JP3305313B2 - Decarburization method using RH degasser - Google Patents

Decarburization method using RH degasser

Info

Publication number
JP3305313B2
JP3305313B2 JP11024490A JP11024490A JP3305313B2 JP 3305313 B2 JP3305313 B2 JP 3305313B2 JP 11024490 A JP11024490 A JP 11024490A JP 11024490 A JP11024490 A JP 11024490A JP 3305313 B2 JP3305313 B2 JP 3305313B2
Authority
JP
Japan
Prior art keywords
ppm
decarburization
molten steel
oxygen
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11024490A
Other languages
Japanese (ja)
Other versions
JPH049421A (en
Inventor
嘉英 加藤
誠司 鍋島
参 中戸
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP11024490A priority Critical patent/JP3305313B2/en
Publication of JPH049421A publication Critical patent/JPH049421A/en
Application granted granted Critical
Publication of JP3305313B2 publication Critical patent/JP3305313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、RH脱ガス装置を用いて極低炭素鋼を溶製す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for melting ultra-low carbon steel using an RH degassing apparatus.

<従来の技術> 冷延鋼板の材質向上ならびに焼鈍プロセスの連続化に
伴い、C濃度を極力低下させた極低炭素鋼の溶製方法が
種々開示されている。極低炭素鋼の一般的な溶製法は転
炉〜RH脱ガスプロセスである。
<Prior Art> Various methods for melting ultra-low carbon steels in which the C concentration is reduced as much as possible with the improvement in the quality of cold-rolled steel sheets and the continuation of the annealing process have been disclosed. A common method for producing ultra-low carbon steel is a converter to RH degassing process.

この方法はC200〜500ppm、O300〜700ppmで転炉
を出鋼した後、Pcoの低下によってさらに低炭素濃度域
までの優先脱炭が可能なRH脱ガス装置で脱炭し、C≦20
ppmまで迅速に脱炭する方法であり、その後、還元剤で
あるAl等を真空槽内に添加して溶鋼の脱酸処理を行う。
In this method, after the steel is turned out of the converter at 200 to 500 ppm of C and 300 to 700 ppm of O, decarbonization is performed by an RH degassing device capable of preferential decarburization up to a low carbon concentration region by lowering Pco.
It is a method of quickly decarburizing to ppm, and thereafter, deoxidizing the molten steel by adding Al or the like as a reducing agent into a vacuum chamber.

しかしながら、極低炭素濃度の溶鋼を迅速に得る方法
は簡単でなく、従来から種々の試みがなされている。例
えば、井上ら:CAMP−ISIJ、vol.2(1989)、P.1226〜12
27にはRH真空槽の溶鋼に浸漬羽口からArガスを吹きこ
み、極低炭素濃度域での脱炭速度促進の技術を開示して
いる。また、特開昭63−190113号公報に開示されてるよ
うに、RH処理開始からC=30ppmまでO≧400ppmとし、
その後O=50〜200ppmとして脱炭を継続し、しかる後、
完全脱酸処理を行う方法がある。
However, a method for rapidly obtaining molten steel having an extremely low carbon concentration is not easy, and various attempts have been made in the past. For example, Inoue et al .: CAMP-ISIJ, vol. 2 (1989), P. 1226-112.
No. 27 discloses a technique for injecting Ar gas from molten tuyere into molten steel in an RH vacuum tank to accelerate the decarburization rate in an extremely low carbon concentration region. Further, as disclosed in JP-A-63-190113, O ≧ 400 ppm from the start of RH treatment to C = 30 ppm,
After that, decarburization was continued with O = 50 to 200 ppm.
There is a method of performing a complete deoxidation treatment.

<発明が解決しようとする課題> 前者の文献に開示された技術では極低炭素鋼処理以外
のRH脱ガス処理中もArガス吹込みを行わなければなら
ず、不必要な処理の費用がかさみコスト高となる。
<Problems to be Solved by the Invention> In the technology disclosed in the former document, Ar gas must be injected even during RH degassing other than ultra-low carbon steel processing, which increases the cost of unnecessary processing. The cost is high.

また、特開昭63−190113号公報に開示された方法で
は、C=30ppmを基準としてOをその前後で400ppm以上
から50〜200ppmに変化させる方法であるが、C濃度に
応じて脱炭速度の大幅な向上を図ることができない(単
に一段階の変更)。C=30ppmと極低炭素領域で初め
て還元剤を添加しているので、脱炭終了後の脱酸処理
(キルド処理)時間の大幅な短縮を図ることができな
い、という問題があった。
In the method disclosed in JP-A-63-190113, O is changed from 400 ppm or more to 50 to 200 ppm before and after C = 30 ppm, but the decarburization rate is changed according to the C concentration. Cannot be significantly improved (just a one-step change). Since the reducing agent was added for the first time in the ultra-low carbon region of C = 30 ppm, there was a problem that the time for deoxidizing treatment (killing treatment) after the decarburization was completed could not be significantly reduced.

本発明は、前記問題点を解決した極低炭素鋼の迅速処
理技術を提供するためになされたものである。
The present invention has been made to provide a technique for rapidly processing ultra-low carbon steel that solves the above problems.

<課題を解決するための手段> 本発明は、RH真空脱ガス装置を用いて溶鋼の脱炭処
理を行う際に、前記溶鋼中のCおよびOの測定値または
予測値に基づいて、O≦1.3C+35の範囲では前記溶鋼に
脱炭用の酸素を供給し、1.3C+200≦Oの範囲では還元
剤を供給して、下記(1)式を満足させながらC≦20pp
mまで脱炭することを特徴とするRH脱ガス装置による脱
炭方法で、 記 1.3C+35≦O≦1.3C+200……(1) ここに、O:溶鋼中酸素濃度(ppm)、 C:溶鋼中炭素濃度(ppm)。
<Means for Solving the Problems> According to the present invention, when performing decarburization treatment of molten steel using an RH vacuum degassing apparatus, based on measured or predicted values of C and O in the molten steel, O ≦ In the range of 1.3C + 35, oxygen for decarburization is supplied to the molten steel, and in the range of 1.3C + 200 ≦ O, a reducing agent is supplied, and C ≦ 20pp while satisfying the following formula (1).
1.3C + 35 ≦ O ≦ 1.3C + 200 (1) where: O: oxygen concentration in molten steel (ppm), C: in molten steel Carbon concentration (ppm).

かつ、脱炭処理前の溶鋼中の炭素濃度が200ppm以上50
0ppm以下、酸素濃度が300ppm以上700ppm以下であること
を特徴とする前項記載のRH脱ガス装置による脱炭方法
である。
In addition, the carbon concentration in the molten steel before the decarburization treatment is 200 ppm or more and 50
The decarburization method using the RH degassing device according to the preceding paragraph, wherein the oxygen concentration is 0 ppm or less and the oxygen concentration is 300 ppm or more and 700 ppm or less.

<作用> 本発明を具体的に説明する。<Operation> The present invention will be specifically described.

第4図は通常のRH法による極低炭素鋼処理時のC推移
の一例である。この例では、20分間のリムド処理(脱炭
処理)後に還元剤(Al)を投入して鋼中のフリー酸素を
なくした後、10分間キルド処理を行い、鋼中のトータル
酸素濃度を15〜30ppm程度まで低下させる。この方法で
はキルド処理時間が短いと鋼中のトータル酸素濃度は高
くなり、鋼板でのふくれ欠陥等が多発するので、還元剤
投入後一定時間が必要である。
FIG. 4 shows an example of the transition of carbon during the treatment of ultra-low carbon steel by the normal RH method. In this example, after reducing the free oxygen in the steel by adding a reducing agent (Al) after the limd treatment (decarburization treatment) for 20 minutes, a killing treatment is performed for 10 minutes to reduce the total oxygen concentration in the steel to 15 to Reduce to about 30ppm. In this method, if the killing treatment time is short, the total oxygen concentration in the steel increases, and blistering defects and the like occur frequently in the steel sheet. Therefore, a certain time is required after the introduction of the reducing agent.

第5図は、通常のRH脱ガス処理時の溶鋼中CとOの関
係を示した特性図である。脱炭の進行とともに酸素濃度
は若干低下するが、取鍋スラグからの酸素供給があるの
で同図に示したC+O→COの量論関係線ほどの低下はな
い。
FIG. 5 is a characteristic diagram showing the relationship between C and O in molten steel during normal RH degassing. Although the oxygen concentration slightly decreases with the progress of decarburization, there is no decrease as much as the stoichiometric relation line of C + O → CO shown in FIG.

かかる第5図のC−O推移を詳細に調査した結果、溶
鋼中のOはCとの反応によって脱炭を生じせしめると同
時に、鋼中で表面活性元素として作用するので、脱炭反
応を超える過剰のOが存在する時は、Oによる脱炭の
他、Oの表面活性作用によりOが溶鋼との界面に吸着す
るので、脱炭速度を低下せしめるという知見が得られ
た。
As a result of investigating the transition of CO in FIG. 5 in detail, O in the molten steel causes decarburization by reaction with C, and at the same time, acts as a surface active element in the steel. It has been found that when excess O is present, in addition to decarburization by O, O is adsorbed on the interface with the molten steel due to the surface activation action of O, thereby reducing the decarburization rate.

そこで、C濃度に応じてO濃度をコントロールするこ
とによって脱炭用の酸素を必要にして十分なだけ供給
し、しかも脱炭を全C濃度域で迅速に生じせしめる方法
を発明するに至ったのである。
Therefore, the present inventors have invented a method of controlling the O concentration in accordance with the C concentration so that oxygen for decarburization is required and supplied sufficiently and the decarburization is promptly caused in the entire C concentration range. is there.

本発明によれば、溶鋼中のOをCの関数として次式に
示す領域にコントロールして、所定の極低炭濃度まで処
理したものである(第1図参照)。
According to the present invention, O in the molten steel is controlled as a function of C in a region represented by the following equation, and is processed to a predetermined extremely low carbon concentration (see FIG. 1).

1.3C+35≦O≦1.3C+200 ……(1) ここに、O:溶鋼中酸素濃度(ppm)、 C:溶鋼中炭素濃度(ppm)。 1.3C + 35 ≦ O ≦ 1.3C + 200 (1) Here, O: oxygen concentration in molten steel (ppm), C: carbon concentration in molten steel (ppm).

かかるコントロールによって脱炭が初期から極低炭
素濃度領域まで迅速に進行すること、キルド処理時間
を短縮できること、などの利点が生じる。
By such a control, advantages such as rapid progress of decarburization from the initial stage to the extremely low carbon concentration region and reduction of the killing time can be obtained.

Oのコントロール方法は、O≦1.3C+35、の領域では
真空槽内の溶鋼に酸素を含むガスを供給し、1.3C+200
≦O、の酸素過剰となった脱炭反応速度が低下する領域
では真空槽内の溶鋼に還元剤を添加して過剰酸素を調整
する。
The method of controlling O is as follows: In the region of O ≦ 1.3C + 35, supply gas containing oxygen to molten steel in the vacuum chamber,
In a region where the decarburization reaction rate becomes excessive oxygen of ≤O, the excess oxygen is adjusted by adding a reducing agent to the molten steel in the vacuum chamber.

このためには溶鋼の連続測定によるC,Oの測定値また
は予測値にもとづいて、酸素ガスの供給速度や時間を調
節したり、還元剤の投入量や投入パターンを調整する。
For this purpose, the supply rate and time of the oxygen gas are adjusted, and the input amount and the input pattern of the reducing agent are adjusted based on the measured or predicted values of C and O obtained by continuous measurement of the molten steel.

脱炭末期で、鋼中酸素は鋼中炭素に比べて過剰(第5
図参照)となるので、本発明では、1.3C+200≧Oの範
囲になるように還元剤を連続的または間欠的に投入す
る。この時期は鋼中のトータル酸素の除去処理(通常は
キルド処理のみで行う)も兼ねるので、フリー酸素を完
全に除去した後のキルド処理時間を短縮することができ
る。
At the end of decarburization, oxygen in steel is excessive compared to carbon in steel (fifth
In the present invention, the reducing agent is continuously or intermittently charged so as to satisfy the range of 1.3C + 200 ≧ O. At this time, since the total oxygen in the steel is also removed (usually only by killing), the killing time after completely removing free oxygen can be shortened.

また、本発明は、特開昭63−190113号公報のようにC
=30ppmを基準として酸素を400ppm以上から50〜200ppm
に変化させる方法に比べて、連続的に酸素をコントロー
ルする点で全く異なるものである。
In addition, the present invention relates to
= Oxygen from 400 ppm or more to 50 to 200 ppm based on 30 ppm
This method is completely different from the method of changing oxygen in that oxygen is continuously controlled.

<実施例> 以下に実施例および比較例を示す。<Examples> Examples and comparative examples are shown below.

実施例および比較例はいずれも、溶鋼処理量は290〜3
00t、処理前の化学組成はC=0.020〜0.05重量%(以下
%と略す)、Mn=0.05〜0.15%、P=0.01〜0.02%、S
=0.004〜0.006%、N=0.0015〜0.002%、O=0.03〜
0.07%である。
In each of the examples and comparative examples, the molten steel processing amount was 290 to 3
00t, the chemical composition before treatment is C = 0.020-0.05% by weight (hereinafter abbreviated as%), Mn = 0.05-0.15%, P = 0.01-0.02%, S
= 0.004 to 0.006%, N = 0.0015 to 0.002%, O = 0.03 to
0.07%.

溶鋼温度は処理前1590〜1610℃、処理後1590〜1600℃
とした。なお、処理後とはキルド処理後である。還流ガ
ス流量は2000N/min一定、キルド処理時の真空度は0.4
〜0.5torrである。
Molten steel temperature is 1590 ~ 1610 ℃ before treatment, 1590 ~ 1600 ℃ after treatment
And Note that “after processing” means after killing processing. The reflux gas flow rate is constant at 2000 N / min, and the degree of vacuum during the killing process is 0.4
~ 0.5 torr.

なお、Cはカントバック分析で、Oは固体電解質を用
いて測定した。
Note that C was measured by Cantback analysis, and O was measured using a solid electrolyte.

実施例および比較例のC推移およびC−O関係を第2
図、第3図に示す。第2図から実施例1および2のリム
ド処理時間はC=16ppmで15分間となり、しかもキルド
処理時間は5分間でトータル酸素が15〜17ppmとなって
いるのに対し、比較例では20分のリムド処理時間にもか
かわらずC=25ppmにしかならず、さらにキルド処理10
分でトータル酸素は23ppmであった。
The C transition and the CO relationship of the example and the comparative example are shown in the second.
FIG. 3 and FIG. From FIG. 2, the rimmed treatment time of Examples 1 and 2 is 15 minutes at C = 16 ppm, and the killed treatment time is 5 minutes and the total oxygen is 15 to 17 ppm, whereas the comparative example is 20 minutes. Despite the rimmed processing time, C becomes only 25 ppm, and the killed processing 10
The total oxygen in a minute was 23 ppm.

第3図からわかるように実施例1および2ともにC−
Oの関係が処理開始時期を除いて斜線領域内に入ってい
る。第3図の▲,●印はRH処理前の化学組成であり斜線
領域内にない。
As can be seen from FIG. 3, both Examples 1 and 2 have C-
The relationship of O is in the shaded area except for the processing start time. The symbols 3 and ● in FIG. 3 indicate the chemical compositions before the RH treatment and are not in the shaded region.

通常、転炉出鋼時の炭素濃度が200〜500ppmの場合、
酸素濃度は300〜700ppmである。転炉の出鋼時、C<200
ppmでO>700ppmの場合、スラグの酸化度が過剰とな
り、RH処理後の酸素濃度が高くなる。また、転炉での負
荷が大きくなり、得策ではない。一方、C>500ppm、O
<300ppmだと酸素を目標レベルに上げるのに時間を要
し、しかも脱炭量が多くなるのでRHの負荷が大きくな
る。したがって、本発明における適正な脱炭処理前のC,
Oレベルは、それぞれ200ppm≦C≦500ppm,300ppm≦O≦
700ppmである。
Usually, when the carbon concentration at the time of converter tapping is 200 to 500 ppm,
The oxygen concentration is between 300 and 700 ppm. When tapping the converter, C <200
When O> 700 ppm in ppm, the degree of oxidation of the slag becomes excessive, and the oxygen concentration after the RH treatment increases. In addition, the load on the converter increases, which is not a good idea. On the other hand, C> 500ppm, O
If it is <300 ppm, it takes time to raise the oxygen to the target level, and the load of RH increases because the amount of decarburization increases. Therefore, C, before proper decarburization treatment in the present invention,
O level is 200ppm ≦ C ≦ 500ppm, 300ppm ≦ O ≦
700 ppm.

実施例、比較例での上吹きランスからの槽内酸素吹き
量およびAl投入量を第1表に示す。
Table 1 shows the amount of oxygen blown into the tank from the top blowing lance and the amount of Al charged in the examples and comparative examples.

なお、酸素吹き流量は50〜60Nm3/min、Al投入速度は
5〜20kg/minの範囲とした。また、別の実施例および比
較例の結果を第2表に示す。
The oxygen blowing flow rate was in the range of 50 to 60 Nm 3 / min, and the Al charging rate was in the range of 5 to 20 kg / min. Table 2 shows the results of other examples and comparative examples.

このように本発明方法によると極低炭素鋼の迅速脱
炭、脱酸が可能となった。
Thus, according to the method of the present invention, rapid decarburization and deoxidation of ultra-low carbon steel became possible.

<発明の効果> 本発明によると、極低炭素鋼の迅速かつ経済的な溶製
が可能となった。
<Effects of the Invention> According to the present invention, rapid and economical melting of ultra-low carbon steel has become possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明におけるC−Oの領域を示す特性図、
第2図は、実施例、比較例におけるC推移を示す特性
図、第3図は、実施例、比較例におけるC−Oの関係を
示す特性図、第4図は、通常のRH処理時のC推移を示す
特性図、第5図は、通常のRH処理時のC−Oとの関係を
示す特性図である。
FIG. 1 is a characteristic diagram showing a region of CO in the present invention,
FIG. 2 is a characteristic diagram showing the transition of C in the example and the comparative example, FIG. 3 is a characteristic diagram showing the relationship of CO in the example and the comparative example, and FIG. FIG. 5 is a characteristic diagram showing the transition of C, and FIG. 5 is a characteristic diagram showing the relationship with CO during normal RH processing.

フロントページの続き (72)発明者 中戸 参 千葉県千葉市川崎町1番地 川崎製鉄株 式会社技術研究本部内 (72)発明者 藤井 徹也 千葉県千葉市川崎町1番地 川崎製鉄株 式会社技術研究本部内Continuing from the front page (72) Inventor: Santo Nakato 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Corporation Research and Development Headquarters (72) Inventor Tetsuya Fujii 1-Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Corporation Research headquarters

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】RH真空脱ガス装置を用いて溶鋼の脱炭処理
を行う際に、前記溶鋼中のCおよびOの測定値または予
測値に基づいて、O≦1.3C+35の領域では前記溶鋼に脱
炭用の酸素を供給し、1.3C+200≦Oの領域では還元剤
を供給して、下記(1)式を満足させながらC≦20ppm
まで脱炭することを特徴とするRH脱ガス装置による脱炭
方法。 記 1.3C+35≦O≦1.3C+200 ……(1) ここに、O:溶鋼中酸素濃度(ppm) C:溶鋼中炭素濃度(ppm)
When performing decarburization processing of molten steel using an RH vacuum degassing apparatus, the molten steel is desorbed in the region of O ≦ 1.3C + 35 based on the measured or predicted value of C and O in the molten steel. Supply oxygen for decarburization, and supply a reducing agent in the region of 1.3C + 200 ≦ O, and satisfy C ≦ 20ppm while satisfying the following formula (1).
A decarburization method using an RH degassing device, characterized in that decarburization is performed up to a maximum. 1.3C + 35 ≦ O ≦ 1.3C + 200 (1) Where, O: Oxygen concentration in molten steel (ppm) C: Carbon concentration in molten steel (ppm)
【請求項2】脱炭処理前の溶鋼中の炭素濃度が200ppm以
上500ppm以下、酸素濃度が300ppm以上700ppm以下である
ことを特徴とする請求項1記載のRH脱ガス装置による脱
炭方法。
2. The decarburization method according to claim 1, wherein the carbon concentration in the molten steel before the decarburization treatment is 200 ppm or more and 500 ppm or less, and the oxygen concentration is 300 ppm or more and 700 ppm or less.
JP11024490A 1990-04-27 1990-04-27 Decarburization method using RH degasser Expired - Fee Related JP3305313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11024490A JP3305313B2 (en) 1990-04-27 1990-04-27 Decarburization method using RH degasser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11024490A JP3305313B2 (en) 1990-04-27 1990-04-27 Decarburization method using RH degasser

Publications (2)

Publication Number Publication Date
JPH049421A JPH049421A (en) 1992-01-14
JP3305313B2 true JP3305313B2 (en) 2002-07-22

Family

ID=14530765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11024490A Expired - Fee Related JP3305313B2 (en) 1990-04-27 1990-04-27 Decarburization method using RH degasser

Country Status (1)

Country Link
JP (1) JP3305313B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036877A (en) 1991-06-27 2000-03-14 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material

Also Published As

Publication number Publication date
JPH049421A (en) 1992-01-14

Similar Documents

Publication Publication Date Title
JP3305313B2 (en) Decarburization method using RH degasser
JP3279161B2 (en) Melting method of ultra low carbon high manganese steel
US20170175212A1 (en) Argon oxygen decarburization refining method for molten austenitic stainless steel
JP3752801B2 (en) Method for melting ultra-low carbon and ultra-low nitrogen stainless steel
JP3619283B2 (en) Method for producing medium carbon Al killed steel
JPH01301815A (en) Smelting method of low carbon steel
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JPH06330148A (en) Method for melting low n steel in vacuum refining furnace
JP3273205B2 (en) Decarburization refining method of chromium-containing molten steel
KR100191010B1 (en) Oxygen refining method of low carbon steel
JP7269485B2 (en) Melting method of high nitrogen stainless molten steel
JP3807297B2 (en) Method for producing ultra-low carbon steel with high nitrogen concentration
JPH08283823A (en) Production of dead soft steel excellent in surface property
JPH08291319A (en) Method for smelting dead-soft steel
JP2795513B2 (en) Decarburization refining method of chromium-containing molten steel
JP3412924B2 (en) Refining method of chromium-containing molten steel
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
JPH089730B2 (en) Decarburization refining method for molten steel containing chromium
JP3734736B2 (en) Method of melting ultra-low carbon steel
JP2021070855A (en) Steel smelting method
JPH0619102B2 (en) Ultra low carbon steel melting method
JP2923182B2 (en) Melting method of ultra low carbon steel
JPH0543930A (en) Method for melting dead soft steel under atmospheric pressure
JPH06330144A (en) Method for removing impurity in chromium-containing molten steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees