JP2004353045A - Boride-based cermet powder for thermal spraying - Google Patents

Boride-based cermet powder for thermal spraying Download PDF

Info

Publication number
JP2004353045A
JP2004353045A JP2003153242A JP2003153242A JP2004353045A JP 2004353045 A JP2004353045 A JP 2004353045A JP 2003153242 A JP2003153242 A JP 2003153242A JP 2003153242 A JP2003153242 A JP 2003153242A JP 2004353045 A JP2004353045 A JP 2004353045A
Authority
JP
Japan
Prior art keywords
powder
cermet
boride
resistance
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003153242A
Other languages
Japanese (ja)
Inventor
Tatsuo Shimatani
竜男 島谷
Kunihiko Suzuki
邦彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003153242A priority Critical patent/JP2004353045A/en
Publication of JP2004353045A publication Critical patent/JP2004353045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boride-based cermet powder for thermal spraying, which forms a cermet-sprayed film having high hardness, superior abrasion resistance, heat resistance, thermal shock resistance and toughness, and further improved corrosion resistance to a molten metal. <P>SOLUTION: The powder is composed of a composite powder composition comprising, by mass ratio, 3.5-5.0% B, 8.0-12.0% Co, 2.0-6.0% Cr, 0.5-4.0% Mo and the balance W with unavoidable impurities. The content of W is 75.0 mass% or more. The powder includes, by mass ratio, 80.0 to 89.5% W and B in total, and 10.5 to 20.0% Co, Cr and Mo in total. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、サーメット溶射被膜を生成するためのサーメット溶射用粉末に関する。
【0002】
【従来の技術】
近年、産業の発展に伴って、産業用機械等の高性能化、高精度化、多様化およびエネルギーコストの低廉化が進むにつれて、溶射材料に金属とセラミックスを成分とする材料を用いてサーメット被膜を形成するサーメット溶射被覆層に対する要求性能はますます厳しくなり、以前にも増して優れた性能を必要とされている。
【0003】
従来、サーメット溶射被覆層(以下、「被覆層」または「溶射被膜」という。)として施されている材料は使用温度によって異なるが、常温から500℃までの温度範囲における代表的な材料は、タングステンカーバイド・コバルト(WC−Co)系やタングステンカーバイド・ニッケル(WC−Ni)系の材料であり、また、これより高い900℃までの高温域における代表的な材料は、クロムカーバイド・ニッケルクロム(Cr −NiCr)系やクロムカーバイド・ニッケル(Cr −Ni)系の材料である。
【0004】
これらの被覆層は、それぞれの目的に応じた硬度と、耐熱性、耐摩耗性、耐酸化性などを有している。
【0005】
しかし、最近の産業の発展に伴いサーメットの使用環境が多様化するにつれて、これらの特性がさらに優れた材料が望まれており、かつ、さらに耐熱衝撃性、靭性、耐溶融金属腐食性を兼ね備えた被膜材料の開発も望まれている。
【0006】
たとえば、自動車等の表面処理鋼板を製造するための高温溶融亜鉛メッキ浴(450〜500℃)や溶融アルミニウムメッキ浴(700〜800℃)に浸漬されて、連続的に通過する鋼板を支持し、案内して該鋼板の表面に均一な亜鉛メッキまたはアルミニウムメッキを被着させるために用いられるシンクロール、サポートロール等を被覆するための被覆層には、単に高い硬度や耐熱性、耐摩耗性を有するのみならず、メンテナンス時(1〜2日周期)の溶融金属浴中からの出し入れに耐えうる耐熱衝撃性、鋼板との摺動に耐えうる靭性、および溶融金属に対する耐食性が要求される。
【0007】
従来型のサーメット溶射被膜のうち、WC−Co系のものは、500℃までの乾燥雰囲気中では、硬度や耐摩耗性は優れているものの、耐食性や耐熱性が低く、特に500℃以上の酸化性雰囲気における耐食性や耐熱性に問題がある。また、Cr −NiCr系のものは、900℃の高温域まで耐食性や耐熱性、耐酸化性は維持されるものの、硬度や耐摩耗性に劣る。さらに、これらの被膜は、一般に耐熱衝撃性、靭性および耐溶融金属腐食性が低いため、上述した自動車鋼板用のシンクロール、サポートロール等の被覆層としては剥離しやすく、寿命が短いという問題がある。
【0008】
これに対して、高硬度で、耐摩耗性、耐食性、耐熱性に優れ、かつ、耐熱衝撃性や靭性に対する要求特性をも同時に満足するサーメット溶射被膜を形成するための溶射用粉末として、特許第3134768号公報において、重量比にてB:2.5〜4.0%、Co:15.0〜30.0%、Cr:5.0〜10.0%、Mo:3.0〜6.0%を含み、残部Wと不可避的不純物から構成された複合粉末組成物からなる硼化物系サーメット溶射用粉末が開示されている。
【0009】
しかし、この硼化物系サーメット溶射用粉末により形成された溶射被膜は、上述の溶融金属メッキ浴中で使用されるシンクロールやサポートロール等の被覆層として、硬度、耐摩耗性、耐熱衝撃性、靭性については従来のサーメット溶射被膜を凌駕する十分な性能を有しているものの、溶融金属に対する耐食性が短命化への要因となっており、耐溶融金属腐食性のさらなる向上が望まれている。
【0010】
【特許文献1】
特許第3134768号公報
【0011】
【発明が解決しようとする課題】
本発明は、高硬度で耐摩耗性、耐熱性、耐熱衝撃性および靭性に優れた硼化物系サーメット溶射用粉末による溶射被膜よりも、メッキ浴として使用される亜鉛やアルミニウム等の溶融金属に対する耐食性をさらに向上させたサーメット溶射被膜を形成しうる溶射用粉末を提供する。
【0012】
【課題を解決するための手段】
本発明による硼化物系サーメット溶射用粉末は、質量比にて、W:75.0〜86.0%、B:3.5〜5.0%、Co:8.0〜12.0%、Cr:2.0〜6.0%、Mo:0.5〜4.0%、および不可避的不純物から構成される複合粉末組成物からなることを特徴とする。
【0013】
また、質量比にて、B:3.5〜5.0%、Co:8.0〜12.0%、Cr:2.0〜6.0%、Mo:0.5〜4.0%を含み、残部Wと不可避的不純物から構成され、かつ、WとBとの合計量が質量比にて80.0〜89.5%、CoとCrとMoとの合計量が質量比にて10.5〜20.0%である複合粉末組成物からなることを特徴とする。
【0014】
見かけ密度が3.0〜4.0g/cm の範囲にあることが好ましく、また、一次粒子用原料粉末としてのWB粒子の平均粒径が1.0〜1.5μmの範囲にあることが好ましい。
【0015】
プラズマ溶射法には、15〜53μm、15〜45μmの粒度範囲のいずれかに、高速ガス炎溶射法には、5〜30μm、5〜38μm、5〜45μmもしくは15〜45μm、15〜53μmの粒度範囲のいずれかに整粒することが好ましい。
【0016】
【発明の実施の形態】
本発明は、上記課題を解決すべく鋭意研究を重ねた結果、WB一次粒子の金属結合相であり、CoやCrなどの融点が2000℃以下と低い元素からなるCo−Cr−Mo系合金相の比率を減らし、これに対して融点が3400℃以上と高いWを多く含むWB一次粒子の比率を増やすことにより、溶射被膜と溶融金属との融点の差を広げ、溶融金属との濡れ性を低下させることにより、溶融金属が溶射被膜に容易に付着することを防ぐため、耐食性が向上することを見出した。
【0017】
本発明による硼化物系サーメット溶射被覆層を得るためのサーメット溶射用粉末の構成成分は上記の通りであるが、以下にそれぞれの成分限定理由について説明する。
【0018】
Bは、WおよびCoと結合して複硼化物相を形成するために必要な元素であって、サーメット溶射用粉末におけるBの含有量が3.5質量%未満では、溶射被覆時の熱影響と酸化により溶射被覆層中のB量が2.5質量%未満にまで低下するため、得られた溶射被覆層に十分な硬度と耐摩耗性を付与することができない。一方、5.0質量%を超えると、硬度は高くなるが溶射被覆層の強度(靭性と耐熱衝撃性)が著しく低下する。したがって、溶射用粉末中のB含有量は、3.5〜5.0質量%の範囲が適当である。
【0019】
Wは、Bと同様に複硼化物相を形成するために必要な元素であり、該複硼化物相は、W CoB で表されるが、サーメット溶射用粉末におけるWの含有量が75.0質量%未満では、溶射被膜としての融点が未だ低く、濡れ性の低下による耐食性の向上が得られない。一方、86.0質量%を超えると濡れ性の低下により耐溶融金属腐食性は向上するが、金属結合相が不足し、靭性や耐熱衝撃性、さらに粉末の溶射付着効率(溶射時の歩留まり)が著しく低下する。したがって、溶射用粉末中のW含有量は、75.0〜86.0質量%の範囲が適当である。
【0020】
Coは、金属結合相形成の主体となる元素であるが、一方において複硼化物相の形成にも欠かせない元素であり、得られた溶射被覆層に高温強度、耐酸化性を付与する効果を有する。サーメット溶射用粉末におけるCoの含有量が8.0質量%未満では、形成される金属結合相と複硼化物相との相互固溶量が少なくなるためにその結合力が低下し、かつ、気孔等の欠陥が発生しやすくなる。一方、12.0質量%を超えると、金属結合相における耐食性を低下させるとともに、複硼化物中において脆弱なCoB等の硼化物が多量に形成するようになるので、溶射被覆層の靭性が低下してしまう。したがって、溶射用粉末中のCoの含有量は、8.0〜12.0質量%の範囲が適当である。
【0021】
Crは、耐食性、耐熱性および耐酸化性に寄与する元素であり、Coと結合して金属結合相を形成し、靭性を向上させる効果を有する。サーメット溶射用粉末におけるCrの含有量が2.0質量%未満では、上記の効果が十分に得られず、また、6.0質量%を超えると、得られた溶射被覆層における耐食性、耐熱性および耐酸化性をさらに向上させるものの、靭性を低下させるので好ましくない。したがって、溶射用粉末中のCrの含有量は、2.0〜6.0質量%の範囲が適当である。
【0022】
Moは、金属結合相を形成するCoとCrとを結合して、該金属結合相の耐食性と強度とをいっそう高めるとともに、さらにはMo CoB で表される複硼化物を形成するために必要な元素である。サーメット溶射用粉末におけるMoの含有量が0.5質量%未満では、上記の効果が得られず、また、4.0質量%を超えると金属結合相の強度がかえって低下してしまう。したがって、溶射用粉末中のMoの含有量は、0.5〜4.0質量%の範囲が適当である。
【0023】
さらに、本発明の溶射用粉末組成物においては、WとBとの合計量を80.0〜89.5質量%に、また、CoとCrとMoの合計量を10.5〜20.0質量%に規制する。これにより、溶融金属との濡れ性を低下させ、耐食性を向上させることができる。また、上記した本発明の溶射用粉末を製造する場合には、Co、CrおよびMoをそれぞれ単体金属粉末として用いることが肝要である。これらの元素を合金粉末の形態、たとえばステライト合金粉末等の形態で用いた場合には、合金粉末中のCoはWB等の硼化物と結合しがたく、W CoB 複硼化物が形成されにくくなるからである。
【0024】
また、一次粒子用原料粉末として使用されるWB粉末の粒径は、溶射被膜の硬度および耐摩耗性に寄与する。本発明のサーメット溶射用粉末の粒子は、WB粉末をこれらのバインダー的役割を担うCo、Cr、Mo粉末とともに整粒し、焼結することにより、複硼化物としてのW CoB 粒子と、金属結合相であるCo−Cr−Mo系合金相を晶出させたものである。このW CoB 粒子はWB粉末の粒径に比例して大きくなる。そして、その溶射被膜は、W CoB 粒子の一つ一つの表面に均一にCo−Cr−Mo系合金相が被覆されたものとなるのが理想である。WB粒子の平均粒径が1.5μmより大きいとW CoB 粒子間の空孔部が大きくなり、部分的にCo−Cr−Mo系合金相が過多となり、耐熱性、耐摩耗性、耐食性の低下を生じる。一方、1.0μm未満では、W CoB 粒子の比表面積が大きく、Co、Cr、Moの必要添加量が増加し、Co−Cr−Mo系合金相の不足による耐熱衝撃性と靭性の低下を生じる。したがって、一次粒子用原料として使用されるWB粒子の粒径は、1.0〜1.5μmの範囲が適当である。なお、かかるWB粒子の粒径は、空気分級により、粒度範囲を2.0μm以下とすることにより規制することができる。
【0025】
さらに、サーメット粉末の見かけ密度は、W CoB 粒子間の結合力と、サーメット粒子内部の空孔率に影響するものであり、その値が3.0g/cm 未満であると、W CoB 粒子間の結合力が低く、内部の空孔率も大きいため、母材との衝突時に扁平状にはならずに砕けて周囲に飛散しやすく、形成された被膜もサーメット粒子内部の空孔が残存したものとなるため、耐熱衝撃性の低下を生じる。一方、4.0g/cm より高い値であると、その緻密化には2000℃以上の焼結温度が必要となり、WO 等の脆弱な酸化物が晶出し、さらにはW CoB が晶出せずにWBがそのまま残存するため、耐熱衝撃性と靭性が低下することから、サーメット粒子としての見かけ密度は、3.0〜4.0g/cm の範囲が適当である。なお、かかる見かけ密度は、焼結温度の上昇に伴い高くなり、1350〜1400℃の間で焼結することにより規制できる。
【0026】
本発明の溶射用粉末を用いて基板上にサーメット溶射被膜を形成する方法としては、従来から使用されている、溶射ガンを使用した大気または減圧プラズマ溶射法、もしくは高速ガス炎溶射法を適用できる。通常、プラズマ溶射法には、15〜53μm、15〜45μmの粒径の溶射用粉末が、高速ガス炎溶射法には、5〜30μm、5〜38μm、5〜45μmもしくは15〜45μm、15〜53μmの粒径の溶射用粉末が使用される。これらの粉末が上記の粒度範囲よりも粗い場合には、緻密な溶射被覆層を形成することが困難となり、かつ、加熱不足による溶射粉末の付着歩留まりが低下する。したがって、低硬度および低付着歩留まりの溶射被覆層しか得られず、品質低下やコスト高を招く。また、上記範囲よりも粒度が微細であると、粉末の流動性が低下するとともに、受熱効率の高い微細粉末が溶融して、溶射ガンのノズル内面に堆積するために、溶射作業性が著しく損なわれる。
【0027】
以下に、本発明の実施例を比較例と対比しつつ説明するが、本発明は下記の実施例に限定されるものではない。
【0028】
【実施例】
[実施例1]
Bを5.6質量%含有するWB粉末(平均粒径1.2μm)、Co粉末(平均粒径1.5μm)、Cr粉末(平均粒径1.5μm)およびMo粉末(平均粒径1.5μm)をそれぞれ85質量%、10質量%、3質量%および2質量%採取し、ステンレス鋼製容器に入れて振動ボールミル内で24時間湿式にて粉砕混合した。
【0029】
該容器から取り出したスラリーを非酸化性雰囲気中において噴霧乾燥して、造粒した後、真空中で焼結して得られた粉末を回収し、これを空気分級機によって5〜45μmの粉末に整流して溶射用粉末を調整した。なお、見かけ密度は、焼結温度を1360℃とすることにより調整し、JISZ2504と記載の金属粉末の見かけ密度測定方法により測定した結果、3.6g/cmであった。また、WB粒子の平均粒径は、粉砕粉を空気分級により2.0μm以下とすることにより調整し、レーザー回折式粒度分布測定法により測定した結果、1.2μm以下であった。得られた溶射用粉末の化学組成、WB粉末の平均粒径、サーメット粒子としての見かけ密度、分級粒度範囲を表1に示す。
【0030】
次に、この溶射用粉末を使用して、高速ガス炎溶射法(燃料:水素−酸素)により、SS400製基板上に0.4mm厚さの溶射被覆層を形成した。その後、機械加工および表面研磨により、該被覆層表面の凹凸を取り除き、試験片を得た。
【0031】
上記の基板表面に形成された溶射被覆層をCu−καX線回折法により同定した結果、主としてW CoB の三元系複硼化物相が認められた。また、EPMA定量分析による被覆層の組成分析を行った結果を表2に示す。
【0032】
また、試験片表面のビッカース硬度(荷重:0.3kgf)は1610、往復運動摩耗試験機を用いてJISH8503第9項に規定された試験方法に従って、相手材にSiC研磨紙320番を使用し、試験荷重を3.0kgf、往復荷重回数を1600回として、試験片の耐摩耗試験を行った結果、摩耗減量は0.45mg/cm であった。
【0033】
一方、試験片を600℃の電気炉中に30分間保持した後、水中で急冷する熱サイクルを繰返し30回行い、1回ごとに被覆層に生ずる亀裂や剥離の有無を目視およびカラーチェックにより観察して、耐熱衝撃性の評価を行った結果、該熱サイクル中に異常が認められた時の反復回数は27回目であり、高い耐熱衝撃性を有することがわかった。
【0034】
次に、試験片を900℃の電気炉中に2時間保持して被覆層の酸化増量の測定を行ったところ、その値は3.8mg/cm であり、高い耐酸化性を有することが確認された。900℃の高温下で測定した試験片表面のビッカーズ硬度(荷重:0.3kgf)は845であった。さらに、470℃で溶融しているZn−0.15%Al中へ120時間(5日間)の浸漬試験を行ったところ、腐食減量は78.2mg/cm であり、被膜残存率は94.9%であって、高い耐溶融金属腐食性を有することが確認された。以上の諸特性試験結果を総括して表3に示す。
【0035】
以上の結果より、本発明による溶射用粉末を使用したサーメット溶射被膜は、硬度、耐摩耗性、耐高温酸化性、耐熱衝撃性、高温硬度(耐熱性)、および耐溶融金属腐食性に優れていることが十分に立証された。
【0036】
[実施例2〜5、比較例1〜8]
混合する粉末の添加量、WB粉末の平均粒径、および分級粒度範囲を変え、それ以外は実施例1と同様にして原料粉末を作製し、その所定量を粉砕混合し、造粒後焼結して見かけ密度を調整し、実施例2〜5、および公知の組成である比較例1を含む比較例1〜5の溶射用粉末を得た。
【0037】
また、W粉末、Co粉末およびC粉末(比較例6、7)、Cr粉末、Ni粉末およびC粉末(比較例8)の所定量を用いて、それぞれ従来法によるWC−Co系サーメット溶射被膜形成用粉末(比較例6、7)およびCr −NiCr系サーメット溶射被膜形成用粉末(比較例8)を作製した。
【0038】
得られた溶射用粉末の化学組成、WB粉末の平均粒径、サーメット粒子としての見かけ密度、分級粒度範囲を表1にそれぞれ示す。
【0039】
次に、これらの溶射用粉末を用いて、実施例1と同様にして、SS基板上に高速ガス炎溶射法により溶射被覆層を形成した試験片を得て、各試験片について、実施例1と同様にして、溶射被覆層の組成分析および諸特性試験を行い、それらの結果を表2および表3に示した。
【0040】
【表1】

Figure 2004353045
【0041】
【表2】
Figure 2004353045
【0042】
【表3】
Figure 2004353045
【0043】
以上の結果によれば、本発明によるサーメット溶射用粉末を使用して得られた硼化物系サーメット溶射被膜は、従来使用されてきたWC−Co系サーメット溶射被膜に匹敵する硬度と耐摩耗性を有し、また、Cr −NiCr系サーメット溶射被膜を凌駕する耐酸化性と耐熱性を備えるとともに、これら従来のサーメット溶射被膜(比較例6〜8)に比べて著しく高い耐熱衝撃性を有することが明らかになった。そして、公知の組成によるWB−CoCrMo系サーメット溶射用粉末による溶射被膜(比較例1)よりも、WとBの合計量を増加させることにより、高い耐溶融金属腐食性が得られ、また、同様の組成範囲においてもWB粉末の平均粒径を微細とし、サーメット粉末の見かけ密度を向上させることにより、より優れた特性が得られた。
【0044】
【発明の効果】
本発明のサーメット溶射用粉末により、WC−Co系サーメット溶射被膜に匹敵する硬度および耐摩耗性を備え、また、Cr −NiCr系サーメット溶射被膜を凌駕する耐熱性および耐酸化性とを有し、かつ、公知のWB−CoCrMo系サーメット溶射被膜より高い溶融金属腐食性を有するサーメット溶射被膜を得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cermet spray powder for producing a cermet spray coating.
[0002]
[Prior art]
In recent years, with the development of industry, with the advancement of high performance, high precision, diversification, and low energy cost of industrial machinery, cermet coating using metal and ceramic components as thermal spray material The required performance of the cermet sprayed coating layer for forming stiffness is becoming more and more severe, and superior performance is required more than before.
[0003]
Conventionally, the material applied as a cermet spray coating layer (hereinafter referred to as a “coating layer” or “spray coating”) varies depending on the operating temperature, but a typical material in a temperature range from room temperature to 500 ° C. is tungsten. Carbide-cobalt (WC-Co) and tungsten carbide-nickel (WC-Ni) -based materials, and a typical material in a higher temperature range up to 900 ° C. are chromium carbide nickel chromium (Cr). 3 C 2 -NiCr) system or chromium carbide-nickel (Cr 3 C 2 -Ni) system which is the material.
[0004]
These coating layers have hardness according to each purpose, heat resistance, abrasion resistance, oxidation resistance, and the like.
[0005]
However, as the use environment of cermets has diversified with the recent development of industry, materials with more excellent properties are desired, and furthermore, they have both thermal shock resistance, toughness, and corrosion resistance to molten metal. Development of coating materials is also desired.
[0006]
For example, a steel sheet that is immersed in a hot-dip galvanizing bath (450-500 ° C.) or a hot-dip aluminum plating bath (700-800 ° C.) for producing a surface-treated steel sheet for an automobile or the like and continuously passes therethrough is supported. The coating layer for covering sink rolls, support rolls, and the like used for guiding and applying uniform zinc plating or aluminum plating on the surface of the steel sheet simply has high hardness, heat resistance, and wear resistance. In addition to having, it is required to have a thermal shock resistance enough to withstand being taken in and out of the molten metal bath during maintenance (period of one to two days), a toughness enough to withstand sliding with a steel sheet, and a corrosion resistance to the molten metal.
[0007]
Among the conventional cermet sprayed coatings, WC-Co-based coatings have excellent hardness and abrasion resistance in a dry atmosphere up to 500 ° C., but have low corrosion resistance and heat resistance. There is a problem in corrosion resistance and heat resistance in a volatile atmosphere. Further, the Cr 3 C 2 —NiCr-based alloys are inferior in hardness and abrasion resistance although corrosion resistance, heat resistance and oxidation resistance are maintained up to a high temperature range of 900 ° C. Furthermore, since these coatings generally have low thermal shock resistance, toughness, and low corrosion resistance to molten metal, they tend to peel off as coating layers for sink rolls, support rolls, and the like for automobile steel plates described above, and have a problem of short life. is there.
[0008]
On the other hand, as a thermal spray powder for forming a cermet thermal spray coating that has high hardness, excellent wear resistance, corrosion resistance, heat resistance, and simultaneously satisfies the required properties for thermal shock resistance and toughness, In Japanese Patent No. 3134768, B: 2.5 to 4.0%, Co: 15.0 to 30.0%, Cr: 5.0 to 10.0%, Mo: 3.0 to 6.0 by weight ratio. There is disclosed a boride-based cermet spraying powder comprising 0%, a composite powder composition comprising the balance W and unavoidable impurities.
[0009]
However, the thermal spray coating formed by the boride-based cermet thermal spraying powder, as a coating layer such as a sink roll and a support roll used in the above-mentioned molten metal plating bath, hardness, abrasion resistance, thermal shock resistance, Although the toughness has a sufficient performance exceeding the conventional cermet sprayed coating, the corrosion resistance to the molten metal is a factor for shortening the life, and further improvement of the molten metal corrosion resistance is desired.
[0010]
[Patent Document 1]
Japanese Patent No. 3134768
[Problems to be solved by the invention]
The present invention has a higher corrosion resistance to a molten metal such as zinc or aluminum used as a plating bath than a sprayed coating of a boride-based cermet spraying powder having high hardness and excellent wear resistance, heat resistance, thermal shock resistance and toughness. The present invention provides a thermal spraying powder capable of forming a cermet thermal sprayed coating further improved in thermal spraying.
[0012]
[Means for Solving the Problems]
The boride-based cermet thermal spray powder according to the present invention has a mass ratio of W: 75.0 to 86.0%, B: 3.5 to 5.0%, Co: 8.0 to 12.0%, It is characterized by comprising a composite powder composition comprising Cr: 2.0 to 6.0%, Mo: 0.5 to 4.0%, and unavoidable impurities.
[0013]
In addition, B: 3.5 to 5.0%, Co: 8.0 to 12.0%, Cr: 2.0 to 6.0%, Mo: 0.5 to 4.0% by mass ratio. And the balance is composed of W and unavoidable impurities, and the total amount of W and B is 80.0 to 89.5% by mass ratio, and the total amount of Co, Cr and Mo is mass ratio. It is characterized by comprising a composite powder composition of 10.5 to 20.0%.
[0014]
The apparent density is preferably in the range of 3.0 to 4.0 g / cm 3 , and the average particle size of the WB particles as the raw material powder for primary particles is preferably in the range of 1.0 to 1.5 μm. preferable.
[0015]
For plasma spraying, any of the particle size ranges of 15 to 53 μm and 15 to 45 μm, and for high-speed gas flame spraying, 5 to 30 μm, 5 to 38 μm, 5 to 45 μm or 15 to 45 μm, 15 to 53 μm It is preferable to size the particles to any of the ranges.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
As a result of intensive studies to solve the above problems, the present invention is a metal-bonded phase of WB primary particles, and a Co-Cr-Mo-based alloy phase composed of an element having a low melting point of 2000 ° C or less such as Co or Cr. By increasing the ratio of WB primary particles containing a large amount of W having a high melting point of 3400 ° C. or higher, the difference in the melting point between the thermal spray coating and the molten metal is increased, and the wettability with the molten metal is increased. It has been found that by reducing the temperature, the corrosion resistance is improved in order to prevent the molten metal from easily adhering to the sprayed coating.
[0017]
The constituent components of the cermet spray powder for obtaining the boride-based cermet spray coating layer according to the present invention are as described above, and the reasons for limiting the respective components will be described below.
[0018]
B is an element necessary for forming a double boride phase by combining with W and Co. If the content of B in the cermet spraying powder is less than 3.5% by mass, the thermal influence during thermal spray coating is low. Since the amount of B in the thermal spray coating decreases to less than 2.5% by mass due to oxidation and oxidation, it is not possible to impart sufficient hardness and wear resistance to the thermal spray coating obtained. On the other hand, when the content exceeds 5.0% by mass, the hardness is increased, but the strength (toughness and thermal shock resistance) of the thermal spray coating layer is significantly reduced. Therefore, the B content in the thermal spraying powder is suitably in the range of 3.5 to 5.0% by mass.
[0019]
W is an element necessary for forming a double boride phase similarly to B. The double boride phase is represented by W 2 CoB 2 , and the content of W in the cermet spray powder is 75%. If the content is less than 0.0% by mass, the melting point of the thermal sprayed coating is still low, and the improvement in corrosion resistance due to the decrease in wettability cannot be obtained. On the other hand, if it exceeds 86.0% by mass, the corrosion resistance to molten metal is improved due to a decrease in wettability, but the metal bonding phase is insufficient, and the toughness and thermal shock resistance are further increased. Further, the thermal spray adhesion efficiency of powder (yield during thermal spraying). Is significantly reduced. Therefore, the W content in the thermal spraying powder is suitably in the range of 75.0 to 86.0% by mass.
[0020]
Co is an element that is a main component of the formation of a metal bonding phase, but is also an element that is indispensable for the formation of a double boride phase, and has an effect of imparting high-temperature strength and oxidation resistance to the obtained thermal spray coating layer. Having. If the content of Co in the cermet spraying powder is less than 8.0% by mass, the amount of mutual solid solution between the formed metal binding phase and the double boride phase is reduced, so that the bonding strength is reduced and pores are reduced. Defects are likely to occur. On the other hand, if it exceeds 12.0% by mass, the corrosion resistance in the metal binding phase is reduced, and a large amount of fragile borides such as CoB is formed in the double borides, so that the toughness of the thermal spray coating layer is reduced. Resulting in. Therefore, the content of Co in the thermal spraying powder is suitably in the range of 8.0 to 12.0 mass%.
[0021]
Cr is an element that contributes to corrosion resistance, heat resistance, and oxidation resistance, and has an effect of forming a metal bonding phase by combining with Co to improve toughness. If the content of Cr in the cermet spraying powder is less than 2.0% by mass, the above effects cannot be sufficiently obtained, and if it exceeds 6.0% by mass, the corrosion resistance and heat resistance of the obtained thermal spray coating layer. Further, the oxidation resistance is further improved, but the toughness is lowered, which is not preferable. Therefore, the content of Cr in the thermal spraying powder is suitably in the range of 2.0 to 6.0% by mass.
[0022]
Mo binds Co and Cr, which form a metal bonding phase, to further increase the corrosion resistance and strength of the metal bonding phase, and to form a double boride represented by Mo 2 CoB 2. It is a necessary element. If the content of Mo in the cermet spraying powder is less than 0.5% by mass, the above effects cannot be obtained. If the content exceeds 4.0% by mass, the strength of the metal bonding phase is rather reduced. Therefore, the content of Mo in the thermal spraying powder is suitably in the range of 0.5 to 4.0% by mass.
[0023]
Further, in the thermal spraying powder composition of the present invention, the total amount of W and B is set to 80.0 to 89.5% by mass, and the total amount of Co, Cr and Mo is set to 10.5 to 20.0%. Restrict to mass%. Thereby, the wettability with the molten metal can be reduced, and the corrosion resistance can be improved. In the case of producing the thermal spraying powder of the present invention, it is important to use Co, Cr and Mo as the individual metal powders. When these elements are used in the form of an alloy powder, for example, in the form of a stellite alloy powder, Co in the alloy powder hardly binds to a boride such as WB, and W 2 CoB 2 double boride is formed. This is because it becomes difficult.
[0024]
The particle size of the WB powder used as the raw material powder for primary particles contributes to the hardness and wear resistance of the thermal spray coating. The particles of the cermet spraying powder of the present invention are obtained by sizing and sintering WB powder together with Co, Cr, and Mo powders that play the role of a binder, thereby obtaining W 2 CoB 2 particles as a double boride, This is obtained by crystallizing a Co—Cr—Mo alloy phase as a metal binding phase. The W 2 CoB 2 particles increase in proportion to the particle size of the WB powder. Ideally, the thermal spray coating is one in which the surface of each W 2 CoB 2 particle is uniformly coated with a Co—Cr—Mo alloy phase. If the average particle diameter of the WB particles is larger than 1.5 μm, the pores between the W 2 CoB 2 particles become large, and the Co—Cr—Mo alloy phase partially becomes excessive, resulting in heat resistance, wear resistance, and corrosion resistance. Is reduced. On the other hand, if it is less than 1.0 μm, the specific surface area of the W 2 CoB 2 particles is large, the required addition amount of Co, Cr, and Mo increases, and the thermal shock resistance and toughness decrease due to the lack of the Co—Cr—Mo alloy phase. Is generated. Therefore, the particle size of the WB particles used as the raw material for the primary particles is suitably in the range of 1.0 to 1.5 μm. The particle size of such WB particles can be regulated by air classification by setting the particle size range to 2.0 μm or less.
[0025]
Further, the apparent density of the cermet powder affects the bonding force between the W 2 CoB 2 particles and the porosity inside the cermet particles, and if the value is less than 3.0 g / cm 3 , the apparent density of the W 2 CoB 2 binding force between particles is low, since the porosity of the interior is also large, easily scattered around crumble to not become flat at the time of collision with the base material, formed film also internal cermet particles sky Since the holes remain, the thermal shock resistance is reduced. On the other hand, if the value is higher than 4.0 g / cm 3 , the densification requires a sintering temperature of 2000 ° C. or more, a fragile oxide such as WO 3 is crystallized, and W 2 CoB 2 is further reduced. Since the WB remains as it is without being crystallized and the thermal shock resistance and toughness are reduced, the apparent density as cermet particles is suitably in the range of 3.0 to 4.0 g / cm 3 . The apparent density increases as the sintering temperature increases, and can be regulated by sintering at 1350 to 1400 ° C.
[0026]
As a method for forming a cermet spray coating on a substrate using the thermal spray powder of the present invention, a conventionally used air or reduced pressure plasma spray method using a spray gun, or a high-speed gas flame spray method can be applied. . Usually, for the plasma spraying method, a spraying powder having a particle diameter of 15 to 53 μm and 15 to 45 μm is used, and for the high-speed gas flame spraying method, 5 to 30 μm, 5 to 38 μm, 5 to 45 μm or 15 to 45 μm, 15 to 45 μm. A spraying powder having a particle size of 53 μm is used. When these powders are coarser than the above particle size range, it becomes difficult to form a dense thermal spray coating layer, and the adhesion yield of the thermal spray powder due to insufficient heating decreases. Therefore, only a thermal sprayed coating layer having low hardness and low adhesion yield can be obtained, which leads to quality deterioration and cost increase. Further, when the particle size is finer than the above range, the fluidity of the powder is reduced, and the fine powder having high heat receiving efficiency is melted and deposited on the inner surface of the nozzle of the spray gun. It is.
[0027]
Hereinafter, examples of the present invention will be described in comparison with comparative examples, but the present invention is not limited to the following examples.
[0028]
【Example】
[Example 1]
WB powder (average particle size 1.2 μm), Co powder (average particle size 1.5 μm), Cr powder (average particle size 1.5 μm) and Mo powder (average particle size 1. 5 μm) were collected at 85% by mass, 10% by mass, 3% by mass, and 2% by mass, respectively, placed in a stainless steel container, and pulverized and mixed in a vibrating ball mill for 24 hours in a wet state.
[0029]
The slurry taken out from the container is spray-dried in a non-oxidizing atmosphere, granulated, and then the powder obtained by sintering in a vacuum is recovered. Rectification was performed to prepare a powder for thermal spraying. The apparent density was adjusted by setting the sintering temperature to 1360 ° C., and as a result of being measured by the apparent density measuring method of metal powder described in JISZ2504, it was 3.6 g / cm 3 . The average particle size of the WB particles was adjusted to be 2.0 μm or less by pulverization of the pulverized powder, and as a result of measurement by a laser diffraction type particle size distribution measuring method, it was 1.2 μm or less. Table 1 shows the chemical composition of the obtained thermal spraying powder, the average particle size of the WB powder, the apparent density as cermet particles, and the classified particle size range.
[0030]
Next, a spray coating layer having a thickness of 0.4 mm was formed on the SS400 substrate by a high-speed gas flame spraying method (fuel: hydrogen-oxygen) using the thermal spray powder. Then, the irregularities on the surface of the coating layer were removed by machining and surface polishing to obtain a test piece.
[0031]
As a result of identifying the thermal spray coating layer formed on the substrate surface by the Cu-κα X-ray diffraction method, a ternary double boride phase of W 2 CoB 2 was mainly recognized. Table 2 shows the results of composition analysis of the coating layer by EPMA quantitative analysis.
[0032]
The Vickers hardness (load: 0.3 kgf) of the surface of the test piece was 1610, using a reciprocating motion abrasion tester in accordance with the test method specified in JIS H 8503, paragraph 9, using SiC abrasive paper No. 320 as a mating material. A test piece was subjected to a wear resistance test with a test load of 3.0 kgf and a reciprocating load of 1600 times. As a result, the weight loss of the test piece was 0.45 mg / cm 2 .
[0033]
On the other hand, after holding the test piece in an electric furnace at 600 ° C. for 30 minutes, a heat cycle of rapid cooling in water was repeated 30 times, and each time, the presence or absence of cracks or peeling occurring in the coating layer was visually observed and color checked. As a result of the evaluation of the thermal shock resistance, the number of repetitions when an abnormality was recognized during the thermal cycle was 27 times, indicating a high thermal shock resistance.
[0034]
Next, when the test piece was held in an electric furnace at 900 ° C. for 2 hours and the oxidation weight increase of the coating layer was measured, the value was 3.8 mg / cm 2 , indicating that the sample had high oxidation resistance. confirmed. The Vickers hardness (load: 0.3 kgf) of the test piece surface measured at a high temperature of 900 ° C. was 845. Further, when an immersion test for 120 hours (5 days) was performed in Zn-0.15% Al molten at 470 ° C., the corrosion weight loss was 78.2 mg / cm 2 , and the residual film ratio was 94.0 mg / cm 2 . It was 9%, and it was confirmed to have high molten metal corrosion resistance. Table 3 summarizes the results of the various characteristic tests described above.
[0035]
From the above results, the cermet spray coating using the thermal spray powder according to the present invention is excellent in hardness, abrasion resistance, high temperature oxidation resistance, thermal shock resistance, high temperature hardness (heat resistance), and corrosion resistance to molten metal. Has been well documented.
[0036]
[Examples 2 to 5, Comparative Examples 1 to 8]
A raw material powder was prepared in the same manner as in Example 1 except that the amount of the powder to be mixed, the average particle size of the WB powder, and the range of the classified particle size were changed, and a predetermined amount of the raw material powder was pulverized and mixed. The apparent density was adjusted to obtain thermal spraying powders of Examples 2 to 5 and Comparative Examples 1 to 5, including Comparative Example 1 having a known composition.
[0037]
Using a predetermined amount of a W powder, a Co powder and a C powder (Comparative Examples 6 and 7), a Cr powder, a Ni powder and a C powder (Comparative Example 8), a WC-Co-based cermet spray coating was formed by a conventional method. Powders (Comparative Examples 6 and 7) and a powder for forming a Cr 3 C 2 —NiCr-based cermet thermal spray coating (Comparative Example 8) were produced.
[0038]
Table 1 shows the chemical composition of the obtained thermal spraying powder, the average particle size of the WB powder, the apparent density as cermet particles, and the classified particle size range.
[0039]
Next, using these thermal spray powders, in the same manner as in Example 1, a test piece having a thermal spray coating layer formed on a SS substrate by a high-speed gas flame spraying method was obtained. In the same manner as in the above, composition analysis and various property tests of the thermal spray coating layer were performed, and the results are shown in Tables 2 and 3.
[0040]
[Table 1]
Figure 2004353045
[0041]
[Table 2]
Figure 2004353045
[0042]
[Table 3]
Figure 2004353045
[0043]
According to the above results, the boride-based cermet sprayed coating obtained by using the cermet sprayed powder according to the present invention has hardness and abrasion resistance comparable to those of the conventionally used WC-Co cermet sprayed coating. has also provided with a oxidation resistance and heat resistance superior to Cr 3 C 2 -NiCr cermet sprayed coating, a significantly higher thermal shock resistance than those prior art cermet sprayed coating (Comparative example 6-8) It became clear to have. Further, by increasing the total amount of W and B, compared with the thermal spray coating of a WB-CoCrMo-based cermet thermal spraying powder having a known composition (Comparative Example 1), high molten metal corrosion resistance is obtained. In the above composition range, the average particle size of the WB powder was made fine and the apparent density of the cermet powder was improved, whereby more excellent characteristics were obtained.
[0044]
【The invention's effect】
The cermet spray powder of the present invention, comprises a hardness and abrasion resistance comparable to WC-Co cermet thermal sprayed coating, also a heat resistance and oxidation resistance superior to Cr 3 C 2 -NiCr cermet sprayed coating Thus, a cermet sprayed coating having a higher molten metal corrosion property than a known WB-CoCrMo-based cermet sprayed coating can be obtained.

Claims (5)

質量比にて、W:75.0〜86.0%、B:3.5〜5.0%、Co:8.0〜12.0%、Cr:2.0〜6.0%、Mo:0.5〜4.0%、および不可避的不純物から構成される複合粉末組成物からなる硼化物系サーメット溶射用粉末。By mass ratio, W: 75.0 to 86.0%, B: 3.5 to 5.0%, Co: 8.0 to 12.0%, Cr: 2.0 to 6.0%, Mo : A boride-based cermet spraying powder comprising a composite powder composition comprising 0.5 to 4.0% and unavoidable impurities. 質量比にて、B:3.5〜5.0%、Co:8.0〜12.0%、Cr:2.0〜6.0%、Mo:0.5〜4.0%を含み、残部Wと不可避的不純物から構成され、かつ、WとBとの合計量が質量比にて80.0〜89.5%、CoとCrとMoとの合計量が質量比にて10.5〜20.0%である複合粉末組成物からなる硼化物系サーメット溶射用粉末。B: 3.5-5.0%, Co: 8.0-12.0%, Cr: 2.0-6.0%, Mo: 0.5-4.0% by mass ratio. And the balance W and unavoidable impurities, and the total amount of W and B is 80.0 to 89.5% by mass ratio, and the total amount of Co, Cr and Mo is 10% by mass ratio. A boride-based cermet spraying powder comprising a composite powder composition of 5 to 20.0%. 見かけ密度が3.0〜4.0g/cm である請求項1〜2に記載の硼化物系サーメット溶射用粉末。The boride-based cermet thermal spray powder according to claim 1, wherein the powder has an apparent density of 3.0 to 4.0 g / cm 3 . 一次粒子用原料粉末としてのWB粒子の平均粒径が1.0〜1.5μmである請求項1〜3に記載の硼化物系サーメット溶射用粉末。4. The boride-based cermet thermal spray powder according to claim 1, wherein the average particle diameter of the WB particles as the raw material powder for primary particles is 1.0 to 1.5 [mu] m. 5〜30μm、5〜38μm、5〜45μm、15〜45μmまたは15〜53μmのいずれかから選択される粒度範囲に整粒した請求項1〜4に記載の硼化物系サーメット溶射用粉末。The boride-based cermet thermal spray powder according to claim 1, wherein the powder is sized to a particle size range selected from 5 to 30 μm, 5 to 38 μm, 5 to 45 μm, 15 to 45 μm or 15 to 53 μm.
JP2003153242A 2003-05-29 2003-05-29 Boride-based cermet powder for thermal spraying Pending JP2004353045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153242A JP2004353045A (en) 2003-05-29 2003-05-29 Boride-based cermet powder for thermal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153242A JP2004353045A (en) 2003-05-29 2003-05-29 Boride-based cermet powder for thermal spraying

Publications (1)

Publication Number Publication Date
JP2004353045A true JP2004353045A (en) 2004-12-16

Family

ID=34048248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153242A Pending JP2004353045A (en) 2003-05-29 2003-05-29 Boride-based cermet powder for thermal spraying

Country Status (1)

Country Link
JP (1) JP2004353045A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150322558A1 (en) * 2013-03-29 2015-11-12 Nippon Steel & Sumikin Hardfacing Co., Ltd. Cermet thermal spray powder, roller for molten metal plating bath, article in molten metal plating bath
WO2017002937A1 (en) * 2015-06-30 2017-01-05 東洋鋼鈑株式会社 Laminated tube and manufacturing method therefor
KR20200052428A (en) * 2018-10-26 2020-05-15 (주)하이엠시 Tungsten carbide powder and manufacturing thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150322558A1 (en) * 2013-03-29 2015-11-12 Nippon Steel & Sumikin Hardfacing Co., Ltd. Cermet thermal spray powder, roller for molten metal plating bath, article in molten metal plating bath
US9422617B2 (en) * 2013-03-29 2016-08-23 Nippon Steel & Sumikin Hardfacing Co., Ltd. Cermet thermal spray powder, roller for molten metal plating bath, article in molten metal plating bath
JPWO2014155931A1 (en) * 2013-03-29 2017-02-16 日鉄住金ハード株式会社 Cermet spray powder, roll for hot metal plating bath and parts in hot metal plating bath
WO2017002937A1 (en) * 2015-06-30 2017-01-05 東洋鋼鈑株式会社 Laminated tube and manufacturing method therefor
JP2017014565A (en) * 2015-06-30 2017-01-19 東洋鋼鈑株式会社 Laminate tube and manufacturing method therefor
EP3318655A4 (en) * 2015-06-30 2019-01-09 Toyo Kohan Co., Ltd. Laminated tube and manufacturing method therefor
KR20200052428A (en) * 2018-10-26 2020-05-15 (주)하이엠시 Tungsten carbide powder and manufacturing thereof
KR102165405B1 (en) 2018-10-26 2020-10-14 (주)하이엠시 Tungsten carbide powder and manufacturing thereof

Similar Documents

Publication Publication Date Title
KR100751742B1 (en) Spray powder, thermal spraying process using it, and sprayed coating
JP5058645B2 (en) Thermal spray powder, thermal spray coating and hearth roll
US6641917B2 (en) Spray powder and method for its production
JP5394582B1 (en) Molybdenum heat-resistant alloy
JP4653721B2 (en) Ni-based self-fluxing alloy powder for thermal spraying, method for producing the same, and self-fluxing alloy spray coating obtained using the powder
CN108677129A (en) A kind of FeCoNiCrSiAl high-entropy alloys coating and preparation method thereof
KR20040085069A (en) thermal spraying power and method of forming a thermal sprayed coating using the same
WO2018116856A1 (en) Method for forming sprayed film of intermetallic compound film, sprayed film, method for producing metal product having sprayed film, and glass conveying roll
Satapathy et al. Characterization of plasma sprayed pure red mud coatings: an analysis
JP2012102362A (en) Boride cermet-based powder for thermal spraying
JP2011026666A (en) Powder of boride-based cermet for thermal spraying
Fadavi et al. Study on high-temperature oxidation behaviors of plasma-sprayed TiB 2-Co composite coatings
JP3134767B2 (en) Boride cermet spraying powder
JP2018178187A (en) Powder for spray coating, and film deposition method of sprayed coating using the same
JP2004353045A (en) Boride-based cermet powder for thermal spraying
JP2011017049A (en) Boride-based cermet powder for thermal spraying
JP2011017058A (en) Boride-based cermet powder for thermal spraying
JPH0128828B2 (en)
JPH0645863B2 (en) Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article
JP2004353046A (en) Boride cermet powder for thermal spraying
JP3403460B2 (en) Method for producing carbon material having non-oxide ceramic spray coating
CN115491629A (en) Method for preparing Ti-Al-C-based composite coating by using plasma spraying
JP3134768B2 (en) Boride cermet spraying powder
JP2003301201A (en) Composite cermet powder and manufacturing method therefor
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder