JPH06330144A - Method for removing impurity in chromium-containing molten steel - Google Patents

Method for removing impurity in chromium-containing molten steel

Info

Publication number
JPH06330144A
JPH06330144A JP11625293A JP11625293A JPH06330144A JP H06330144 A JPH06330144 A JP H06330144A JP 11625293 A JP11625293 A JP 11625293A JP 11625293 A JP11625293 A JP 11625293A JP H06330144 A JPH06330144 A JP H06330144A
Authority
JP
Japan
Prior art keywords
chromium
concentration
molten steel
impurities
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11625293A
Other languages
Japanese (ja)
Other versions
JP3230067B2 (en
Inventor
Ryuji Nakao
隆二 中尾
Shigenori Tanaka
重典 田中
Mayumi Okimori
麻佑巳 沖森
Hiroshi Iwasaki
央 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11625293A priority Critical patent/JP3230067B2/en
Publication of JPH06330144A publication Critical patent/JPH06330144A/en
Application granted granted Critical
Publication of JP3230067B2 publication Critical patent/JP3230067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To provide a removing method for impurities in a chromium-containing molten steel, by which Pb, Zn, Bi and Sn adversely effecting to hot-workability of the steel are efficiently removed and the loads in the previous and the following processes are lightened, at the time of decarburize-refining the chromium-containing molten steel. CONSTITUTION:In order to promote the removal of the impurities of Pb, Zn, Bi, Sn, etc., in the molten steel in the decarburizing treatment of the chromium-containing molten steel 4, the decarburizing treatment is started at >=1.2mass% [C] concn. and executed in the range of >=0.5mass% [C] concn. with the combined blowing method for supplying gaseous oxygen or mixed gas containing the gaseous oxygen onto the bath surface and from below the bath surface. Further, in the range of <=0.2mass% [C] concn., the pressure in the vessel is reduced to <=200Torr and the decarburizing treatment is executed. By this method, in the finish refining stage of the chromium- containing molten steel, the miss of the aimed values of Pb, Zn, Bi and Sn in the product stage is eliminated and the stable removal of the impurities can be obtd. and further, as the regulation in the raw material blending stage can be relaxed, the refining cost can remarkably be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は含クロム溶鋼の脱炭精錬
時に、鋼の熱間加工性に悪影響を及ぼすPb、Zn、B
i、Sn等の不純物を効率よく除去する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to Pb, Zn, B which adversely affects the hot workability of steel when decarburizing and refining molten steel containing chromium.
The present invention relates to a method for efficiently removing impurities such as i and Sn.

【0002】[0002]

【従来の技術】従来、ステンレス鋼のごとき11wt%
以上のクロムを含むような含クロム溶鋼中のPb、Z
n、Bi、Sn等の不純物の除去に関する定量的な知見
はない。Pb、Zn、Bi、Sn等は一般的に鋼の熱間
加工性を悪化させるために、できるだけ低下させること
が望ましく、鋼種によっては上限が定められている。
2. Description of the Related Art Conventionally, 11 wt% such as stainless steel
Pb, Z in molten chromium-containing steel containing the above chromium
There is no quantitative knowledge regarding the removal of impurities such as n, Bi, and Sn. Generally, Pb, Zn, Bi, Sn, etc. are desired to be lowered as much as possible in order to deteriorate the hot workability of steel, and an upper limit is set depending on the steel type.

【0003】普通鋼おにいては、例えば、「材料とプロ
セス」、vol.1、No.4、page1169〜1
172(1988年)に示されているように、Pb、Z
nは攪拌ガス流量の増大により除去が促進されること、
およびSnは若干の除去が可能であることが示されてい
る。しかし、含クロム溶鋼については、多量に含まれる
クロムの影響が不明なために、脱炭精錬時の除去および
除去限界値を求めるような定量的な知見はない。
For ordinary steel, for example, "Materials and Processes", vol. 1, No. 4, page 1169-1
172 (1988), Pb, Z
n is that removal is promoted by increasing the flow rate of the stirring gas,
It has been shown that and Sn can be slightly removed. However, regarding the chromium-containing molten steel, since the effect of chromium contained in a large amount is unknown, there is no quantitative knowledge to determine the removal and removal limit value during decarburization refining.

【0004】そのため、溶解原料の不純物濃度を規制し
たり、スラグ中のクロム酸化物の還元および溶鋼成分お
よび温度の調整を行う最終精錬期に添加する還元材、成
分調整材および冷却材について、Pb、Zn、Bi、S
n等の濃度管理を徹底し、かつ濃度の低い材料を優先的
に使用すると共に、過剰のガス吹込みをする等の操業を
行っていた。
Therefore, Pb is used as a reducing agent, a component adjusting agent, and a cooling agent added in the final refining period for controlling the impurity concentration of the molten raw material, reducing the chromium oxide in the slag, and adjusting the molten steel composition and temperature. , Zn, Bi, S
In addition to thoroughly controlling the concentration of n and the like, preferentially using a material with a low concentration, and performing operations such as excessive gas injection.

【0005】しかし、このような操業管理を行っても、
目標のPb、Zn、Bi、Sn濃度の規制値を外れるこ
とがある。また、Pb、Zn、Bi、Snの濃度の低い
材料は価格が高く、コストの上昇を招く。さらに、P
b、Zn、Bi、Snの濃度を下げるために、過剰のガ
ス吹込みをすればコストを上げることになり、効率的な
精錬法とは言えない。
However, even if such operation management is performed,
The target Pb, Zn, Bi, and Sn concentration values may deviate from the regulation values. In addition, a material having a low concentration of Pb, Zn, Bi, and Sn has a high price, which causes an increase in cost. Furthermore, P
If excessive gas is blown in order to reduce the concentrations of b, Zn, Bi, and Sn, the cost will increase, which cannot be said to be an efficient refining method.

【0006】[0006]

【発明が解決しようとする課題】本発明は含クロム溶鋼
の脱炭精錬時に、Pb、Zn、Bi、Sn等の不純物の
除去を促進させることにより、溶解原料の不純物濃度お
よび使用量の規制を緩和し、かつ最終精錬時にPb、Z
n、Bi、Sn濃度の目標値を達成することを課題とす
る。
DISCLOSURE OF THE INVENTION The present invention regulates the concentration and amount of impurities used in a molten raw material by promoting the removal of impurities such as Pb, Zn, Bi, and Sn during decarburization refining of molten chromium-containing steel. Relaxed and Pb, Z during final refining
The object is to achieve the target values of n, Bi, and Sn concentrations.

【0007】[0007]

【課題を解決するための手段】本発明は前記の課題を有
利に解決するものであり、その要旨とするところは下記
のとおりである。 (1)含クロム溶鋼の脱炭処理における溶鋼中のPb、
Zn、Bi、Sn等の不純物の除去を促進するために、
[C]濃度1.2mass%以上で脱炭処理を開始し、
かつ[C]濃度0.5mass%以上の領域では浴面上
および浴面下より酸素ガスまたは酸素ガスを含む混合ガ
スを供給する複合吹錬法で行い、[C]濃度0.2ma
ss%以下の領域では200Torr以下に減圧して脱
炭処理を行うことを特徴とする含クロム溶鋼の不純物除
去方法。
The present invention advantageously solves the above-mentioned problems, and the gist thereof is as follows. (1) Pb in molten steel in decarburizing chromium-containing molten steel,
In order to accelerate the removal of impurities such as Zn, Bi and Sn,
[C] Start decarburization at a concentration of 1.2 mass% or more,
In addition, in the region where the [C] concentration is 0.5 mass% or more, the compound blowing method of supplying oxygen gas or a mixed gas containing oxygen gas from above and below the bath surface is performed, and the [C] concentration is 0.2 ma.
A method for removing impurities from molten chromium-containing steel, characterized in that decarburization is performed under a pressure of 200 Torr or less in a region of ss% or less.

【0008】(2)[C]濃度が0.5mass%以上
の領域で下記式を満足する条件で前記複合吹錬法を行
うことを特徴とする前項1記載の含クロム溶鋼の不純物
除去方法。 OT /(OT +OB )≧0.3 …… OT ;上吹き送酸量(Nm3 /Hr) OB ;底吹き送酸量(Nm3 /Hr) (3)脱炭処理に続く最終精錬期を200Torr以下
に減圧して処理を行うことを特徴とする前項1記載の含
クロム溶鋼の不純物除去方法。
(2) The method for removing impurities from chromium-containing molten steel according to the above item 1, wherein the complex blowing method is carried out in a region where the [C] concentration is 0.5 mass% or more under the condition that the following formula is satisfied. O T / (O T + O B ) ≧ 0.3 …… O T ; Top blown acid feed amount (Nm 3 / Hr) O B ; Bottom blown acid feed amount (Nm 3 / Hr) (3) For decarburization treatment The method for removing impurities from molten chromium-containing steel according to item 1, wherein the subsequent final refining period is performed under reduced pressure of 200 Torr or less.

【0009】以下本発明について詳細に説明する。本発
明は図1に例示するような大気圧処理後、減圧下での処
理を行う含クロム溶鋼の精錬法に適用するものである。
精錬容器(1)内で含クロム溶鋼(4)中に底吹き羽口
(2)を通して、精錬ガス(5)を吹込む。また、精錬
容器(1)は脱着可能な排気フード(3)を有してお
り、200Torr以下の減圧が可能である。また、精
錬容器(1)の上部には上吹きランス(6)を有してお
り、高[C]濃度域では浴面下(底吹き)および浴面上
(上吹き)からのガス供給が可能である。
The present invention will be described in detail below. INDUSTRIAL APPLICABILITY The present invention is applied to a refining method for molten chromium-containing steel, which is performed under reduced pressure after atmospheric pressure treatment as illustrated in FIG.
The refining gas (5) is blown into the molten chromium-containing steel (4) through the bottom blowing tuyere (2) in the refining vessel (1). Further, the refining vessel (1) has a detachable exhaust hood (3) and can reduce the pressure to 200 Torr or less. Further, the refining vessel (1) has an upper blowing lance (6) at the upper part, and in the high [C] concentration range, gas is supplied from below the bath surface (bottom blowing) and above the bath surface (top blowing). It is possible.

【0010】この吹錬法では、スクラップ、合金等を電
気炉で溶解した溶鋼を酸素ガスあるいは酸素ガスと不活
性ガスの吹込みによって脱炭精錬を行う。脱炭精錬は高
[C]濃度側では酸素ガスの比率が高く、その後、溶鋼
中のクロムの酸化を防止するために酸素ガスの比率をさ
げていくとともに減圧下での精錬を行うパターンがとら
れ、最終的には[C]0.1mass%以下まで脱炭さ
れる。続いて、脱炭時に酸化しスラグ中に移行したクロ
ム酸化物を還元すると同時に、溶鋼の成分、温度の調整
を行うための最終精錬期が設けられている。なお、最終
精錬期では溶鋼の成分、温度の調整を行うために還元材
および合金材が添加され、不純物の若干のピックアップ
が生ずる。このピックアップ量を考慮して脱炭前の不純
物の許容量が定められ、溶解時の合金等の配合が決定さ
れている。
In this blowing method, molten steel obtained by melting scraps, alloys and the like in an electric furnace is decarburized by blowing oxygen gas or oxygen gas and an inert gas. In the decarburization refining, the ratio of oxygen gas is high on the high [C] concentration side, and then the ratio of oxygen gas is reduced to prevent the oxidation of chromium in the molten steel and refining under reduced pressure is performed. And finally decarburized to [C] 0.1 mass% or less. Subsequently, a final refining period is provided for reducing the chromium oxide that has been oxidized during the decarburization and transferred into the slag, and at the same time, adjusting the composition and temperature of the molten steel. In the final refining period, a reducing material and an alloy material are added in order to adjust the composition and temperature of molten steel, and some pickup of impurities occurs. The allowable amount of impurities before decarburization is determined in consideration of this pickup amount, and the composition of the alloy etc. at the time of melting is determined.

【0011】本発明は含クロム溶鋼中のPb、Zn、B
i、Snの不純物が脱炭精錬時、特に[C]濃度0.5
mass%以上の高炭域および真空下での処理で除去が
顕著に進行することに着目したものである。含クロム溶
鋼の脱炭反応は式あるいは式で表される。 =CO(g) …… (Cr2 3 )+3 =2Cr+3CO(g) …… 脱炭時は多量の酸素ガスが吹き込まれるとともに、多量
のCOガスが発生する。このために、不純物の除去が促
進される。また、減圧下では不純物の蒸発が進行しやす
くなるために、除去が促進される。
The present invention relates to Pb, Zn, B in molten steel containing chromium.
When decarburizing and refining i and Sn impurities, especially [C] concentration 0.5
It is focused on that the removal proceeds remarkably by the treatment in a high coal area of mass% or more and under vacuum. The decarburization reaction of molten steel containing chromium is represented by the equation or the equation. With C + O = CO (g) ...... (Cr 2 O 3) +3 O = 2 Cr + 3CO (g) ...... decarburization time is blown a large amount of oxygen gas, a large amount of CO gas is generated. Therefore, the removal of impurities is promoted. Further, under reduced pressure, the evaporation of impurities easily progresses, so that the removal is promoted.

【0012】図2に60t規模の炉を用いて、SUS3
04ステンレス鋼の脱炭精錬を行った場合の脱炭精錬開
始時の[C]濃度とPb、Zn、Bi、Snの不純物の
除去率ηの関係を示す。なお、この時の上吹き送酸量比
率[OT /(OT +OB )は0.3〜0.5の範囲であ
り、[C]濃度0.2mass%以下では50〜200
Torrに減圧して脱炭処理を行った。また、不純物の
除去率ηは式を用いて算出した値であり、図において
は除去率の最小の値を結んだ線で表している。
In FIG. 2, SUS3 was used by using a 60t scale furnace.
4 shows the relationship between the [C] concentration at the start of decarburization refining and the removal rate η of impurities of Pb, Zn, Bi, and Sn when decarburization refining of 04 stainless steel was performed. Incidentally, the oxygen-flow amount ratio blown over when the [O T / (O T + O B) is in the range of 0.3 to 0.5, the [C] concentration of 0.2 mass% or less from 50 to 200
The pressure was reduced to Torr for decarburization. The impurity removal rate η is a value calculated using an equation, and is represented by a line connecting the minimum removal rates in the figure.

【0013】 η=100×([M]O −[M]f )/[M]O …… ここで、Mは不純物元素を示し、添字のoは脱炭開始
時、fは脱炭終了時の濃度を示す。図より、特に、P
b、Zn、Biの除去率は脱炭開始時の[C]濃度1.
2mass%までは直線的に、[C]濃度の増大にとも
ない増加し、[C]濃度1.2mass%以上では除去
率は95%以上で飽和する傾向となる。また、Snの除
去率は他の元素に比べ非常に小さいが、[C]濃度1.
2mass%で約20%の除去率となり、[C]濃度
1.2mass%以上では飽和する傾向になる。
[0013] η = 100 × ([M] O - [M] f) / [M] O ...... here, M represents an impurity element, subscript o During the decarburization start, f is the time of decarburization end Shows the concentration of. From the figure, in particular, P
The removal rates of b, Zn, and Bi are as follows: [C] concentration 1.
Up to 2 mass%, it increases linearly as the [C] concentration increases, and when the [C] concentration is 1.2 mass% or more, the removal rate tends to be saturated at 95% or more. Moreover, although the removal rate of Sn is much smaller than that of other elements, the [C] concentration is 1.
At 2 mass%, the removal rate is about 20%, and when the [C] concentration is 1.2 mass% or more, it tends to be saturated.

【0014】これより、不純物の効率的な除去をはかる
には脱炭開始時の[C]濃度を1.2mass%以上と
することが必要であることがわかる。図3に60t規模
の炉を用いて、SUS304ステンレス鋼の脱炭精錬を
行った場合の脱炭精錬開始時の上吹き送酸量比率[OT
/(OT +OB )とPbの除去率の関係を示す。なお、
この時の脱炭開始時の[C]濃度は1.2〜1.5ma
ss%の範囲であり、上吹きは[C]0.5mass%
以上の領域に適用した。また、[C]濃度0.2mas
s%以下では50〜200Torrに減圧して脱炭処理
を行った。図のPbの除去率は最小の値を結んだ線で表
している。図より、Pbの除去率は上吹き送酸量比率が
0から0.3の範囲では上吹き送酸量比率の増大ととも
に増大する傾向を示し、上吹き送酸量比率0.3以上で
は飽和する。また、上吹き送酸量比率0.6以上では若
干、低下する傾向を示す。なお、上吹きは[C]濃度
0.5mass%以上に適用することが一般的であり、
それ未満の濃度では脱炭促進の効果は小さい。このた
め、Pbの除去率も上吹きを[C]濃度0.5mass
%未満の領域に適用しても、向上代は小さいことが確認
された。
From this, it is understood that the [C] concentration at the start of decarburization must be 1.2 mass% or more in order to efficiently remove impurities. In Fig. 3, when a 60t-scale furnace is used to decarburize and refine SUS304 stainless steel, the upper blowing acid ratio [O T
/ (O T + O B) and shows the relationship between removal rate of Pb. In addition,
At this time, the [C] concentration at the start of decarburization is 1.2 to 1.5 ma.
The range is ss%, and the upper blowing is [C] 0.5 mass%.
Applied to the above areas. In addition, [C] concentration is 0.2mas
When the content was s% or less, the pressure was reduced to 50 to 200 Torr for decarburization. The removal rate of Pb in the figure is represented by a line connecting the minimum values. From the figure, the removal rate of Pb shows a tendency to increase with an increase in the upper blowing acid amount ratio in the range of 0 to 0.3, and is saturated when the upper blowing acid amount ratio is 0.3 or more. To do. In addition, when the amount of acid fed from above is 0.6 or more, it tends to decrease slightly. It should be noted that the upper blowing is generally applied to a [C] concentration of 0.5 mass% or more,
If the concentration is less than that, the effect of promoting decarburization is small. For this reason, the removal rate of Pb is 0.5C for the upper blowing [C] concentration.
It was confirmed that the improvement margin was small even when applied to the area of less than%.

【0015】以上より、Pbの効率的な除去をはかるに
は[C]濃度0.5mass%以上の領域で上吹き送酸
量比率を0.3以上とする必要があることが確認され
た。また、他のZn、Bi、Snについても同様の傾向
が認められ、これらを総括すると前述の式となる。な
お、上吹き送酸量比率が0.7以上では脱炭効率が低下
するために、脱炭反応を促進させる点からはこの値以上
の上吹き送酸量比率をとることは好ましくない。
From the above, it was confirmed that in order to efficiently remove Pb, it is necessary to set the amount of acid to be blown up to 0.3 or more in the region where the [C] concentration is 0.5 mass% or more. The same tendency is observed for the other Zn, Bi, and Sn, and the above equations can be summed up. It should be noted that, if the top-blowing acid amount ratio is 0.7 or more, the decarburization efficiency is lowered, so from the viewpoint of accelerating the decarburization reaction, it is not preferable to take the top-blowing acid ratio of more than this value.

【0016】図4に60t規模の炉を用いて、SUS3
04ステンレス鋼の脱炭精錬を行った場合の[C]濃度
0.2mass%以下の領域における真空度とPbの除
去率の関係を示す。なお、脱炭精錬開始時の[C]濃度
は1.2〜1.5mass%であり、[C]濃度0.5
mass%以上の領域では上吹き送酸量比率0.3〜
0.5で複合吹錬を実施し、その後[C]濃度0.2m
ass%以下の領域で減圧精錬を適用した。図より、P
bの除去率は真空度の低下にともない上昇する傾向にあ
り、真空度200Torr以下では飽和する傾向にあ
る。なお、他のZn、Bi、Snについても同様の傾向
が認められ、減圧処理の真空度は200Torr以下と
することにより、不純物の除去が促進されることがわか
る。
In FIG. 4, SUS3 was used by using a 60t scale furnace.
The relationship between the degree of vacuum and the Pb removal rate in the region where the [C] concentration is 0.2 mass% or less when decarburizing and refining 04 stainless steel is shown. The [C] concentration at the start of decarburizing and refining is 1.2 to 1.5 mass%, and the [C] concentration is 0.5.
In the region of mass% or more, the upper blowing acid amount ratio is 0.3 to
Combined blowing with 0.5, then [C] concentration 0.2m
Vacuum refining was applied in the area of ass% or less. From the figure, P
The removal rate of b tends to increase as the vacuum degree decreases, and tends to saturate at a vacuum degree of 200 Torr or less. A similar tendency is observed for the other Zn, Bi, and Sn, and it can be seen that the removal of impurities is promoted by setting the vacuum degree of the pressure reduction treatment to 200 Torr or less.

【0017】図5に60t規模の炉を用いて、SUS3
04ステンレス鋼の最終精錬を行った場合の最終精錬期
の真空度とPbの除去率の関係を示す。なお、この場合
の除去率は最終精錬開始時と終了時における除去率を示
す。図より、最終精錬期のPbの除去率は真空度の低下
にともない上昇する傾向にあり、真空度200Torr
以下では飽和する傾向にある。なお、他のZn、Bi、
Snについても同様の傾向が認められ、最終精錬期にお
いても200Torr以下の真空下で行うことで不純物
の除去を促進できることが確認された。
In FIG. 5, SUS3 was used by using a 60t scale furnace.
The relationship between the degree of vacuum and the Pb removal rate in the final refining period when the final refining of 04 stainless steel is performed is shown. The removal rate in this case indicates the removal rate at the start and end of the final refining. From the figure, the removal rate of Pb in the final refining period tends to increase as the vacuum degree decreases, and the vacuum degree is 200 Torr.
Below, it tends to be saturated. In addition, other Zn, Bi,
A similar tendency was observed for Sn, and it was confirmed that the removal of impurities can be promoted by performing the treatment under a vacuum of 200 Torr or less even in the final refining period.

【0018】以上の知見をまとめると、含クロム溶鋼の
脱炭時に、溶鋼中のPb、Zn、Bi、Sn等の不純物
の除去を促進するには、[C]濃度1.2mass%以
上で脱炭を開始し、かつ[C]濃度0.5mass%以
上の領域で上吹き送酸量比率0.3以上で送酸しなが
ら、脱炭精錬を行うことが必要である。また[C]濃度
0.2mass%以下では200Torr以下の減圧下
で脱炭を行う必要があり、脱炭期に続く最終精錬期でも
200Torr以下の減圧にすることが好ましい。
To summarize the above findings, in order to accelerate the removal of impurities such as Pb, Zn, Bi and Sn in molten steel during decarburization of molten chromium-containing steel, deoxidation is performed at a [C] concentration of 1.2 mass% or more. It is necessary to carry out decarburization refining while starting charcoal and feeding acid at a top blowing acid feeding ratio of 0.3 or more in a region where the [C] concentration is 0.5 mass% or more. Further, when the [C] concentration is 0.2 mass% or less, it is necessary to perform decarburization under a reduced pressure of 200 Torr or less, and it is preferable to reduce the pressure to 200 Torr or less even in the final refining period following the decarburizing period.

【0019】なお、脱炭開始時の[C]濃度は高ければ
高いほど好ましいが、図2に示したように、除去率の向
上代は小さいために、溶解原料の構成および脱炭精錬の
負荷を考えて設定する必要がある。また、減圧処理開始
時の[C]濃度は高いほど好ましいが、ここでは最低限
の効果が得られる[C]濃度として0.2mass%を
選択した。また、減圧処理時の真空度は低いほど不純物
の除去が促進されるが、図4、5に示したように除去率
の向上代は小さく、また高真空側ではスプラッシュ等の
操業上の問題もあるために、10Torr以上が好まし
い。
The higher the [C] concentration at the start of decarburization, the more preferable it is. However, as shown in FIG. 2, since the removal rate of the removal rate is small, the composition of the molten raw material and the load of decarburization refining It is necessary to set it in consideration. Further, the higher the [C] concentration at the start of the depressurization treatment, the more preferable, but 0.2 mass% was selected here as the [C] concentration at which the minimum effect is obtained. Further, although the removal of impurities is promoted as the degree of vacuum during the depressurization process is lower, the improvement rate of the removal rate is small as shown in FIGS. 4 and 5, and there are also operational problems such as splash on the high vacuum side. Therefore, it is preferably 10 Torr or more.

【0020】[0020]

【作用】図6に溶湯温度と各種金属元素の純金属状態で
の蒸気圧の関係を示す。Pb、Zn、Bi、SnはF
e、Cr、Niに比べ蒸気圧が高く、1450〜175
0℃の溶鋼温度状態では蒸発による除去が進行するもの
と考えられる。また、蒸発除去速度は蒸気圧の高いZ
n、Bi、Pb、Snの順に大きいものと考えられる。
FIG. 6 shows the relationship between the melt temperature and the vapor pressure of various metal elements in the pure metal state. Pb, Zn, Bi and Sn are F
e, Cr, Ni has a higher vapor pressure than 1450 to 175
It is considered that the removal by evaporation proceeds in the molten steel temperature state of 0 ° C. Also, the evaporation removal rate is Z with high vapor pressure.
It is considered that n, Bi, Pb, and Sn are larger in this order.

【0021】この蒸発除去反応は、溶鋼内での蒸発元素
の反応界面への移動あるいは蒸発元素の反応界面から気
相側への離脱が反応の律速過程と考えられている。この
反応を促進させる要因としては、下記が挙げられる。 1)溶鋼温度を上昇させる。 2)雰囲気を減圧あるいは真空状態にする。
In this evaporation removal reaction, it is considered that the rate-determining process of the reaction is the movement of the evaporation element to the reaction interface in the molten steel or the separation of the evaporation element from the reaction interface to the gas phase side. Factors that accelerate this reaction include the following. 1) Increase the molten steel temperature. 2) The atmosphere is depressurized or vacuumed.

【0022】3)反応界面積を大きくするために、ガス
発生速度を大きくする。 1)の溶鋼温度の上昇については、含クロム溶鋼の脱炭
は脱炭初期の溶鋼温度は低いが、その後、溶鋼中のクロ
ムの酸化を防止するために、1650℃以上の溶鋼温度
で脱炭を行うために、溶鋼温度パターンを変化させるこ
とは少ない。2)の減圧あるいは真空状態にすることは
従来より定性的には示されていたが、実際の操業ではガ
ス供給速度および処理時間との関係から制約が加わるた
めに、定量化はなされていなかった。本発明では不純物
除去におよぼす真空度の影響を定量化して、2)の効果
を最大限に引き出す条件として、[C]濃度および真空
度の条件を導出した。
3) The gas generation rate is increased in order to increase the reaction interface area. Regarding the rise in molten steel temperature in 1), the decarburization of chromium-containing molten steel has a low molten steel temperature at the initial stage of decarburization, but thereafter, decarburization is performed at a molten steel temperature of 1650 ° C or higher in order to prevent oxidation of chromium in the molten steel. In order to carry out, the molten steel temperature pattern is rarely changed. It has been qualitatively shown in the past that the reduced pressure or the vacuum state of 2) is qualitatively, but it has not been quantified in the actual operation, because restrictions are added due to the relationship between the gas supply rate and the processing time. . In the present invention, the effect of the degree of vacuum on the removal of impurities is quantified, and the conditions of [C] concentration and degree of vacuum are derived as conditions for maximizing the effect of 2).

【0023】従来より、3)の効果は定性的に示されて
いたが、特に、クロムを多量に含む含クロム溶鋼の分野
についてはクロムの蒸発除去に及ぼす影響が不明なため
に、定量的な知見はなかった。本発明では、脱炭期にお
ける蒸発除去が大きいことを見出し、また、Pb、Z
n、Bi、Snの除去率が蒸気圧の高いZn、Bi、P
b、Snの順に大きいこと、除去率が脱炭開始時の
[C]濃度に依存し、[C]濃度1.2mass%以上
では飽和すること、[C]濃度0.5mass%以上の
領域で上吹き送酸量比率を0.3以上で蒸発除去が促進
されることを見出した。
Conventionally, the effect of 3) has been qualitatively shown, but in the field of molten chromium-containing steel containing a large amount of chromium in particular, the effect on evaporation and removal of chromium is unknown, so it is quantitative. There was no finding. In the present invention, it was found that evaporation removal during the decarburization period is large, and Pb, Z
Zn, Bi, P with high removal rate of n, Bi, Sn with high vapor pressure
b, Sn in that order, the removal rate depends on the [C] concentration at the start of decarburization, saturation occurs at [C] concentration of 1.2 mass% or more, and in the region of [C] concentration of 0.5 mass% or more. It was found that evaporative removal is promoted when the top blown acid ratio is 0.3 or more.

【0024】含クロム溶鋼の脱炭精錬は、特に[C]濃
度0.5mass%以上の高炭域は酸素供給律速域であ
り、急激な脱炭反応が進行し、COガスが多量に発生す
る。COガスの発生でバブル・バースト等の効果によ
り、気−液界面が増大し、不純物の除去が促進される。
そのため、脱炭開始時の[C]濃度が不純物の除去率を
決定する要因となり、本発明で示されたように、脱炭開
始時の[C]濃度を1.2mass%以上にすれば効率
的な除去が行える。
In the decarburization refining of molten steel containing chromium, especially in the high carbon region where the [C] concentration is 0.5 mass% or more, the oxygen supply rate-determining region, the rapid decarburization reaction proceeds, and a large amount of CO gas is generated. . The gas-liquid interface increases due to the effect of bubble burst and the like due to the generation of CO gas, and the removal of impurities is promoted.
Therefore, the [C] concentration at the start of decarburization becomes a factor in determining the removal rate of impurities, and as shown in the present invention, if the [C] concentration at the start of decarburization is 1.2 mass% or more, the efficiency is high. Can be removed effectively.

【0025】また、上底吹き複合吹錬では、上吹きを付
加することで底吹きのみに比べ、上吹きによって210
0℃以上の高温火点が形成され、脱炭反応が促進される
とともに、二次燃焼反応により、気相側への移動が促進
される。そのため、上吹き送酸量比率の上昇にともな
い、不純物の除去率が向上し、本発明における上吹き送
酸量比率0.3以上で効率的な除去が行える。
In addition, in the top-bottom blowing composite blowing, by adding the top-blowing, as compared with bottom-blowing only, 210 by top-blowing
A high-temperature hot spot of 0 ° C. or higher is formed, the decarburization reaction is promoted, and the secondary combustion reaction promotes the movement to the gas phase side. Therefore, the removal rate of impurities is improved with an increase in the upper blowing acid amount ratio, and efficient removal can be performed at the upper blowing acid amount ratio of 0.3 or more in the present invention.

【0026】なお、鋼の熱間加工性等より、不純物の含
有量は一般的に、鋼種毎に上限が規制されており、規制
値を満足するために、脱炭精錬時に効率的除去を行うこ
とが、前後の工程への負荷を減らすことにつながる。
Due to the hot workability of steel and the like, the upper limit of the content of impurities is generally regulated for each steel type, and in order to satisfy the regulation value, efficient removal is performed during decarburization refining. This reduces the load on the front and rear processes.

【0027】[0027]

【実施例】SUS304ステンレス鋼(8mass%N
i−18mass%Cr)60tonの処理を図1に示
す実施態様で行った実施例について説明する。表1に実
施した結果を本発明法と従来法と比較して示す。本発明
例はいずれも、最終精錬後の目標値は[Pb]≦5.0
ppm、[Zn]≦15.0ppm、[Bi]≦5.0
ppm、[Sn]≦200ppmの鋼種に適用し、上底
吹き複合吹錬は[C]濃度0.5mass%以上に適用
した。また、[C]濃度0.2mass%以下では減圧
下での処理を行い、最終精錬期も減圧下での処理を実施
した。
[Example] SUS304 stainless steel (8 mass% N
An example in which the processing of i-18 mass% Cr) 60 ton is performed in the embodiment shown in FIG. 1 will be described. The results obtained in Table 1 are shown in comparison with the method of the present invention and the conventional method. In each of the examples of the present invention, the target value after the final refining is [Pb] ≦ 5.0.
ppm, [Zn] ≦ 15.0 ppm, [Bi] ≦ 5.0
ppm, [Sn] ≤ 200 ppm, and the upper-bottom blowing composite blowing was applied to [C] concentration of 0.5 mass% or more. Further, when the [C] concentration was 0.2 mass% or less, the treatment was performed under reduced pressure, and the treatment was also performed under reduced pressure during the final refining period.

【0028】比較例は最終精錬後の目標値は本発明例と
同一であるが、脱炭開始時の[C]濃度、上吹き送酸量
比率、減圧処理時の真空度が本発明の条件外のものであ
る。脱炭精錬後からのクロム酸化物の還元および溶鋼の
成分および温度調整を行う最終精錬期でのピック・アッ
プは[Pb]で1.0〜2.0ppm、[Zn]で2.
0〜4.0ppm、[Bi]で1.0〜2.0ppm、
[Sn]で5〜10ppmの範囲であった。
In the comparative example, the target value after the final refining is the same as that of the example of the present invention, but the [C] concentration at the start of decarburization, the upper blowing acid ratio, and the degree of vacuum during depressurization are the conditions of the present invention. It is outside. The pick-up in the final refining period when reducing chromium oxides after decarburization refining and adjusting the composition and temperature of molten steel is 1.0 to 2.0 ppm for [Pb] and 2.
0-4.0 ppm, [Bi] 1.0-2.0 ppm,
[Sn] was in the range of 5 to 10 ppm.

【0029】本発明例では脱炭精錬時の不純物除去量が
定量化されているために、脱炭精錬開始時、つまり溶解
後の不純物濃度は高濃度状態にした。すなわち、低品位
の原料を用いて溶解を行った。一方、比較例では不純物
除去量が不明確なために、脱炭開始時の濃度が低めにな
るように、溶解原料を選択して用いた。実施例の結果を
表2に示す。表中の原料コストはNo.1の例を100
として換算した値である。比較例では除去が十分でない
ために、精錬終了後の目標値を達成してない場合があ
り、何らかの救済処置が必要であった。
In the examples of the present invention, the amount of impurities removed during decarburization refining was quantified, so the concentration of impurities at the start of decarburization refining, that is, after dissolution, was kept high. That is, the dissolution was performed using a low-quality raw material. On the other hand, in the comparative example, since the amount of impurities removed is unclear, the melting raw material was selected and used so that the concentration at the start of decarburization would be low. The results of the examples are shown in Table 2. The raw material cost in the table is No. 100 in 1
It is the value converted as. In the comparative example, since the removal was not sufficient, the target value after completion of refining might not be achieved in some cases, and some sort of rescue treatment was necessary.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】本発明によると、含クロム溶鋼の最終精
錬期において、Pb、Zn、Bi、Snの製品段階での
目標値外れをなくし、安定な不純物除去が可能となる。
さらに、Pb、Zn、Bi、Snの規制値外れを防止す
るための原料配合段階での規制を緩和できるので、大幅
な精錬コストの低減が可能となる。
EFFECTS OF THE INVENTION According to the present invention, in the final refining period of molten chromium-containing steel, it is possible to eliminate the deviation of the target values of Pb, Zn, Bi, and Sn at the product stage and to stably remove impurities.
Further, the regulation at the raw material blending stage for preventing deviation of the regulated values of Pb, Zn, Bi, and Sn can be relaxed, so that the refining cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様例の精錬容器を示す図であ
る。
FIG. 1 is a diagram showing a refining vessel according to an embodiment of the present invention.

【図2】本発明における脱炭開始時の[C]濃度の限定
理由を示す図である。
FIG. 2 is a diagram showing the reason for limiting the [C] concentration at the start of decarburization in the present invention.

【図3】本発明における上吹き送酸量比率の限定理由を
示す図である。
FIG. 3 is a diagram showing the reason for limiting the upper blowing acid amount ratio in the present invention.

【図4】本発明における[C]濃度0.2mass%以
下の領域における真空度の限定理由を示す図である。
FIG. 4 is a diagram showing the reason for limiting the degree of vacuum in the region where the [C] concentration is 0.2 mass% or less in the present invention.

【図5】本発明における最終精錬期の真空度の限定理由
を示す図である。
FIG. 5 is a diagram showing the reason for limiting the degree of vacuum in the final refining period in the present invention.

【図6】不純物元素の純金属状態での蒸気圧と溶湯温度
の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a vapor pressure of an impurity element in a pure metal state and a molten metal temperature.

【符号の説明】[Explanation of symbols]

1 精錬容器 2 底吹き羽口 3 排気フード 4 溶鋼 5 ガス 6 上吹きランス 1 Refining container 2 Bottom blowing tuyere 3 Exhaust hood 4 Molten steel 5 Gas 6 Top blowing lance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 央 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Iwasaki 3434 Shimada, Hikari City, Yamaguchi Prefecture Shin Nippon Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 含クロム溶鋼の脱炭処理における溶鋼中
のPb、Zn、Bi、Sn等の不純物の除去を促進する
ために、[C]濃度1.2mass%以上で脱炭処理を
開始し、かつ[C]濃度0.5mass%以上の領域で
は浴面上および浴面下より酸素ガスまたは酸素ガスを含
む混合ガスを供給する複合吹錬法で行い、[C]濃度
0.2mass%以下の領域では200Torr以下に
減圧して脱炭処理を行うことを特徴とする含クロム溶鋼
の不純物除去方法。
1. A decarburization treatment is started at a [C] concentration of 1.2 mass% or more in order to accelerate the removal of impurities such as Pb, Zn, Bi and Sn in the molten steel in the decarburization treatment of chromium-containing molten steel. And, in the region where the [C] concentration is 0.5 mass% or more, the compound blowing method in which oxygen gas or a mixed gas containing oxygen gas is supplied from above and below the bath surface, and the [C] concentration is 0.2 mass% or less In the region (1), the method for removing impurities from molten chromium-containing steel is characterized in that decarburization treatment is performed under a reduced pressure of 200 Torr or less.
【請求項2】 [C]濃度が0.5mass%以上の領
域で下記式を満足する条件で前記複合吹錬法を行うこ
とを特徴とする請求項1記載の含クロム溶鋼の不純物除
去方法。 OT /(OT +OB )≧0.3 …… OT ;上吹き送酸量(Nm3 /Hr) OB ;底吹き送酸量(Nm3 /Hr)
2. The method for removing impurities from molten chromium-containing steel according to claim 1, wherein the complex blowing method is performed in a region where the [C] concentration is 0.5 mass% or more under the condition that the following formula is satisfied. O T / (O T + O B ) ≧ 0.3 ... O T ; Top blown acid supply amount (Nm 3 / Hr) O B ; Bottom blown acid supply amount (Nm 3 / Hr)
【請求項3】 脱炭処理に続く最終精錬期を200To
rr以下に減圧して処理を行うことを特徴とする請求項
1記載の含クロム溶鋼の不純物除去方法。
3. The final refining period following decarburization treatment is 200To
The method for removing impurities from a chromium-containing molten steel according to claim 1, wherein the treatment is performed under a reduced pressure of rr or less.
JP11625293A 1993-05-18 1993-05-18 Method for removing impurities from chromium-containing molten steel Expired - Fee Related JP3230067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11625293A JP3230067B2 (en) 1993-05-18 1993-05-18 Method for removing impurities from chromium-containing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11625293A JP3230067B2 (en) 1993-05-18 1993-05-18 Method for removing impurities from chromium-containing molten steel

Publications (2)

Publication Number Publication Date
JPH06330144A true JPH06330144A (en) 1994-11-29
JP3230067B2 JP3230067B2 (en) 2001-11-19

Family

ID=14682533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11625293A Expired - Fee Related JP3230067B2 (en) 1993-05-18 1993-05-18 Method for removing impurities from chromium-containing molten steel

Country Status (1)

Country Link
JP (1) JP3230067B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959170A (en) * 2022-05-31 2022-08-30 达力普石油专用管有限公司 Method for reducing Pb content in carbon manganese steel produced by smelting all scrap steel in electric arc furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959170A (en) * 2022-05-31 2022-08-30 达力普石油专用管有限公司 Method for reducing Pb content in carbon manganese steel produced by smelting all scrap steel in electric arc furnace
CN114959170B (en) * 2022-05-31 2023-08-25 达力普石油专用管有限公司 Method for reducing Pb content in carbon manganese steel produced by smelting full scrap steel in electric arc furnace

Also Published As

Publication number Publication date
JP3230067B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
JP2999671B2 (en) Melting method of Ca-added steel
JP3606170B2 (en) Method for producing low nitrogen-containing chromium steel
JP3230067B2 (en) Method for removing impurities from chromium-containing molten steel
JP3333795B2 (en) Method for denitrification of molten metal and method for denitrification and decarburization
JP3220233B2 (en) Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel
WO2020152945A1 (en) Method for producing low-carbon ferromanganese
JP3099152B2 (en) Raw material blending method and smelting method for chromium-containing molten steel
JP3619283B2 (en) Method for producing medium carbon Al killed steel
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JPH06192719A (en) Method for removing impurity in chromium-containing molten steel
JP3158912B2 (en) Stainless steel refining method
KR100191010B1 (en) Oxygen refining method of low carbon steel
JPS62230953A (en) Manufacture of medium-or low-carbon ferromanganese
JP3439517B2 (en) Refining method of chromium-containing molten steel
JP2515059B2 (en) Decarburization refining method for molten steel containing chromium
JPH07173515A (en) Decarburization refining method of stainless steel
JP3567705B2 (en) Melting method for nickel-containing steel
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
JP3305313B2 (en) Decarburization method using RH degasser
JP3282544B2 (en) Demanganese method for high chromium molten iron alloy
JPH089730B2 (en) Decarburization refining method for molten steel containing chromium
JPH0841530A (en) Production of low aluminum and low sulfur stainless steel
JPH0885815A (en) Method for effectively refining molten chromium-containing steel using decarburized slag
JP3143764B2 (en) Method for removing impurities from chromium-containing molten steel
JP3820686B2 (en) Melting method of low nitrogen stainless steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010717

LAPS Cancellation because of no payment of annual fees