation (expansion coefficient (%) = ((volume after expansion−volume before expansion) ÷ volume before expansion × 100) is 0.03% or less, Any transformation that does not swell may occur.
本実施形態においては、第2材料としては、熱膨張係数が、第1層21を構成する材料より高く、上述した図4に示す芯材3を構成する材料より低いことが好ましい。例えば、芯材3としてSUS304やSUS316を用いた場合には、SUS304やSUS316の熱膨張係数が約18×10−6/K(第2層22を形成する際に、溶射の熱により加熱される温度領域における熱膨張係数)であるため、第2材料の熱膨張係数は、18×10−6/K未満であることが好ましい。これにより、溶射によって第2層22を形成する際に、溶射後に第2層22が冷却される過程で、第2層22にクラックが発生してしまうことを防止できる。 In the present embodiment, the second material preferably has a thermal expansion coefficient higher than that of the material constituting the first layer 21 and lower than that of the material constituting the core material 3 shown in FIG. 4 described above. For example, when SUS304 or SUS316 is used as the core material 3, the thermal expansion coefficient of SUS304 or SUS316 is about 18 × 10 −6 / K (when the second layer 22 is formed, it is heated by the heat of thermal spraying. The thermal expansion coefficient of the second material is preferably less than 18 × 10 −6 / K. Thereby, when forming the 2nd layer 22 by thermal spraying, it can prevent that the crack occurs in the 2nd layer 22 in the process in which the 2nd layer 22 is cooled after thermal spraying.
本実施形態では、第2材料として用いることができる具体的な材料としては、SUS430、SUS429などのフェライト系の鋼材が挙げられる。 In the present embodiment, specific materials that can be used as the second material include ferritic steel materials such as SUS430 and SUS429.
<第3層23>
第3層23は、融点より1000℃以上高い温度から室温である25℃まで冷却した場合に、膨張を伴う変態が生じ得る特性を有する第3材料を、第2層22上に溶射することにより形成することができる。これにより、溶射によって第2層22上に第3層23を形成する際に、溶射後に第3材料が、溶射の温度(すなわち、融点より1000℃以上高い温度)である約2500℃程度から、室温である25℃まで冷却される過程で、第3層23が、上述した第2層22に対して過度に収縮してしまうことが防止され、第3層23にクラックが発生してしまうことを防止できる。また第3層23の厚みを第2層22よりも厚肉に形成することができる。なお、第3材料は、第3層23として形成される過程において、必ずしも、融点より1000℃以上高い温度まで加熱される必要はなく、また、25℃以下まで冷却される必要もない。例えば、本実施形態では、第3層23を形成する際に、第3材料を、融点以上の温度であって、融点から1000℃を超えない温度で溶融させて、溶射を行うようにしてもよい。また、本実施形態では、溶射により形成された第3層23を、溶射後に25℃以下まで冷却することなく、25℃よりも高い温度で保持してもよい。本実施形態では、第3材料としては、あくまで、「融点より1000℃以上高い温度から25℃まで冷却した場合に膨張を伴う変態が生じ得る」という特性を有する材料を用いればよい。
<Third layer 23>
The third layer 23 is sprayed on the second layer 22 with a third material having a characteristic that can cause transformation accompanying expansion when cooled from a temperature higher than the melting point by 1000 ° C. or more to a room temperature of 25 ° C. Can be formed. Accordingly, when the third layer 23 is formed on the second layer 22 by thermal spraying, the third material is heated from about 2500 ° C., which is the temperature of thermal spraying (that is, a temperature higher than the melting point by 1000 ° C.). In the process of cooling to 25 ° C., which is room temperature, the third layer 23 is prevented from excessively shrinking with respect to the second layer 22 described above, and cracks are generated in the third layer 23. Can be prevented. Further, the third layer 23 can be formed thicker than the second layer 22. In the process of forming the third layer 23, the third material does not necessarily need to be heated to a temperature higher than the melting point by 1000 ° C. or higher, and need not be cooled to 25 ° C. or lower. For example, in the present embodiment, when the third layer 23 is formed, the third material is melted at a temperature not lower than the melting point and not exceeding 1000 ° C. for spraying. Good. Moreover, in this embodiment, you may hold | maintain the 3rd layer 23 formed by thermal spraying at the temperature higher than 25 degreeC, without cooling to 25 degrees C or less after thermal spraying. In the present embodiment, as the third material, a material having a characteristic that “transformation accompanied by expansion can occur when cooled from a temperature higher than the melting point by 1000 ° C. to 25 ° C.” is used.
なお、本実施形態の第3材料としては、上記温度範囲で冷却される過程で、変態が生じるものであり、変態時の膨張率(膨張率(%)=(膨張後体積−膨張前体積)÷膨張前体積×100)が0.8%以上であるものが挙げられる。 As the third material of the present embodiment, transformation occurs in the process of cooling in the above temperature range, and the expansion rate at the time of transformation (expansion rate (%) = (volume after expansion−volume before expansion)). ÷ The volume before expansion × 100) is 0.8% or more.
本実施形態においては、第3材料としては、熱膨張係数が、上述した図4に示す芯材3を構成する材料より低いことが好ましい。例えば、芯材3としてSUS304やSUS316を用いた場合には、上述した第2材料と同様に、第3材料の熱膨張係数は、18×10−6/K未満であることが好ましい。これにより、溶射によって第3層23を形成する際に、溶射後に第3層23が冷却される過程で、第3層23にクラックが発生してしまうことを防止できる。 In the present embodiment, as the third material, it is preferable that the thermal expansion coefficient is lower than the material constituting the core material 3 shown in FIG. 4 described above. For example, when SUS304 or SUS316 is used as the core material 3, the thermal expansion coefficient of the third material is preferably less than 18 × 10 −6 / K as in the second material described above. Thereby, when forming the 3rd layer 23 by thermal spraying, it can prevent that the crack occurs in the 3rd layer 23 in the process in which the 3rd layer 23 is cooled after thermal spraying.
本実施形態では、第3材料として用いることができる具体的な材料としては、SUS420、SUS403などのマルテンサイト系の鋼材が挙げられる。 In the present embodiment, specific materials that can be used as the third material include martensitic steel materials such as SUS420 and SUS403.
以上のようにして、本実施形態の積層管2は構成される。 As described above, the laminated tube 2 of the present embodiment is configured.
なお、本実施形態の積層管2は、第3層23の外周面に、焼嵌めにより形成された鋼材層をさらに備えるものであってもよい。第3層23の外周面に焼嵌めする鋼材層としては、例えば、日本工業規格(JIS G 4053)に規定されるSCM440相当のクロムモリブデン鋼鋼材からなる管状の部材が挙げられる。鋼材層は、ボルト締結やピン等によって、第3層23の外周面に固着されていてもよい。積層管2が鋼材層を有することで、積層管2の強度を高めることができる。 Note that the laminated tube 2 of the present embodiment may further include a steel material layer formed by shrink fitting on the outer peripheral surface of the third layer 23. Examples of the steel material layer that is shrink-fitted on the outer peripheral surface of the third layer 23 include a tubular member made of a chromium molybdenum steel material equivalent to SCM440 defined in Japanese Industrial Standard (JIS G 4053). The steel material layer may be fixed to the outer peripheral surface of the third layer 23 by bolt fastening, pins, or the like. Since the laminated tube 2 has a steel material layer, the strength of the laminated tube 2 can be increased.
<積層管2の製造方法>
次いで、本実施形態の積層管2の製造方法について、説明する。
<Method for producing laminated tube 2>
Next, a method for manufacturing the laminated tube 2 of the present embodiment will be described.
まず、芯材3と、第1層21を形成するための溶射用粉末を準備する。溶射用粉末は、例えば次のようにして形成することができる。まず、硬質相としての役割を果たすタングステン粉末と、結合相としての役割を果たす3元系複硼化物及び2元系硼化物の粉末とを混合し、これにバインダー及び有機溶剤を添加した後、ボールミル等の粉砕装置を用いて混合粉砕する。次いで、混合粉砕して得た粉末(数μmの1次粒子)をスプレードライヤーなどにより造粒して数十μmの2次粒子を形成し、この2次粒子を熱処理した後に分級することで、溶射用粉末を得ることができる。 First, a powder for thermal spraying for forming the core material 3 and the first layer 21 is prepared. The thermal spraying powder can be formed, for example, as follows. First, a tungsten powder that serves as a hard phase and a ternary double boride and a binary boride powder that serve as a binder phase are mixed, and a binder and an organic solvent are added thereto. The mixture is pulverized using a pulverizer such as a ball mill. Next, the powder obtained by mixing and pulverizing (primary particles of several μm) is granulated with a spray dryer or the like to form secondary particles of several tens of μm, and the secondary particles are subjected to heat treatment and classified, Thermal spray powder can be obtained.
なお、2次粒子を熱処理する際の条件としては、温度:1000〜1400℃、焼結時間:30〜90分間、昇温速度:0.5〜60K/分の条件とすることが好ましい。2次粒子の熱処理温度が1000℃よりも低くなると、1次粒子間の結合が弱くなり、溶射用粉末は溶射時に崩壊し易くなり、溶射フレーム中で十分に加速されず、付着効率が低下するおそれがある。2次粒子の熱処理温度が1400℃を超えると、焼結が進行して粉末間の結合が強固になり過ぎてしまい、焼結体を解砕し難くなり、溶射用粉末として取り出すことが困難となる。 The conditions for heat treating the secondary particles are preferably temperature: 1000-1400 ° C., sintering time: 30-90 minutes, and heating rate: 0.5-60 K / min. When the heat treatment temperature of the secondary particles is lower than 1000 ° C., the bond between the primary particles becomes weak, and the thermal spraying powder tends to collapse during thermal spraying and is not sufficiently accelerated in the thermal spraying frame, so that the adhesion efficiency is lowered. There is a fear. When the heat treatment temperature of the secondary particles exceeds 1400 ° C., the sintering proceeds and the bond between the powders becomes too strong, and it becomes difficult to disintegrate the sintered body and to be taken out as a thermal spraying powder. Become.
次いで、以上のようにして準備した溶射用粉末を、芯材3に対して溶射することにより第1層21を形成する。第1層21を形成するための溶射の方法としては、特に限定されないが、融点が高い材料の溶射に好適であるという観点より、プラズマ溶射が好ましい。 Next, the first layer 21 is formed by spraying the thermal spraying powder prepared as described above on the core material 3. A thermal spraying method for forming the first layer 21 is not particularly limited, but plasma spraying is preferable from the viewpoint of being suitable for thermal spraying of a material having a high melting point.
続いて、上述した第2材料を準備し、第2材料を第1層21上に溶射することにより第2層22を形成する。さらに、上述した第3材料を準備し、第3材料を第2層22上に溶射することにより第3層23を形成する。これにより、図4に示すように、芯材3上に、第1層21、第2層22及び第3層23がこの順で形成される。なお、第2層22及び第3層23を形成するための溶射の方法としては、特に限定されないが、第2層22を構成する第2材料や、第3層23を構成する第3材料として、上述した鋼材を用いる場合には、ワイヤアーク溶射が好ましい。 Subsequently, the second material described above is prepared, and the second material 22 is sprayed on the first layer 21 to form the second layer 22. Further, the third material 23 is prepared, and the third material 23 is sprayed on the second layer 22 to form the third layer 23. As a result, as shown in FIG. 4, the first layer 21, the second layer 22, and the third layer 23 are formed in this order on the core material 3. The thermal spraying method for forming the second layer 22 and the third layer 23 is not particularly limited, but the second material constituting the second layer 22 and the third material constituting the third layer 23 are not limited. In the case of using the above-described steel material, wire arc spraying is preferable.
本実施形態では、さらに、第3層23の外周面に、管状の鋼材を焼嵌めして鋼材層を形成してもよい。これにより、積層管2を補強し、積層管2の強度を向上させることができる。 In the present embodiment, a tubular steel material may be shrink-fitted on the outer peripheral surface of the third layer 23 to form a steel material layer. Thereby, the laminated tube 2 can be reinforced and the strength of the laminated tube 2 can be improved.
続いて、芯材3を、ボール盤やBTA(Boring and Trepanning Association)深孔加工機等を用いて切削する。これにより、図4に示す芯材3が除去され、図2に示すような積層管2、具体的には、内面が第1層21となり、第1層21上に第2層22及び第3層23が形成されてなる積層管2が得られる。 Subsequently, the core material 3 is cut using a drilling machine, a BTA (Boring and Trepanning Association) deep hole processing machine, or the like. Accordingly, the core material 3 shown in FIG. 4 is removed, and the laminated tube 2 as shown in FIG. 2, specifically, the inner surface becomes the first layer 21, and the second layer 22 and the third layer are formed on the first layer 21. The laminated tube 2 in which the layer 23 is formed is obtained.
本実施形態の積層管2は、以上のようにして製造される。 The laminated tube 2 of this embodiment is manufactured as described above.
なお、本実施形態の積層管2は、図2に示すように、第1層21の内径Dに対する、積層管2の長さLの比(L/D)が、好ましくは2以上である。この際には、特に、第1層21の内径Dは、好ましくは40〜160mm、より好ましくは40〜120mmである。本実施形態の製造方法によれば、内径Dと長さLとの比(L/D)が上記範囲にあり、積層管2の形状が比較的細長いものであっても、積層管2を良好に製造することができる。 In the laminated tube 2 of the present embodiment, the ratio (L / D) of the length L of the laminated tube 2 to the inner diameter D of the first layer 21 is preferably 2 or more, as shown in FIG. In this case, in particular, the inner diameter D of the first layer 21 is preferably 40 to 160 mm, more preferably 40 to 120 mm. According to the manufacturing method of the present embodiment, the ratio of the inner diameter D to the length L (L / D) is in the above range, and the laminated tube 2 is excellent even when the shape of the laminated tube 2 is relatively elongated. Can be manufactured.
すなわち、内層のみを、タングステンを含む材料からなる積層管を製造する方法としては、予め準備した管状の部材の内面に、タングステンを含む材料を溶射する方法が考えられる。しかしながら、内径Dが小径であったり、長さLが長かったりすることで、内径Dと長さLとの比(L/D)が上記範囲となる積層管を製造する場合には、上記管状の部材の内部に、溶射用のトーチが入らず、溶射を行うことができないという問題がある。
溶射距離は100〜150mmが適切で、内径トーチを使用した場合でも100mm以下の内径には溶射を行うことができない。そのため、100mm以下の内径では積層管の両端側から角度をつけて溶射しなければならないが、一般的に溶射角度が45°よりも小さくなると皮膜特性は急激に低下するので、管材の内面に溶射する方法で積層管を製造する場合には、L/Dが2以上のものでは良質な溶射皮膜を得ることができないという問題がある。
That is, as a method of manufacturing a laminated tube made of a material containing tungsten only for the inner layer, a method of spraying a material containing tungsten on the inner surface of a tubular member prepared in advance can be considered. However, when manufacturing a laminated tube in which the ratio (L / D) of the inner diameter D to the length L is within the above range because the inner diameter D is a small diameter or the length L is long, the tubular There is a problem that the thermal spraying torch does not enter the inside of the member and thermal spraying cannot be performed.
A spraying distance of 100 to 150 mm is appropriate, and even when an inner diameter torch is used, spraying cannot be performed on an inner diameter of 100 mm or less. For this reason, if the inner diameter is 100 mm or less, it must be sprayed at an angle from both ends of the laminated tube. Generally, however, the coating properties are drastically reduced when the spray angle is smaller than 45 °, so that the inner surface of the tube is sprayed. In the case of producing a laminated tube by this method, there is a problem that a high quality sprayed coating cannot be obtained if the L / D is 2 or more.
これに対し、本実施形態では、図4に示すように、芯材3上に第1層21、第2層22及び第3層23を形成した後、芯材3を除去するため、内径Dと長さLとの比(L/D)が上記範囲にある細長い形状の積層管を、良好に製造することができる。 On the other hand, in this embodiment, as shown in FIG. 4, after forming the first layer 21, the second layer 22, and the third layer 23 on the core material 3, the inner diameter D is removed in order to remove the core material 3. And a lengthwise L ratio (L / D) in the above range can be produced satisfactorily.
なお、本実施形態においては、タングステンを含む第1層21の厚みは、好ましくは0.5〜2mm、より好ましくは1〜1.5mmである。第1層21の厚みを上記範囲とすることにより、得られる積層管2について、溶融金属に対する耐食性に優れたものとすることができ、さらに、高価なタングステンの使用量を抑え、タングステンの溶射に要するエネルギーの使用量を低減できるという観点より、コスト的に有利となる。 In the present embodiment, the thickness of the first layer 21 containing tungsten is preferably 0.5 to 2 mm, more preferably 1 to 1.5 mm. By setting the thickness of the first layer 21 in the above range, the obtained laminated tube 2 can be excellent in corrosion resistance against molten metal, and further, the amount of expensive tungsten used can be suppressed and thermal spraying of tungsten can be performed. From the viewpoint that the amount of energy required can be reduced, this is advantageous in terms of cost.
また、本実施形態においては、第2層22の厚みは、好ましくは0.1〜0.9mmである。第2層22の厚みを上記範囲とすることにより、溶射後に冷却されて収縮することによる第2層22のクラックを防止できる。 In the present embodiment, the thickness of the second layer 22 is preferably 0.1 to 0.9 mm. By setting the thickness of the second layer 22 within the above range, it is possible to prevent cracks in the second layer 22 caused by cooling and shrinking after thermal spraying.
さらに、第3層23の厚みは、好ましくは1.0〜5.0mmである。第3層23の厚みを上記範囲とすることにより、積層管2の強度を高めることができる。 Furthermore, the thickness of the third layer 23 is preferably 1.0 to 5.0 mm. By setting the thickness of the third layer 23 within the above range, the strength of the laminated tube 2 can be increased.
本実施形態の積層管2は、上述したように、タングステンを含む第1層21を内層とし、その上に第2層22及び第3層23を備えるため、溶融金属に対する耐食性に優れたものであることに加えて、コスト的に有利である。すなわち、積層管2の全体を、タングステンを含む材料(硼化物系タングステン基合金など)により形成すれば、溶融金属に対する耐食性が向上するものの、タングステンを含む材料は高価であり、成形加工にコストがかかるという問題がある。これに対し、本実施形態の積層管2は、内層のみを、タングステンを含む層(第1層21)で構成し、その第1層21の外装を、鋼材などからなる第2層22及び第3層23で形成するため、溶融金属に対する耐食性を向上させることができる一方で、比較的安価に製造することができるものである。加えて、本実施形態の積層管2は、第2層22及び第3層23によって、その総厚を厚くすることができるため、積層管2の強度を向上させることができる。さらに、第2層22及び第3層23の総厚を厚くすることで、第3層23の外周面に、上述したように焼嵌めにより鋼材層を形成することが可能となり、積層管2の強度をより向上させることもできる。 As described above, the laminated tube 2 of the present embodiment has the first layer 21 containing tungsten as the inner layer and the second layer 22 and the third layer 23 on the first layer 21, and therefore has excellent corrosion resistance against molten metal. In addition, there is a cost advantage. That is, if the entire laminated tube 2 is made of a material containing tungsten (such as a boride-based tungsten-based alloy), the corrosion resistance against the molten metal is improved, but the material containing tungsten is expensive, and the molding process is costly. There is a problem that it takes. On the other hand, in the laminated tube 2 of the present embodiment, only the inner layer is configured by a layer containing tungsten (first layer 21), and the exterior of the first layer 21 is the second layer 22 and the second layer made of steel or the like. Since it is formed of the three layers 23, the corrosion resistance against molten metal can be improved, while it can be manufactured at a relatively low cost. In addition, since the total thickness of the laminated tube 2 of the present embodiment can be increased by the second layer 22 and the third layer 23, the strength of the laminated tube 2 can be improved. Furthermore, by increasing the total thickness of the second layer 22 and the third layer 23, it becomes possible to form a steel material layer on the outer peripheral surface of the third layer 23 by shrink fitting as described above. The strength can be further improved.
以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
<参考例1>
まず、形成される第1層の組成がタングステン:残部、2元系硼化物(TiB2):5.0体積%、3元系複硼化物(Mo2NiB2):10.5体積%となるように、溶射用粉末を作製した。具体的には、B:0.8重量%、Mo:3.5重量%、Ni:1.1重量%、Ti:0.9質量%、W:残部の比率で混合してなる原料100重量部に対して、5重量部のパラフィンを加え、これをアセトン中で、振動ボールミルにより25時間湿式粉砕を行うことで粉砕粉を作製した。次いで、作製した粉砕粉を、窒素雰囲気下において150℃で18時間乾燥した。そして、乾燥した粉砕粉を、アセトンと1:1の重量割合で混合した後に、スプレードライヤーによって造粒し、造粒した粉末を、真空中にて1100℃で1時間保持して粉末を焼結し、これを分級することにより、硼化物系タングステン基合金の溶射用粉末を作製した。
<Reference Example 1>
First, the composition of the first layer to be formed is tungsten: balance, binary boride (TiB 2 ): 5.0% by volume, ternary double boride (Mo 2 NiB 2 ): 10.5% by volume. Thus, a thermal spraying powder was prepared. Specifically, B: 0.8% by weight, Mo: 3.5% by weight, Ni: 1.1% by weight, Ti: 0.9% by weight, and W: balance of raw material 100% by weight 5 parts by weight of paraffin was added to the part, and this was pulverized in acetone by a vibration ball mill for 25 hours in acetone. Next, the prepared pulverized powder was dried at 150 ° C. for 18 hours in a nitrogen atmosphere. The dried pulverized powder is mixed with acetone at a weight ratio of 1: 1, and then granulated by a spray dryer. The granulated powder is held at 1100 ° C. in a vacuum for 1 hour to sinter the powder. Then, by classifying this, a powder for thermal spraying of a boride-based tungsten-based alloy was produced.
次いで、溶射を行うための基材として、50×50×10mmのSKD61鋼を準備した。そして、プラズマ溶射機(日本ユテク社製、EUTRONIC PLASMA SYSTEM 5000)により、基材に対して上記溶射用粉末を溶射することにより、基材上に硼化物系タングステン基合金の溶射層を形成した。続いて、これを4mm×4mm×20mmのブロック形状に加工することで試験片を作製した。 Next, 50 × 50 × 10 mm SKD61 steel was prepared as a base material for thermal spraying. And the thermal spray layer of the boride system tungsten base alloy was formed on the base material by spraying the above-mentioned thermal spraying powder with respect to the base material with a plasma spraying machine (NIPPON YUTECH Co., Ltd. EUTRONIC PLASMA SYSTEM 5000). Then, the test piece was produced by processing this into a block shape of 4 mm × 4 mm × 20 mm.
続いて、黒鉛製の型を用意し、その型の中に、上記試験片と、ADC12のアルミニウム合金(Cu:1.5〜3.5重量%、Si:9.6〜12重量、Al:残部)を入れ、真空中にて700℃まで加熱してアルミニウム合金を溶解し、700℃のまま1時間保持した。次いで、試験片及びアルミニウム合金を室温まで冷却し、冷却した試験片及びアルミニウム合金を切断して、断面をSEMにより観察し、溶解させたアルミニウム合金によって試験片の表面に形成された反応層の厚みを測定した。結果を図5(A)及び表1に示す。 Subsequently, a graphite mold was prepared, and in the mold, the test piece and an aluminum alloy of ADC12 (Cu: 1.5 to 3.5 wt%, Si: 9.6 to 12 wt, Al: The remainder was added and heated to 700 ° C. in a vacuum to dissolve the aluminum alloy, and kept at 700 ° C. for 1 hour. Next, the test piece and the aluminum alloy are cooled to room temperature, the cooled test piece and the aluminum alloy are cut, the cross section is observed by SEM, and the thickness of the reaction layer formed on the surface of the test piece by the dissolved aluminum alloy Was measured. The results are shown in FIG.
<参考例2>
表面に窒化処理を施して窒化層を形成したSKD61鋼(SKD61窒化材)を、4mm×4mm×20mmのブロック形状に加工することで試験片とし、参考例1と同様に評価を行った。結果を図5(B)及び表1に示す。
<Reference Example 2>
SKD61 steel (SKD61 nitride material) having a nitrided surface formed by nitriding the surface was processed into a 4 mm × 4 mm × 20 mm block shape, and evaluated in the same manner as in Reference Example 1. The results are shown in FIG.
<参考例3>
配合組成が、B:4.7重量%、Mo:40重量%、Cr:8重量%、Ni:3重量%、Fe:残部となるように原料粉末を配合し、次いで、原料粉末100重量部に対して、5重量部のパラフィンを加え、これをアセトン中で、振動ボールミルを用いて25時間湿式混合粉砕を行なった。次いで、湿式混合粉砕を行なった原料粉末を、窒素雰囲気中にて、150℃で18時間乾燥し、粉砕粉末を得た。そして、得られた粉砕粉末を、プレス成形し、得られた成形体を1473〜1573Kの温度で20分間焼結することにより、硬質焼結合金からなる試料を得た。なお、焼結時の昇温速度は10K/分とした。続いて、得られた試料について、4mm×4mm×20mmのブロック形状に加工することで試験片とし、参考例1と同様に評価を行った。結果を図5(C)及び表1に示す。
<Reference Example 3>
The raw material powder was blended so that the composition was B: 4.7% by weight, Mo: 40% by weight, Cr: 8% by weight, Ni: 3% by weight, Fe: balance, and then 100 parts by weight of the raw material powder. On the other hand, 5 parts by weight of paraffin was added, and this was wet-mixed and ground for 25 hours in acetone using a vibration ball mill. Next, the raw material powder subjected to the wet mixing and pulverization was dried in a nitrogen atmosphere at 150 ° C. for 18 hours to obtain a pulverized powder. And the sample which consists of a hard sintered alloy was obtained by press-molding the obtained pulverized powder, and sintering the obtained molded object for 20 minutes at the temperature of 1473-1573K. The heating rate during sintering was 10 K / min. Subsequently, the obtained sample was processed into a block shape of 4 mm × 4 mm × 20 mm to obtain a test piece, which was evaluated in the same manner as in Reference Example 1. The results are shown in FIG.
図5(A)及び表1に示すように、表面に硼化物系タングステン基合金からなる層を形成した参考例1は、溶解したアルミニウム合金によって形成された反応層の厚みが、わずか8μmであり、溶融金属に対する耐食性に優れていることが確認された。 As shown in FIG. 5 (A) and Table 1, in Reference Example 1 in which a layer made of a boride-based tungsten-based alloy was formed on the surface, the thickness of the reaction layer formed by the dissolved aluminum alloy was only 8 μm. It was confirmed that the metal was excellent in corrosion resistance against molten metal.
一方、図5(B)、図5(C)及び表1に示すように、SKD61窒化材である参考例2や、硬質焼結合金である参考例3は、溶解したアルミニウム合金によって形成された反応層の厚みが、70μm(参考例2)や130μm(参考例3)と厚く、溶融金属に対する耐食性に劣ることが確認された。 On the other hand, as shown in FIG. 5 (B), FIG. 5 (C) and Table 1, the reference example 2 which is a SKD61 nitride material and the reference example 3 which is a hard sintered alloy were formed by a molten aluminum alloy. The thickness of the reaction layer was as thick as 70 μm (Reference Example 2) or 130 μm (Reference Example 3), and it was confirmed that the corrosion resistance against molten metal was poor.
<参考例4>
芯材として、SUS316からなり、外径39mmの管状の部材を準備した。次いで、準備した芯材の外周面に、プラズマ溶射により、上述した参考例1と同様の組成の硼化物系タングステン基合金の溶射層を、第1層として形成した。なお、硼化物系タングステン基合金の溶射層の厚みは1.5mmとした。続いて、第1層上に、ワイヤアーク溶射により、オーステナイト系の鋼材であるSUS316(溶射時の温度範囲における熱膨張係数は約18×10−6/Kと高く、溶射の温度である約2500℃から、室温である25℃まで冷却した場合に膨張を伴う変態が生じない材料。)を溶射して、厚さ0.3mmの第2層を形成し、試料を作製した。作製した試料について、第2層におけるクラックの発生有無を目視にて確認した後、試料を切断して断面を光学顕微鏡で観察し、第1層と第2層との界面に剥離が発生しているか否かを観察した。結果を表2に示す。
<Reference Example 4>
As a core material, a tubular member made of SUS316 and having an outer diameter of 39 mm was prepared. Next, a sprayed layer of a boride-based tungsten-based alloy having the same composition as in Reference Example 1 described above was formed as a first layer on the outer peripheral surface of the prepared core material by plasma spraying. The thickness of the sprayed layer of the boride-based tungsten-based alloy was 1.5 mm. Subsequently, on the first layer, by wire arc spraying, SUS316, which is an austenitic steel material (the thermal expansion coefficient in the temperature range at the time of spraying is as high as about 18 × 10 −6 / K, and the temperature of spraying is about 2500. A material that does not undergo transformation with expansion when cooled to 25 ° C., which is room temperature, was sprayed to form a second layer having a thickness of 0.3 mm, and a sample was prepared. About the produced sample, after confirming the presence or absence of generation | occurrence | production of the crack in a 2nd layer, the sample was cut | disconnected and the cross section was observed with the optical microscope, and peeling generate | occur | produced in the interface of a 1st layer and a 2nd layer Observed whether or not. The results are shown in Table 2.
<参考例5>
第2層として、ワイヤアーク溶射により、フェライト系の鋼材であるSUS430(溶射時の温度範囲における熱膨張係数は約10×10−6/Kと低く、溶射の温度である約2500℃から、室温である25℃まで冷却した場合に膨張を伴う変態が生じない材料。)の溶射層を、厚さ1.0mmで形成した以外は、参考例4と同様に試料を作製し、同様に評価を行った。結果を表2及び図6(A)に示す。
<Reference Example 5>
As the second layer, by wire arc spraying, SUS430, which is a ferritic steel material (the thermal expansion coefficient in the temperature range during spraying is as low as about 10 × 10 −6 / K, and the spraying temperature is from about 2500 ° C. to room temperature. A material that does not undergo transformation with expansion when cooled to 25 ° C.) was prepared in the same manner as in Reference Example 4 except that the sprayed layer was formed with a thickness of 1.0 mm. went. The results are shown in Table 2 and FIG.
<比較例1>
第2層として、ワイヤアーク溶射により、マルテンサイト系の鋼材であるSUS420(溶射時の温度範囲における熱膨張係数は約10×10−6/Kと低く、溶射の温度である約2500℃から、室温である25℃まで冷却した場合に膨張を伴う変態が生じる材料。)の溶射層を、厚さ5.0mmで形成した以外は、参考例4と同様に試料を作製し、同様に評価を行った。結果を表2及び図6(B)に示す。
<Comparative Example 1>
As a second layer, by wire arc spraying, SUS420 which is a martensitic steel material (the thermal expansion coefficient in the temperature range at the time of thermal spraying is as low as about 10 × 10 −6 / K, and the thermal spraying temperature is from about 2500 ° C., Samples were prepared in the same manner as in Reference Example 4 except that a thermal sprayed layer of 5.0 mm in thickness was formed except that a material that undergoes transformation with expansion when cooled to 25 ° C., which is room temperature. went. The results are shown in Table 2 and FIG.
表2に示すように、第2層として、熱膨張係数が比較的高いSUS316を用いた参考例4では、溶射により第2層を形成している間に、第2層は、厚み0.3mmの時点でクラックが発生してしまった。 As shown in Table 2, in Reference Example 4 using SUS316 having a relatively high thermal expansion coefficient as the second layer, the second layer had a thickness of 0.3 mm while the second layer was formed by thermal spraying. At that point, a crack occurred.
同様に、表2及び図6(A)に示すように、第2層として、熱膨張係数が比較的低いSUS430を用いた場合であっても、溶射により第2層を形成している間に、第2層の厚みを1.0まで厚くした参考例5は、第2層にクラックが発生してしまった。 Similarly, as shown in Table 2 and FIG. 6A, even when SUS430 having a relatively low thermal expansion coefficient is used as the second layer, while the second layer is formed by thermal spraying. In Reference Example 5 in which the thickness of the second layer was increased to 1.0, cracks occurred in the second layer.
さらに、表2及び図6(B)に示すように、第2層として、熱膨張係数が比較的低いものの、約2500℃から25℃まで冷却した場合に膨張を伴う変態が生じるSUS420を用いた比較例1は、厚さ5.0mmまで第2層を形成しても、第2層にはクラックが発生しなかったが、第1層(硼化物系タングステン基合金)と第2層との界面に剥離が発生してしまった。 Furthermore, as shown in Table 2 and FIG. 6 (B), SUS420 was used as the second layer, which has a relatively low thermal expansion coefficient, but undergoes transformation with expansion when cooled from about 2500 ° C. to 25 ° C. In Comparative Example 1, even when the second layer was formed to a thickness of 5.0 mm, no crack was generated in the second layer, but the first layer (boride-based tungsten-based alloy) and the second layer Separation occurred at the interface.
<実施例1>
芯材として、SUS304からなり、外径39mmの管状の部材を準備した。次いで、準備した芯材の外周面に、プラズマ溶射により、上述した参考例1と同様の組成の硼化物系タングステン基合金の溶射層を、第1層として形成した。なお、硼化物系タングステン基合金の溶射層の厚みは1.5mmとした。次いで、第1層上に、ワイヤアーク溶射により、厚みが0.5mmとなるまでSUS430(溶射時の温度範囲における熱膨張係数は約10×10−6/Kと低く、溶射の温度である約2500℃から、室温である25℃まで冷却した場合に膨張を伴う変態が生じない材料。)を溶射して、第2層を形成した。そして、形成した第2層について、クラックの発生有無を目視にて確認した。
<Example 1>
As a core material, a tubular member made of SUS304 and having an outer diameter of 39 mm was prepared. Next, a sprayed layer of a boride-based tungsten-based alloy having the same composition as in Reference Example 1 described above was formed as a first layer on the outer peripheral surface of the prepared core material by plasma spraying. The thickness of the sprayed layer of the boride-based tungsten-based alloy was 1.5 mm. Next, on the first layer, by wire arc spraying, SUS430 (the thermal expansion coefficient in the temperature range during spraying is as low as about 10 × 10 −6 / K, and the temperature of spraying is about 0.5 mm until the thickness becomes 0.5 mm. A material that does not undergo transformation with expansion when cooled from 2500 ° C. to 25 ° C., which is room temperature, was sprayed to form a second layer. And about the formed 2nd layer, the presence or absence of the generation | occurrence | production of a crack was confirmed visually.
続いて、第2層上に、ワイヤアーク溶射により、SUS420(溶射時の温度範囲における熱膨張係数は約10×10−6/Kと低く、溶射の温度である約2500℃から、室温である25℃まで冷却した場合に膨張を伴う変態が生じる材料。)を溶射して、厚み3.5mmの第3層を形成し、試料を作製した。作製した試料について、第3層におけるクラックの発生有無を目視にて確認し、さらに、試料を切断して断面を光学顕微鏡で観察し、第1層と第2層との界面、及び第2層と第3層との界面に、それぞれ剥離が発生しているか否かを観察した。結果を表3及び図7に示す。 Subsequently, on the second layer, by wire arc spraying, SUS420 (the thermal expansion coefficient in the temperature range at the time of spraying is as low as about 10 × 10 −6 / K, from about 2500 ° C. which is the temperature of spraying to room temperature. A material that undergoes transformation with expansion when cooled to 25 ° C.) was sprayed to form a third layer having a thickness of 3.5 mm, thereby preparing a sample. For the prepared sample, the presence or absence of cracks in the third layer was confirmed visually, and the sample was cut and the cross section was observed with an optical microscope. The interface between the first layer and the second layer, and the second layer It was observed whether or not peeling occurred at the interface between the first layer and the third layer. The results are shown in Table 3 and FIG.
<比較例2>
第2層として、ワイヤアーク溶射によりSUS420の溶射層を、厚みが5.0mmとなるまで形成し、第3層を形成しなかった以外は、実施例1と同様に試料を作製し、同様に評価した。結果を表3に示す。
<Comparative Example 2>
As the second layer, a SUS420 sprayed layer was formed by wire arc spraying until the thickness became 5.0 mm, and a sample was prepared in the same manner as in Example 1 except that the third layer was not formed. evaluated. The results are shown in Table 3.
<参考例6>
第2層として、ワイヤアーク溶射によりSUS304(溶射時の温度範囲における熱膨張係数は約18×10−6/Kと高く、溶射の温度である約2500℃から、室温である25℃まで冷却した場合に膨張を伴う変態が生じない材料。)の溶射層を、厚みが0.3mmとなるまで形成し、第3層を形成しなかった以外は、実施例1と同様に試料を作製し、同様に評価した。結果を表3に示す。
<Reference Example 6>
As the second layer, SUS304 (the thermal expansion coefficient in the temperature range at the time of thermal spraying is as high as about 18 × 10 −6 / K by wire arc spraying, and it was cooled from the thermal spraying temperature of about 2500 ° C. to the room temperature of 25 ° C. In this case, a sample is prepared in the same manner as in Example 1 except that the sprayed layer is formed until the thickness becomes 0.3 mm and the third layer is not formed. Evaluation was performed in the same manner. The results are shown in Table 3.
<参考例7>
第2層として、ワイヤアーク溶射によりSUS430の溶射層を、厚みが1.0mmとなるまで形成し、第3層を形成しなかった以外は、実施例1と同様に試料を作製し、同様に評価した。結果を表3に示す。
<Reference Example 7>
As the second layer, a SUS430 sprayed layer was formed by wire arc spraying until the thickness became 1.0 mm, and a sample was prepared in the same manner as in Example 1 except that the third layer was not formed. evaluated. The results are shown in Table 3.
表3及び図7に示すように、第2層を構成する材料として、約2500℃から25℃まで冷却した場合に膨張を伴う変態が生じない材料を用い、第3層を構成する材料として、約2500℃から25℃まで冷却した場合に膨張を伴う変態が生じる材料を用いた実施例1は、第2層のクラックが発生することなく、且つ第1層と第2層との界面や、第2層と第3層との界面に剥離が発生することがなかった。これにより、第2層及び第3層におけるクラックや剥離を防止しながら、第2層及び第3層の層厚を厚くすることができ、得られる積層管の強度を高めることができることが確認された。 As shown in Table 3 and FIG. 7, as a material constituting the second layer, a material that does not undergo transformation with expansion when cooled from about 2500 ° C. to 25 ° C. is used. Example 1 using a material that causes transformation with expansion when cooled from about 2500 ° C. to 25 ° C. does not cause cracks in the second layer, and the interface between the first layer and the second layer, No peeling occurred at the interface between the second layer and the third layer. As a result, it was confirmed that the thickness of the second layer and the third layer can be increased while preventing cracks and peeling in the second layer and the third layer, and the strength of the resulting laminated tube can be increased. It was.
一方、表3に示すように、第2層として、熱膨張係数が比較的高いSUS304を用いた参考例6は、溶射により第2層を形成している間に、第2層が、厚み0.3mmの時点でクラックしてしまった。 On the other hand, as shown in Table 3, in Reference Example 6 using SUS304 having a relatively high thermal expansion coefficient as the second layer, the second layer had a thickness of 0 while the second layer was formed by thermal spraying. Cracked at 3 mm.
同様に、表3に示すように、第2層として、熱膨張係数が比較的低いSUS430を用いた場合であっても、溶射により第2層を形成している間に、第2層の厚みを1.0まで厚くした参考例7は、第2層にクラックが発生してしまった。
さらに、表3に示すように、第2層として、冷却過程で膨張を伴う変態が生じるSUS420を用いた比較例2では、第2層を厚み5.0mmまで形成してもクラックは発生しなかったが、第1層と第2層の界面で剥離が発生してしまった。
Similarly, as shown in Table 3, even when SUS430 having a relatively low thermal expansion coefficient is used as the second layer, the thickness of the second layer is being formed while the second layer is being formed by thermal spraying. In Reference Example 7 in which the thickness was increased to 1.0, cracks occurred in the second layer.
Furthermore, as shown in Table 3, in Comparative Example 2 using SUS420 in which a transformation accompanied by expansion occurs in the cooling process as the second layer, no cracks are generated even when the second layer is formed to a thickness of 5.0 mm. However, peeling occurred at the interface between the first layer and the second layer.
1…ダイカスト装置
11…スリーブ
12…プランジャー
13…流路
14…ダイキャビティ
15…第1金型
16…第2金型
2…積層管
21…第1層
22…第2層
23…第3層
3…芯材
DESCRIPTION OF SYMBOLS 1 ... Die casting apparatus 11 ... Sleeve 12 ... Plunger 13 ... Flow path 14 ... Die cavity 15 ... 1st metal mold | die 16 ... 2nd metal mold | die 2 ... Laminated tube 21 ... 1st layer 22 ... 2nd layer 23 ... 3rd layer 3. Core material
Claims (5)
前記第1層の外周面に形成され、フェライト系ステンレス鋼材からなる第2層と、
前記第2層の外周面に形成され、マルテンサイト系ステンレス鋼材からなる第3層と、を備える積層管であって、
前記第2層の厚みが0.1〜0.9mmである積層管。 A first layer of a boride-based tungsten-based alloy ;
A second layer made of a ferritic stainless steel material , formed on the outer peripheral surface of the first layer;
A third layer formed on the outer peripheral surface of the second layer and made of a martensitic stainless steel material ,
A laminated tube having a thickness of the second layer of 0.1 to 0.9 mm .
前記芯材の外周面に、硼化物系タングステン基合金を溶射して第1層を形成する第2の工程と、
前記第1層の外周面に、フェライト系ステンレス鋼材を溶射して、厚みが0.1〜0.9mmである第2層を形成する第3の工程と、
前記第2層の外周面に、マルテンサイト系ステンレス鋼材を溶射して第3層を形成する第4の工程と、
前記芯材を除去する第5の工程と、を有する積層管の製造方法。 A first step of preparing a core material;
A second step of spraying a boride-based tungsten-based alloy on the outer peripheral surface of the core material to form a first layer;
A third step of thermally spraying a ferritic stainless steel material on the outer peripheral surface of the first layer to form a second layer having a thickness of 0.1 to 0.9 mm ;
A fourth step of thermally spraying a martensitic stainless steel material on the outer peripheral surface of the second layer to form a third layer;
And a fifth step of removing the core material.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015131430A JP6560549B2 (en) | 2015-06-30 | 2015-06-30 | Laminated tube and manufacturing method thereof |
EP16818045.3A EP3318655A4 (en) | 2015-06-30 | 2016-06-30 | Laminated tube and manufacturing method therefor |
CN201680038437.1A CN107849676A (en) | 2015-06-30 | 2016-06-30 | Laminated tube and its manufacture method |
US15/741,188 US20180186114A1 (en) | 2015-06-30 | 2016-06-30 | Laminated tube and method for manufacturing laminated tube |
PCT/JP2016/069499 WO2017002937A1 (en) | 2015-06-30 | 2016-06-30 | Laminated tube and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015131430A JP6560549B2 (en) | 2015-06-30 | 2015-06-30 | Laminated tube and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017014565A JP2017014565A (en) | 2017-01-19 |
JP6560549B2 true JP6560549B2 (en) | 2019-08-14 |
Family
ID=57608327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015131430A Expired - Fee Related JP6560549B2 (en) | 2015-06-30 | 2015-06-30 | Laminated tube and manufacturing method thereof |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180186114A1 (en) |
EP (1) | EP3318655A4 (en) |
JP (1) | JP6560549B2 (en) |
CN (1) | CN107849676A (en) |
WO (1) | WO2017002937A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018193982A1 (en) * | 2017-04-21 | 2020-02-27 | 東洋鋼鈑株式会社 | Thermal spray coating, laminated tube, and method of manufacturing thermal spray coating |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3599316A (en) * | 1969-12-15 | 1971-08-17 | Continental Can Co | Method of joining cemented carbide to steel |
JPS62173215A (en) * | 1986-01-27 | 1987-07-30 | 株式会社東芝 | Manufacture of pipe coated with ceramic |
JPH08232058A (en) * | 1995-02-27 | 1996-09-10 | Kobe Steel Ltd | Member for die casting and its production |
US6620192B1 (en) * | 1999-03-16 | 2003-09-16 | Advanced Cardiovascular Systems, Inc. | Multilayer stent |
JP2002241920A (en) * | 2001-02-09 | 2002-08-28 | Chubu Sukegawa Kogyo Kk | Thermal spray coating and composite thermal spraying material |
JP2004323045A (en) * | 2003-04-23 | 2004-11-18 | Yoshino Kogyosho Co Ltd | Discharge container |
JP2004353045A (en) * | 2003-05-29 | 2004-12-16 | Sumitomo Metal Mining Co Ltd | Boride-based cermet powder for thermal spraying |
CN201536038U (en) * | 2009-10-19 | 2010-07-28 | 江阴市华尔胜绝缘材料有限公司 | Laminated tube adopting cotton cloth impregnated with phenolic resin |
US20140076928A1 (en) * | 2011-06-06 | 2014-03-20 | Essel Propack Ltd. | Material composition, laminate tube and method for manufacture thereof |
JP2014107948A (en) * | 2012-11-27 | 2014-06-09 | Daikin Ind Ltd | Compressor |
-
2015
- 2015-06-30 JP JP2015131430A patent/JP6560549B2/en not_active Expired - Fee Related
-
2016
- 2016-06-30 EP EP16818045.3A patent/EP3318655A4/en not_active Withdrawn
- 2016-06-30 CN CN201680038437.1A patent/CN107849676A/en active Pending
- 2016-06-30 WO PCT/JP2016/069499 patent/WO2017002937A1/en active Application Filing
- 2016-06-30 US US15/741,188 patent/US20180186114A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP3318655A4 (en) | 2019-01-09 |
EP3318655A1 (en) | 2018-05-09 |
US20180186114A1 (en) | 2018-07-05 |
JP2017014565A (en) | 2017-01-19 |
WO2017002937A1 (en) | 2017-01-05 |
CN107849676A (en) | 2018-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10272497B2 (en) | Cladded articles and methods of making the same | |
EP3116671B1 (en) | Method of forming a compound roll | |
EP2776204B1 (en) | Friction stir welding tool made of cemented tungsten carbid with nickel and with a al2o3 surface coating | |
JP6281672B2 (en) | Die-casting sleeve and manufacturing method thereof | |
JP3916465B2 (en) | Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same | |
JP6722764B2 (en) | Die casting sleeve and manufacturing method thereof | |
JP6560549B2 (en) | Laminated tube and manufacturing method thereof | |
EP3502297A1 (en) | Multi-material tooling and methods of making same | |
WO2018193982A1 (en) | Spray coating, laminated pipe, and method for manufacturing spray coating | |
JP2008221220A (en) | Spool bush for die casting machine | |
JP4842704B2 (en) | Mold repair method | |
JP7186144B2 (en) | Iron-based alloy member | |
JP2007000892A (en) | Build-up welding material for hot-forging die and hot-forging die using the welding material | |
JP5267912B2 (en) | Plunger for molding machine | |
JP3891890B2 (en) | Plunger tip for die casting machine and method for manufacturing the same | |
JP2018080375A (en) | Cemented carbide and cemented carbide tool | |
JP2959912B2 (en) | Discharge coating composite | |
CN108262496A (en) | Cutting green body and its forming method and purposes made of powder metallurgy | |
JP2001342530A (en) | Corrosion and abrasion resistive ni alloy, its raw material powder and injection, extrusion molding machine or die casting machine using it | |
JP2002346719A (en) | Injection sleeve for diecasting machine | |
JP2015166109A (en) | Sleeve for die-casting | |
JP2006341273A (en) | Build-up welding material for hot forging die, and die for hot forging using the welding material | |
JP2004034071A (en) | Injection unit of die-casting machine | |
JP2010037598A (en) | Method for manufacturing member having wear resistant inner peripheral surface | |
JP2003183762A (en) | Hard sintered alloy, manufacturing method therefor, and machine structural member using them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190709 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190719 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6560549 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |