JP3619283B2 - Method for producing medium carbon Al killed steel - Google Patents

Method for producing medium carbon Al killed steel Download PDF

Info

Publication number
JP3619283B2
JP3619283B2 JP11766195A JP11766195A JP3619283B2 JP 3619283 B2 JP3619283 B2 JP 3619283B2 JP 11766195 A JP11766195 A JP 11766195A JP 11766195 A JP11766195 A JP 11766195A JP 3619283 B2 JP3619283 B2 JP 3619283B2
Authority
JP
Japan
Prior art keywords
molten steel
steel
degassing
vacuum
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11766195A
Other languages
Japanese (ja)
Other versions
JPH08291317A (en
Inventor
幹人 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11766195A priority Critical patent/JP3619283B2/en
Publication of JPH08291317A publication Critical patent/JPH08291317A/en
Application granted granted Critical
Publication of JP3619283B2 publication Critical patent/JP3619283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は炭素含有量0.08%以上の中炭素Alキルド鋼の製造方法に関するものである。
【0002】
【従来の技術】
従来、Alキルド鋼の製造方法としては、転炉において溶鋼をその鋼種によって決められた成分範囲内に、可能な限り合致するように吹錬をコントロールし、不可能な範囲については、種々の合金鉄を転炉からの出鋼中の溶鋼もしくは取鍋精錬炉中で溶鋼へ添加して、成分調整を行うものが一般的な方法であった。
【0003】
また、Alキルド鋼を真空脱ガス装置において精錬する方法として、特公昭56−50761号公報に開示されている方法は、転炉において溶鋼の炭素含有量を0.05%以上とし、出鋼中に合金鉄を添加しないか、もしくは少量のFe−Mnを添加して取鍋に移し、この溶鋼を真空脱ガス装置により、真空発生装置の設定真空度を10〜300mmHgとし、この範囲内で脱炭最盛期には設定真空度を低く調整し、脱炭の進行に対応して設定真空度を高く調整して、脱ガス処理を行い、この間にAlまたはAlとその他製品用途に応じて必要とする合金元素を添加し、成分調整を行うことが提案されている。
【0004】
【発明が解決しようとする課題】
上記特公昭56−50761号公報の方法には次の如き問題点を有する。
すなわち、炭素含有量0.10%以上の中炭素Alキルド鋼を製造するに際して、転炉より出鋼中に合金鉄を添加しないか、若しくは少量のFe−Mnのみ添加とした場合、真空脱ガス装置において成分調整するのに必要な合金鉄の量が多くなり、成分の制御性が悪化する。
【0005】
また通常、中炭素Alキルド鋼において脱炭反応を必要とするのは稀であるにも関わらず、未脱酸溶鋼を脱ガス処理することにより脱炭反応が生じてしまう。さらには、この脱炭反応の定量化の困難さにより、最終成分調整時の炭素濃度の制御性をも悪化させる原因となる。また前記特許公報の方法によると、未脱酸溶鋼の脱ガス処理により脱炭反応が生じ、溶鋼中の自由酸素濃度が低下した時に、AlまたはAlと製品用途に応じて必要な合金元素を添加し、成分調整を行うことが好ましいとしているが、この方法によると成分調整用Al添加時の溶鋼中の自由酸素濃度はまだ高い状態にあり、Al濃度を高い精度で制御するには適していない。
【0006】
【課題を解決するための手段】
本発明は前述した課題を解決するためになされたものであり、その要旨とするところは、転炉において溶鋼の吹止炭素含有量を0.05%以上とし、出鋼中に脱酸を行わずに取鍋に移すか、または出鋼中に少量のAlにより軽脱酸を行うとともにFe−Mn合金と加炭材を必要に応じ添加して取鍋に移し、この溶鋼を真空脱ガス処理装置において、設定真空度を溶鋼が円滑に循環する20〜150Torr程度に設定し、まずAl等の脱酸材により溶鋼中の自由酸素濃度を80ppm以下にした後、脱ガス処理を行うとともに、前記脱ガス処理中にAl、またはAlと製品の目標成分値に合わせるためのC、Mnの添加を行うことを特徴とする中炭素Alキルド鋼の製造方法である。
【0007】
【作用】
本発明の手段をとるための具体的な作用を以下詳細に記述する。
転炉における吹止炭素含有量を0.05%以上にするのは、前述の特公昭56−50761号公報記載の方法と同様であり、吹止炭素含有量が0.05%以下であると溶鋼が過酸化状態になるとともに、スラグ中の酸化鉄濃度が上昇し、必然的に転炉耐火物の溶損および鉄歩留りの低下を招くこととなる。
【0008】
また、出鋼中に脱酸を行わずに取鍋に移すか、または出鋼中に少量のAlにより軽脱酸を行うとともに、Fe−Mn合金と加炭材を必要に応じ添加して取鍋に移すものであるが、これは前記特許公報記載の方法では、脱ガス処理中に添加する成分調整用の合金量が大量になってしまい、成分の制御性の悪化および処理時間が延長してしまうので、これを防ぐためのものである。また転炉からの出鋼中に合金鉄を添加する場合においてAlにより軽脱酸するのは、特に加炭材を未脱酸溶鋼中に添加した場合に、急激にC+O→CO反応が生じ、突沸の危険性があるとともに、合金鉄の歩留りが極めて悪いためでもある。
但し、出鋼中に合金鉄を添加しない場合においては、脱酸する必要はなく、また脱ガス処理中にAlを添加した方がAlの歩留りが高いことを考慮し、出鋼中のAlは少量に抑制することが望ましい。
【0009】
次に溶鋼を取鍋に移した後、真空脱ガス処理装置において、設定真空度を溶鋼が循環する20〜150Torrに設定し、まずAl等の脱酸材により溶鋼中の自由酸素濃度を80ppm以下にする。これは前述した課題である未脱酸もしくは、軽脱酸の溶鋼を脱ガス処理装置において処理した際の、脱炭反応を抑制するため、および炭素、Al濃度を高精度に制御するためである。
【0010】
このことに関しては、本発明者らは過去の多くの実績について調査した。
すなわち、本発明者らは溶鋼中における自由酸素量と、加炭材添加処理前後差による炭素量のバラツキ(精度)について、その測定した値を図2に示した。
図2は所要とする炭素量について、それに見合った加炭材を添加したとき、目標とする値を零とし、それに対して高い時(+)、低い時(−)として、自由酸素濃度との関係をプロットしたものである。
【0011】
また、同様に溶鋼中の自由酸素量と添加Alについても同様の調査を行い、その値を示したのが図3である。
これらの図から明らかなように自由酸素量を80ppm以下にすると、夫々精度よく一定範囲内に納まっているのが判る。
従って、自由酸素濃度を80ppm以下としたのは、図2および図3に示したように酸素濃度が80ppm以下であれば、炭素、Al共に良好な精度範囲内に収まり、これらの制御性が充分発揮できることより決定したものである。
【0012】
このようにして脱ガス処理の初めに、溶鋼中自由酸素濃度を低下させておくと、脱ガス処理中の脱炭反応はほとんど生じなくなり、スプラッシュ等も発生しないことから、設定真空度は20〜150Torr程度の溶鋼が円滑に循環する真空度で実施できる。
しかしながら中炭素Alキルド鋼においても、稀に脱ガス処理前の炭素濃度が高く、脱炭が必要なケースが生じるが、このケースでは脱ガス処理のはじめのAl等の脱酸材の添加を中止するか、もしくは溶鋼に酸素を吹き込み溶鋼中自由酸素濃度を高位に保ち、脱炭反応を生じさせることにより対応する。
【0013】
【実施例】
本発明による実施例および従来例を表1に工程順に示す。これらは前述した図2、図3に示された過去の多くの実績の中から、代表的と思われるものを夫々実施例と比較例として示したものである。
(実施例1)
本発明による脱ガス処理パターンの一例を図1に示す。
図1はRH真空脱ガス装置を用いて、340tの中炭素アルミキルド鋼(〔C〕:0.11%,〔Mn〕:0.55%,〔P〕:0.02%以下,〔S〕:0.01%以下,Total〔Al〕:0.035%)の溶製を行ったものである。表1に示す成分の溶鋼を転炉から出鋼する際に、Alで軽脱酸を行うとともに、Fe−Mn合金および加炭材を添加して取鍋に移し、この溶鋼を真空脱ガス処理装置において、設定真空度100Torrに設定し、まずAlにより溶鋼中自由酸素濃度を80ppm狙いで脱酸して、真空脱ガスを行った。この後、AlとFe−Mn合金等の必要な合金元素を添加して、成分調整を行った。その結果、炭素濃度およびAl濃度を良好に制御することができた。
【0014】
(従来例1)
図1と同様のRH真空脱ガス装置を用いて、実施例と同様の組成の中炭素アルミキルド鋼340tの溶製を行ったものである。表1に示す成分の溶鋼を転炉から出鋼中に、合金鉄を添加せずに取鍋に移し、この溶鋼を真空脱ガス処理装置において、設定真空度100Torrに設定し真空脱ガスを行った。まず加炭材およびFe−Mn合金を添加して成分の一次調整を行い、溶鋼中自由酸素濃度が150ppmになった時点でAlを添加し、脱酸およびAlの成分調整を行った。その後に加炭材およびFe−Mn合金を添加して成分の微調整を行った。その結果炭素濃度は目標に対し、0.005%低く、Mn濃度は0.02%高く、またAl濃度は目標に対し、0.003%高くなった。
【0015】
【表1】

Figure 0003619283
【0016】
【発明の効果】
本発明によれば炭素含有量0.08%以上の中炭素Alキルド鋼を製造するに際し、溶鋼中炭素濃度およびAl濃度を高精度に制御することができ、産業上有益な発明である。
【図面の簡単な説明】
【図1】本発明の脱ガス処理パターンを示す図
【図2】本発明の効果を示す処理前の溶鋼中自由酸素濃度と炭素濃度の制御性を示すグラフ
【図3】本発明の効果を示す処理前の溶鋼中自由酸素濃度とアルミ濃度の制御性を示すグラフ[0001]
[Industrial application fields]
The present invention relates to a method for producing medium carbon Al killed steel having a carbon content of 0.08% or more.
[0002]
[Prior art]
Conventionally, as a method for producing Al killed steel, in the converter, the blown steel is controlled so as to match the molten steel within the component range determined by the type of steel as much as possible. A common method is to adjust the composition by adding iron to the molten steel in the steel from the converter or in the ladle refining furnace.
[0003]
Moreover, as a method of refining Al killed steel in a vacuum degassing apparatus, the method disclosed in Japanese Patent Publication No. 56-50761 is that the carbon content of molten steel is set to 0.05% or more in a converter, Do not add alloy iron or add a small amount of Fe-Mn and transfer to a ladle. Set the vacuum of the molten steel to 10 to 300 mmHg using a vacuum degassing device, and remove the molten steel within this range. During the peak period of charcoal, the set vacuum level is adjusted low, the set vacuum level is adjusted high according to the progress of decarburization, and degassing is performed. During this period, it is necessary according to the application of Al or Al and other products. It has been proposed to adjust the components by adding alloying elements.
[0004]
[Problems to be solved by the invention]
The method disclosed in Japanese Patent Publication No. 56-50761 has the following problems.
That is, when producing medium carbon Al killed steel with a carbon content of 0.10% or more, if no alloy iron is added to the steel output from the converter or only a small amount of Fe-Mn is added, vacuum degassing The amount of alloy iron required for adjusting the components in the apparatus increases, and the controllability of the components deteriorates.
[0005]
Moreover, although it is rare that a medium carbon Al killed steel requires a decarburization reaction, a decarburization reaction occurs by degassing the undeoxidized molten steel. Furthermore, the difficulty in quantifying the decarburization reaction causes deterioration in controllability of the carbon concentration during final component adjustment. In addition, according to the method of the above-mentioned patent publication, when decarburization reaction occurs due to degassing treatment of undeoxidized molten steel and the free oxygen concentration in molten steel is reduced, Al or Al and an alloy element necessary for the product application are added. However, according to this method, the free oxygen concentration in the molten steel at the time of adding the component adjusting Al is still high and is not suitable for controlling the Al concentration with high accuracy. .
[0006]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and the gist of the present invention is that the blown carbon content of the molten steel is set to 0.05% or more in the converter, and deoxidation is performed during the steel output. or transferred to a ladle or a small amount of Al in the tapping was added as needed Fe-Mn alloy and recarburizer performs light deoxidation transferred to the ladle without, the molten steel vacuum degassing treatment In the apparatus, the set vacuum is set to about 20 to 150 Torr through which the molten steel circulates smoothly, and first the free oxygen concentration in the molten steel is reduced to 80 ppm or less by a deoxidizing material such as Al, and then the degassing treatment is performed. It is a method for producing medium carbon Al killed steel, characterized in that during the degassing treatment, Al, or C and Mn are added to match Al and the target component value of the product.
[0007]
[Action]
Specific actions for taking the measures of the present invention are described in detail below.
The blowing carbon content in the converter is set to 0.05% or more, as in the method described in Japanese Patent Publication No. 56-50761, and the blowing carbon content is 0.05% or less. As the molten steel enters a peroxidized state, the iron oxide concentration in the slag increases, which inevitably leads to melting of the converter refractory and a decrease in iron yield.
[0008]
In addition, the steel is transferred to a ladle without performing deoxidation during steel output , or light deoxidation is performed with a small amount of Al during steel output, and an Fe-Mn alloy and a carburizing material are added as necessary. In the method described in the above-mentioned patent publication, the amount of the alloy for adjusting the component added during the degassing process becomes large, which deteriorates the controllability of the component and extends the processing time. This is to prevent this. In addition, when adding iron alloy to the steel output from the converter, light deoxidation with Al is particularly caused when a carburized material is added to the non-deoxidized molten steel, and a C + O → CO reaction occurs abruptly. This is because there is a risk of bumping and the yield of alloy iron is extremely poor.
However, in the case where alloyed iron is not added during the steel output, it is not necessary to deoxidize, and considering that the Al yield is higher when Al is added during the degassing process, the Al in the steel output is It is desirable to suppress to a small amount.
[0009]
Next, after the molten steel is transferred to the ladle, in the vacuum degassing apparatus, the set vacuum is set to 20 to 150 Torr through which the molten steel circulates. First, the free oxygen concentration in the molten steel is 80 ppm or less by a deoxidizing material such as Al. To. This is to suppress the decarburization reaction and to control the carbon and Al concentrations with high accuracy when the undeoxidized or lightly deoxidized molten steel, which is the above-described problem, is processed in the degassing apparatus. .
[0010]
In this regard, the inventors investigated a number of past achievements.
That is, the present inventors showed the measured value about the amount of free oxygen in molten steel, and the variation (accuracy) of the carbon amount due to the difference between before and after the addition of the carburized material, as shown in FIG.
Fig. 2 shows the required amount of carbon, when the appropriate amount of carburizing material is added, the target value is zero, and when it is high (+) and low (-), the free oxygen concentration The relationship is plotted.
[0011]
Similarly, the same investigation was performed on the amount of free oxygen and added Al in the molten steel, and the values are shown in FIG.
As is clear from these figures, it can be seen that when the free oxygen amount is 80 ppm or less, each is within a certain range with high accuracy.
Therefore, the free oxygen concentration is set to 80 ppm or less, as shown in FIGS. 2 and 3, if the oxygen concentration is 80 ppm or less, both carbon and Al are within a good accuracy range, and these controllability is sufficient. It is determined from what can be demonstrated.
[0012]
In this way, if the free oxygen concentration in the molten steel is reduced at the beginning of the degassing treatment, the decarburization reaction during the degassing treatment hardly occurs and no splash or the like occurs. It can be performed at a degree of vacuum in which molten steel of about 150 Torr circulates smoothly.
However, even in medium carbon Al killed steel, the carbon concentration before degassing treatment is rarely high, and there is a case where decarburization is necessary. Or by blowing oxygen into the molten steel to keep the free oxygen concentration in the molten steel high and causing a decarburization reaction.
[0013]
【Example】
Examples and conventional examples according to the present invention are shown in Table 1 in the order of steps. These are shown as examples and comparative examples, respectively, which are considered to be representative from the many past results shown in FIG. 2 and FIG.
(Example 1)
An example of a degassing pattern according to the present invention is shown in FIG.
FIG. 1 shows a 340-t medium carbon aluminum killed steel ([C]: 0.11%, [Mn]: 0.55%, [P]: 0.02% or less, [S] using an RH vacuum degassing apparatus. : 0.01% or less, Total [Al]: 0.035%). When the molten steel of the components shown in Table 1 is removed from the converter, light deoxidation is performed with Al, and an Fe-Mn alloy and a carburizing material are added and transferred to a ladle. The molten steel is vacuum degassed. In the apparatus, the set vacuum degree was set to 100 Torr, and first, deoxidation was performed with Al aiming at a free oxygen concentration in molten steel of 80 ppm, and vacuum degassing was performed. Thereafter, necessary alloy elements such as Al and Fe—Mn alloy were added to adjust the components. As a result, the carbon concentration and the Al concentration could be controlled well.
[0014]
(Conventional example 1)
A medium carbon aluminum killed steel 340t having the same composition as in the example was melted using the same RH vacuum degassing apparatus as in FIG. The molten steel having the components shown in Table 1 is transferred from the converter to the ladle without adding alloyed iron, and the molten steel is vacuum degassed with a vacuum setting of 100 Torr in a vacuum degassing apparatus. It was. First, a carburizing material and an Fe—Mn alloy were added to perform primary adjustment of components, and when free oxygen concentration in molten steel reached 150 ppm, Al was added to perform deoxidation and adjustment of Al components. Thereafter, a carburizing material and an Fe—Mn alloy were added to finely adjust the components. As a result, the carbon concentration was 0.005% lower than the target, the Mn concentration was 0.02% higher, and the Al concentration was 0.003% higher than the target.
[0015]
[Table 1]
Figure 0003619283
[0016]
【The invention's effect】
According to the present invention, when producing a medium carbon Al killed steel having a carbon content of 0.08% or more, the carbon concentration and Al concentration in the molten steel can be controlled with high accuracy, which is an industrially useful invention.
[Brief description of the drawings]
FIG. 1 is a diagram showing a degassing treatment pattern of the present invention. FIG. 2 is a graph showing the controllability of free oxygen concentration and carbon concentration in molten steel before the treatment showing the effect of the present invention. Graph showing controllability of free oxygen concentration and aluminum concentration in molten steel before treatment

Claims (1)

転炉において溶鋼の吹止炭素含有量を0.05%以上とし、出鋼中に脱酸を行わずに取鍋に移すか、または出鋼中に少量のAlにより軽脱酸を行うとともにFe−Mn合金と加炭材を必要に応じ添加して取鍋に移し、この溶鋼を真空脱ガス処理装置において、設定真空度を溶鋼が円滑に循環する20〜150Torr程度に設定し、まずAl等の脱酸材により溶鋼中の自由酸素濃度を80ppm以下にした後、脱ガス処理を行うとともに、前記脱ガス処理中にAl、またはAlと製品の目標成分値に合わせるためのC、Mnの添加を行うことを特徴とする中炭素Alキルド鋼の製造方法。In the converter, the blown carbon content of the molten steel is set to 0.05% or more, and it is transferred to a ladle without deoxidization during the steel output, or light deoxidation is performed with a small amount of Al during the steel output and Fe. -Mn alloy and carburized material are added as necessary and transferred to a ladle. In the vacuum degassing apparatus, the set vacuum is set to about 20 to 150 Torr where the molten steel circulates smoothly. After deoxidizing the free oxygen concentration in the molten steel to 80 ppm or less, degassing is performed, and during the degassing process, Al, or addition of C and Mn to match the target component values of Al and the product A process for producing medium carbon Al killed steel, characterized in that
JP11766195A 1995-04-20 1995-04-20 Method for producing medium carbon Al killed steel Expired - Lifetime JP3619283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11766195A JP3619283B2 (en) 1995-04-20 1995-04-20 Method for producing medium carbon Al killed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11766195A JP3619283B2 (en) 1995-04-20 1995-04-20 Method for producing medium carbon Al killed steel

Publications (2)

Publication Number Publication Date
JPH08291317A JPH08291317A (en) 1996-11-05
JP3619283B2 true JP3619283B2 (en) 2005-02-09

Family

ID=14717166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11766195A Expired - Lifetime JP3619283B2 (en) 1995-04-20 1995-04-20 Method for producing medium carbon Al killed steel

Country Status (1)

Country Link
JP (1) JP3619283B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548273B2 (en) * 1995-04-20 2004-07-28 新日本製鐵株式会社 Melting method of ultra low carbon steel
KR100916099B1 (en) * 2002-12-27 2009-09-08 주식회사 포스코 Method of refining molten steel to manufacture semi-low carbon steel
CN100436627C (en) * 2006-02-11 2008-11-26 湖南华菱涟源钢铁有限公司 Process for producing C-Mn-Al killed steel
JP5005476B2 (en) * 2007-08-28 2012-08-22 株式会社神戸製鋼所 Manufacturing method of high cleanliness steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316314A (en) * 1976-07-28 1978-02-15 Nippon Steel Corp Preparation of a1 killed molten steel for continuous casting
JPS5496414A (en) * 1978-01-17 1979-07-30 Nippon Steel Corp Manufacture of molten steel for continuous casting
JPS57192214A (en) * 1981-05-18 1982-11-26 Sumitomo Electric Ind Ltd Molten steel-refining method and apparatus therefor
JPH05263121A (en) * 1992-03-19 1993-10-12 Nippon Steel Corp Production of high carbon and high purity molten steel

Also Published As

Publication number Publication date
JPH08291317A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
JP6040957B2 (en) Method of melting high S low N alloy steel
JP3619283B2 (en) Method for producing medium carbon Al killed steel
JP2999671B2 (en) Melting method of Ca-added steel
JP6780695B2 (en) Melting method of ultra-low sulfur low nitrogen steel
JP7126103B2 (en) Melting method of high manganese steel
JP3279161B2 (en) Melting method of ultra low carbon high manganese steel
JP3548273B2 (en) Melting method of ultra low carbon steel
JP3752801B2 (en) Method for melting ultra-low carbon and ultra-low nitrogen stainless steel
JP5910830B2 (en) Melting method of low carbon high manganese steel
JPH01301815A (en) Smelting method of low carbon steel
JP3282531B2 (en) Melting method of high clean steel
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
JPH10317049A (en) Method for melting high clean steel
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JP3577357B2 (en) Method for producing ultra-low carbon steel with excellent surface properties
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
CN113265511B (en) Smelting method of low-nitrogen steel
JP3635122B2 (en) Method for producing ultra-low carbon steel with excellent surface properties
JP2001107133A (en) Manufacture of high phosphorus extra low carbon steel
JP3305313B2 (en) Decarburization method using RH degasser
JP4066674B2 (en) Manufacturing method of manganese-containing ultra-low carbon steel
JP3253138B2 (en) Melting method of high cleanness ultra low carbon steel
JP2002322508A (en) METHOD FOR PRODUCING EXTRA LOW Ti STEEL
JPH08225819A (en) Denitrization of steel melted in electric furnace
JP3230067B2 (en) Method for removing impurities from chromium-containing molten steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term