JP3734736B2 - Method of melting ultra-low carbon steel - Google Patents
Method of melting ultra-low carbon steel Download PDFInfo
- Publication number
- JP3734736B2 JP3734736B2 JP2001312957A JP2001312957A JP3734736B2 JP 3734736 B2 JP3734736 B2 JP 3734736B2 JP 2001312957 A JP2001312957 A JP 2001312957A JP 2001312957 A JP2001312957 A JP 2001312957A JP 3734736 B2 JP3734736 B2 JP 3734736B2
- Authority
- JP
- Japan
- Prior art keywords
- decarburization
- slag
- molten steel
- ladle slag
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、真空脱ガスによって脱炭処理しつつ極低炭素鋼を溶製する方法に関するものである。
【0002】
【従来の技術】
極低炭素鋼を溶製するに当たっては、転炉で溶銑中に酸素を吹き込み、溶銑中の炭素濃度を0.03%程度まで低減させた後、脱酸剤を添加せずに出鋼するのが一般的である。これは、その後循環脱ガス装置(RH装置)などの真空脱ガス装置で、溶鋼中に残存するOとCを反応させて脱炭させることによって、炭素濃度を0.010%以下に低減した溶鋼が得られるからである。
【0003】
例えば、特許第2690350号には、真空脱ガスによる脱炭処理(以下、「真空脱炭処理」と呼ぶことがある)において脱炭速度を低下させることなく鋼中介在物を低減させる方法として、真空脱炭処理前の取鍋スラグ中の総鉄量(T.Fe)(以下、「(T.Fe)」と略記することがある)を0.5〜6.0%にする技術が提案されている。この技術では、真空脱炭処理工程において、脱炭速度を低下させずに、スラグ中の(T.Fe)と溶鋼中Alとの反応を最小限にして溶鋼中の介在物個数を低減しようとするものである。
【0004】
しかしながら、こうした技術に基づいて、真空脱炭処理前の取鍋スラグ中の(T.Fe)を6.0%以下にした場合には、脱炭後までに(T.Fe)は、増加することになる(後記図1参照)。これは、溶鋼中の酸素が脱炭に使用されずに、スラグ中に移行していることを意味し、真空脱炭に使用する酸素量が減少するからである。こうした場合には、真空脱炭素処理の時間延長に繋がり、生産性が低下するという問題が生じる。こうしたことから、高い清浄度を維持した状態で生産性良く極低炭素鋼を溶製する技術の確立が望まれているのが実情である。
【0005】
【発明が解決しようとする課題】
本発明は、こうした状況の下でなされたものであり、その目的は、真空脱炭処理を行うに際して、清浄度の高い極低炭素鋼を生産性良く溶製する方法を確立することにある。
【0006】
【課題を解決するための手段】
上記課題を解決することのできた本発明の溶製方法とは、真空脱ガス法で脱炭処理を行いつつ極低炭素鋼を溶製するに当たり、脱炭処理前の取鍋スラグ中の総鉄量(T.Fe)を、6%(質量%の意味、以下同じ)を超えて12%以下に制御し、脱炭処理終了時における溶鋼と取鍋スラグ中の酸素ポテンシャルが同等となるようにする点に要旨を有するものである。
【0007】
上記本発明においては、脱炭処理終了時における溶鋼と取鍋スラグ中の酸素ポテンシャルが同等となるようにするには、脱炭処理終了時における溶鋼中溶存酸素活量[O]f(ppm)と前記取鍋スラグ中総鉄量(T.Fe)(%)が、下記(1)式を満足するようにして前記総鉄量(T.Fe)を制御すれば良い。
【0008】
43.1×(T.Fe)−37.5≧[O]f≧43.1×(T.Fe)−57.5 …(1)
【0009】
【発明の実施の形態】
本発明者らは、上記目的を達成するために様々な角度から検討した。その結果、極低炭素鋼を転炉で溶製して取鍋に出鋼する際において、取鍋上にAlやAl灰のようなスラグ改質剤を添加し、真空脱炭処理前の取鍋スラグ中(T.Fe)を6超〜12%に調整しておくことが極めて重要であることを見出した。
【0010】
本発明によれば、脱炭時間の延長や取鍋スラグ改質用のAlやAl灰を過剰に添加することが避けられ、また製品におけるスリバー疵などの介在物に起因する欠陥を最小限に抑えることができたのである。以下、本発明が完成された経緯に沿って本発明の作用効果について説明する。
【0011】
本発明者らは、極低炭素鋼の真空脱炭処理の最適化を図るために、真空脱炭中の鋼中の酸素活量と取鍋スラグ中(T.Fe)の挙動につい次のような調査を行った。まず、取鍋スラグ中の(T.Fe)と平衡する鋼中溶存酸素の酸素ポテンシャルを同列に比較するために、取鍋スラグ中(T.Fe)と平衡する溶鋼中酸素活量を計算する式を次の様に導いた。
【0012】
そして、熱力学計算ソフトChemSageを用いて計算したスラグ中のFeOの活量と、「製鋼反応の推奨平衡値」(昭和59年11月、日本学術振興会製鋼第19委員会編)による下記(3)式の標準生成自由エネルギー(ΔGO)を用い、最後にFeOとFe2O3の存在比率を考慮した上で下記(2)式を導いた。
但し、[O]f:溶鋼中溶存酸素活量(ppm)
(T.Fe):取鍋スラグ中の総鉄量(%)
【0013】
循環脱ガス法(RH法)によって脱炭処理(以下、「RH処理」と呼ぶことがある)したときにおける溶鋼中溶存酸素活量[O]fと取鍋スラグ中(T.Fe)の推移を、図1に模式的に示す。尚、図1の縦軸に示した鋼中溶存酸素活量と取鍋スラグ中(T.Fe)は、互いの酸素ポテンシャルがほぼ等しくなるように最大値を設定してある。
【0014】
転炉吹錬後に真空脱炭処理を行う際に、真空脱炭処理前の溶鋼中溶存酸素活量[O]f(図1中ハッチングを付した部分)は200〜300ppm程度であり、また(T.Fe)が6%を超えて12%以下のスラグは、前記(2)式に基づけば、溶鋼中酸素活量[O]fは210〜470ppm程度となって同等の酸素ポテンシャルを持つことになる。
【0015】
前記図1において、真空脱炭処理前の取鍋スラグ中(T.Fe)が6%以下のときには、取鍋スラグ中の(T.Fe)は真空脱炭処理後まで増加しており、脱炭後にAl合金などで脱酸した後には減少していくことになる。また真空脱炭処理前の取鍋スラグ中の(T.Fe)が12%を超えているときには、取鍋スラグ中の(T.Fe)は、処理前から脱炭処理後を通じて脱酸後まで継続して減少する。
【0016】
図1に示した挙動は、いずれも溶鋼と取鍋スラグ中(T.Fe)の酸素ポテンシャルの差に起因しており、その機構は次の様に考えることができた。第1に、真空脱炭処理前の取鍋スラグ中の(T.Fe)が6%以下の場合には、まず処理前から脱炭までの間、スラグの酸素ポテンシャルは溶鋼とほぼ等しいか、或いは低い状態である。また、スラグの酸素ポテンシャルは、溶鋼の影響を受けるものであるので、この間の取鍋スラグの(T.Fe)は、一定か或は増加する傾向を示す。そして、脱炭処理終了後には、取鍋スラグ中の(T.Fe)は、溶鋼とほぼ平衡する約6%に収束する。次いで、Al合金等で溶鋼を脱酸した後には、溶鋼中溶存酸素活量[O]fは1〜2ppm程度にまで減少し、酸素ポテンシャルはスラグよりも溶鋼の方が低くなる。このために、脱酸後から取鍋スラグ中の(T.Fe)は減少し始め、真空脱炭処理後には4〜6%程度まで減少することになる。
【0017】
次に、真空脱炭処理前の取鍋スラグ中の(T.Fe)が6%を超えて12%以下の場合には、まず処理前から脱炭までの間、スラグの酸素ポテンシャルは溶鋼よりも高い状態にある。また、スラグの酸素ポテンシャルは、溶鋼の影響を受け、この間の取鍋スラグの(T.Fe)は減少する傾向を示す。そして、脱炭終了後には、取鍋スラグ中の(T.Fe)は6%に収束し、スラグは溶鋼とほぼ平衡状態に達する。次いで、Al合金等で溶鋼を脱酸した後には、溶鋼中溶存酸素活量[O]fは1〜2ppm程度にまで減少し、酸素ポテンシャルはスラグよりも溶鋼の方が低くなる。このために、脱酸後から取鍋スラグ中の(T.Fe)は減少し始め、真空脱炭処理後には4〜6%程度まで減少する。
【0018】
更に、真空脱炭処理前の取鍋スラグ中の(T.Fe)が12%よりも多い場合には、まず真空脱炭処理前から脱炭までの間、スラグの酸素ポテンシャルは溶鋼よりも高い状態にある。また、スラグの酸素ポテンシャルは、溶鋼の影響を受け、この間の取鍋スラグの(T.Fe)は減少する傾向を示す。但し、この場合には、取鍋スラグ中の(T.Fe)の還元速度が十分でなく、脱炭終了後の取鍋スラグ中の(T.Fe)は約6%よりも高い状態になる。次いで、Al合金等で溶鋼を脱酸した後には、溶鋼中溶存酸素活量[O]fが1〜2ppmまで減少し、酸素ポテンシャルはスラグよりも溶鋼の方が低くなる。このため、脱炭後から取鍋スラグ中の(T.Fe)は減少するが、脱酸後の(T.Fe)は6%よりも高いため、真空脱炭処理後の取鍋スラグ中の(T.Fe)は、他の場合と異なり、6%以下には減少せず、高いレベルにとどまったままである。
【0019】
図2は、極低炭素鋼の溶製時における真空脱炭処理前(RH処理前)と真空脱炭処理後(RH処理後)の取鍋スラグ中(T.Fe)の推移を示したグラフである。この結果から明らかなように、真空脱炭処理前の取り鍋スラグ中の(T.Fe)が12%以下の場合には、処理前の(T.Fe)量に拘らず、脱炭後の(T.Fe)はほぼ6%に収束し、真空脱炭処理終了後には4〜5%にまで減少する。
【0020】
スラグ改質の本来の目的は、溶鋼中のAl等の脱酸元素におけるスラグによる再酸化を防止することにある。従って、取鍋スラグ中の(T.Fe)が問題となるのは、実際にはAl等の脱酸元素を溶鋼に添加した後である。一方、上述の如く、真空脱炭後の(T.Fe)は、真空脱炭処理前の取鍋スラグ中(T.Fe)が12%以下であれば、最終的に6%に収束することになる。即ち、溶鋼中のAl等の脱酸元素におけるスラグによる再酸化を防止するだけであれば、真空脱炭処理前の取鍋スラグ中(T.Fe)が12%以下となるようにスラグを改質すれば良い。
【0021】
しかしながら、真空脱炭処理前の取鍋スラグ中の(T.Fe)が6%以下の場合には、溶鋼中の溶存酸素が取鍋スラグ中の(T.Fe)の生成に消費されるので、脱炭に使用可能な酸素量が減少し、脱酸時間の延長に繋がって生産性を低下させることになる。こうしたことから、取鍋スラグの改質は、真空脱酸速度に悪影響を及ぼさない範囲内にとどめておく必要がある。
【0022】
図3は、真空脱炭処理前の取鍋スラグ中の(T.Fe)が脱炭時間に与える影響を示したグラフである。尚、図3において、脱炭時間は、(T.Fe)=0〜12%の場合の真空脱ガス開始直後から、溶鋼中の炭素濃度が0.005〜0.007%に到達し、Al等の脱酸元素を投入するまでの平均時間を基準にしたときの指数で示してある。この結果から明らかなように、前記(T.Fe)が6%以下であれば、脱炭時間が長くなって生産性が低下することが分かる。
【0023】
一方、真空脱炭処理前の取鍋スラグ中(T.Fe)が12%よりも多くなった場合には、前記図1に示した通り、脱炭後の(T.Fe)は6%よりも多くなって、真空脱炭処理後においても(T.Fe)は4%よりも若干高い値を示す。またこの場合には、真空脱炭処理前の取鍋スラグ中(T.Fe)が12%以下の場合に比べて、脱酸後におけるスラグと溶鋼の酸素ポテンシャルの差が大きくなるので、(T.Fe)の減少速度が速くなる。即ち、スラグによる溶鋼中脱酸元素の再酸化の度合いが大きくなる。そしてこの状態では、再酸化による介在物が増加することになって、圧延段階でのスリバー疵等の介在物欠陥が増加し、この介在物が製品品質に悪影響を及ぼすことになる。
【0024】
これらの結果から、清浄性に優れた極低炭素鋼を生産性良く製造するには、その溶製段階で真空脱ガス装置にて脱炭処理を行う際に、真空脱炭処理前の取鍋スラグ中の(T.Fe)を、6%を超えて12%以下とすれば良いことが分かる。
【0025】
上記の様に本発明では、真空脱炭処理前の取鍋スラグ中(T.Fe)を、6%を超えて12%以下に制御するものであるが、この(T.Fe)を、6%を超えて12%以下に制御する手段としては、例えば転炉において酸素吹錬した溶鋼を使用する場合には、転炉出鋼直後に、AlやAl灰等のスラグ改質剤を取鍋スラグ上に添加する方法が挙げられる。このときのスラグ改質剤の添加量は、スラグ改質剤添加前の取鍋スラグ中の(T.Fe)濃度に応じて決定すればよい。このときスラグ改質剤添加前の取鍋スラグ中(T.Fe)は、転炉出鋼前の溶鋼中溶存酸素活量から推定することができる。即ち、例えば転炉において酸素吹錬して溶鋼を使用する場合には、転炉内スラグが取鍋上に流出することが不可避であり、また出鋼前の転炉内スラグ中の(T.Fe)は出鋼前の溶鋼中溶存酸素活量に依存するからである。
【0026】
本発明において上記構成を採用したのは、基本的に、真空脱炭処理後の溶鋼と取鍋スラグの酸素ポテンシャルを同等にすることを目標とするものである。また、溶鋼と取鍋スラグ中の酸素ポテンシャルが同等にあることは、溶鋼中の溶存酸素と取鍋中(T,Fe)が熱力学的に平衡状態にあることを意味する。尚、上記「同等」とは、取鍋スラグ中(T.Fe)が溶鋼中の溶存酸素活量と完全に平衡状態にある場合の値から、2%程度前後以内にあることを許容するものである。
【0027】
また、溶鋼中溶存酸素活量[O]fと取鍋スラグ中(T.Fe)が完全に平衡状態にあるときには、前述の(2)式が成立する。従って、真空脱炭処理終了時における溶鋼中溶存酸素[O]fと取鍋スラグ中の酸素ポテンシャルが同等となるようにするには、上記許容範囲を考慮して、前記(1)式の関係を満足するように、真空脱炭処理終了時における溶鋼中溶存酸素活量[O]fと取鍋スラグ中(T.Fe)が前記(1)式の関係を満足するように取鍋スラグ中(T.Fe)を制御すれば良い。
【0028】
尚、本発明では、真空脱ガスによって脱炭処理を行うものであるが、このときの真空脱ガスの形態については特に限定するものではなく、前記したRH法の他、鍋型真空脱ガス法、新形状脱ガス設備(REDA;Revolutionary Degassing Activator)による方法[例えば、「CAMP-ISIJ」Vol.12(1999)-747]等も適用できるものである。
【0029】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0030】
【実施例】
実施例
240t転炉で溶銑を吹錬した後、出鋼後に適量のAlまたはAl灰を取鍋上に投入し(後記表1)、その後RH処理を行ない、鋼中のC含有量を0.0050〜0.0070%まで低減した。このときの、脱炭時間とRH処理前の取鍋スラグ中(T.Fe)の関係を前記図3に示した。この結果から明らかなように、RH処理前の取鍋スラグ中(T.Fe)が6%以下であると、脱炭時間が非常に長くなっていることがわかる。
【0031】
次に,RH処理後に、連続鋳造および熱延工程の工程を経た後の、表面スリバー性欠陥の発生状況について調査した。尚、表面スリバー性欠陥の発生状況については、目視で発生個数を観察し、コイル1km当たりに1個の欠陥が検出されたときを1としたときの発生頻度で評価した。その結果を、投入したAl灰量およびRH処理前の(T.Fe)と共に下記表1に、RH処理前の(T.Fe)量と発生頻度の関係関係を図4に示す。これらの結果から明らかなように、RH処理前取鍋スラグ中(T.Fe)が12%以下のときには、スリバー疵の発生頻度はほぼ一定であるが、RH処理前の取鍋スラグ中(T.Fe)が12%を超えると、(T.Fe)の増加に伴ってスリバー疵発生頻度が増加していることが分かる。
【0032】
【表1】
【0033】
【発明の効果】
本発明は以上の様に構成されており、脱炭速度を低下させることなく、鋼中介在物を極力低減した高清浄極低炭素鋼を得ることができた。
【図面の簡単な説明】
【図1】極低炭素鋼のRH処理時における溶鋼中溶存酸素活量[O]fと取鍋スラグ中(T.Fe)の推移を示すグラフである。
【図2】RH処理前取鍋スラグ中(T.Fe)とRH処理後取鍋スラグ中(T.Fe)の関係を示すグラフである。
【図3】極低炭素鋼のRH処理前の取鍋スラグ中(T.Fe)とRH処理時間の関係を示すグラフである。
【図4】RH処理前の取鍋スラグ中(T.Fe)と熱延板スリバー性欠陥発生頻度の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for melting ultra-low carbon steel while decarburizing by vacuum degassing.
[0002]
[Prior art]
When melting ultra-low carbon steel, oxygen is blown into the hot metal in the converter, the carbon concentration in the hot metal is reduced to about 0.03%, and then the steel is produced without adding a deoxidizer. Is common. This is a molten steel whose carbon concentration is reduced to 0.010% or less by reacting O and C remaining in the molten steel and decarburizing by a vacuum degassing apparatus such as a circulating degassing apparatus (RH apparatus). This is because
[0003]
For example, in Patent No. 2690350, as a method of reducing inclusions in steel without reducing the decarburization rate in decarburization processing by vacuum degassing (hereinafter sometimes referred to as “vacuum decarburization processing”), Proposed technology to reduce the total iron content (T.Fe) in the ladle slag before vacuum decarburization treatment (hereinafter sometimes abbreviated as “(T.Fe)”) to 0.5 to 6.0%. Has been. In this technology, in the vacuum decarburization process, an attempt is made to reduce the number of inclusions in the molten steel by minimizing the reaction between (T.Fe) in the slag and Al in the molten steel without reducing the decarburization rate. To do.
[0004]
However, based on these techniques, when (T.Fe) in the ladle slag before vacuum decarburization is reduced to 6.0% or less, (T.Fe) increases until after decarburization. (See FIG. 1 below). This means that the oxygen in the molten steel is not used for decarburization but is transferred into the slag, and the amount of oxygen used for vacuum decarburization is reduced. In such a case, there is a problem that the time for vacuum decarbonization is extended and productivity is lowered. For these reasons, the establishment of a technique for producing ultra-low carbon steel with high productivity while maintaining high cleanliness is desired.
[0005]
[Problems to be solved by the invention]
The present invention has been made under such circumstances, and an object of the present invention is to establish a method for producing ultra-low carbon steel having high cleanliness with high productivity when performing vacuum decarburization.
[0006]
[Means for Solving the Problems]
The melting method of the present invention that was able to solve the above problems is the total iron in the ladle slag before decarburization when melting ultra-low carbon steel while decarburizing by vacuum degassing. The amount (T.Fe) is controlled to exceed 6% (meaning mass%, the same shall apply hereinafter) to 12% or less so that the oxygen potential in the molten steel and ladle slag at the end of the decarburization process is equivalent. It has a gist in the point to do.
[0007]
In the present invention, in order to make the oxygen potential in the molten steel and ladle slag at the end of decarburization equal, the dissolved oxygen activity [O] f (ppm) in the molten steel at the end of decarburization And the total iron amount (T.Fe) in the ladle slag may be controlled so that the total iron amount (T.Fe) (%) satisfies the following formula (1).
[0008]
43.1 × (T.Fe) -37.5 ≧ [O] f ≧ 43.1 × (T.Fe) -57.5 (1)
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have studied from various angles in order to achieve the above object. As a result, when ultra-low carbon steel is melted in a converter and discharged into a ladle, a slag modifier such as Al or Al ash is added to the ladle, and the vacuum decarburization treatment is removed. It has been found that it is extremely important to adjust (T.Fe) in the pan slag to more than 6 to 12%.
[0010]
According to the present invention, it is possible to avoid excessive addition of Al and Al ash for extending the decarburization time and ladle slag modification, and minimizing defects caused by inclusions such as sliver in the product. I was able to suppress it. Hereinafter, the operation and effect of the present invention will be described along the background of the completion of the present invention.
[0011]
In order to optimize the vacuum decarburization treatment of ultra-low carbon steel, the present inventors have described the oxygen activity in steel during vacuum decarburization and the behavior in ladle slag (T.Fe) as follows. Survey was conducted. First, in order to compare the oxygen potential of dissolved oxygen in steel that equilibrates with (T.Fe) in ladle slag, the oxygen activity in molten steel that equilibrates in ladle slag (T.Fe) is calculated. The formula was derived as follows:
[0012]
And the activity of FeO in the slag calculated using the thermodynamic calculation software ChemSage and the “recommended equilibrium value of steelmaking reaction” (November 1984, edited by the 19th Committee of the Japan Society for the Promotion of Science) The following formula (2) was derived using the standard free energy of formation (ΔG O ) of the formula (3) and finally considering the abundance ratio of FeO and Fe 2 O 3 .
However, [O] f: dissolved oxygen activity in molten steel (ppm)
(T.Fe): Total iron content in ladle slag (%)
[0013]
Transition of dissolved oxygen activity [O] f in molten steel and ladle slag (T.Fe) when decarburized by the circulating degassing method (RH method) (hereinafter sometimes referred to as “RH treatment”) Is schematically shown in FIG. Note that the maximum values of the dissolved oxygen activity in the steel and the ladle slag (T.Fe) shown on the vertical axis in FIG. 1 are set so that the oxygen potentials are substantially equal to each other.
[0014]
When performing vacuum decarburization treatment after converter blowing, the dissolved oxygen activity [O] f (hatched portion in FIG. 1) in the molten steel before vacuum decarburization treatment is about 200 to 300 ppm, and ( The slag of T.Fe) exceeding 6% and not more than 12% is based on the above formula (2), and the oxygen activity [O] f in molten steel is about 210 to 470 ppm and has an equivalent oxygen potential. become.
[0015]
In FIG. 1, when (T.Fe) in the ladle slag before vacuum decarburization is 6% or less, (T.Fe) in the ladle slag increases until after the vacuum decarburization. It decreases after deoxidizing with Al alloy after charcoal. When (T.Fe) in the ladle slag before vacuum decarburization treatment exceeds 12%, (T.Fe) in the ladle slag is from before treatment until after deoxidation through after decarburization treatment. Decrease continuously.
[0016]
The behavior shown in FIG. 1 is caused by the difference in oxygen potential between molten steel and ladle slag (T.Fe), and the mechanism could be considered as follows. First, when (T.Fe) in the ladle slag before vacuum decarburization treatment is 6% or less, the oxygen potential of the slag is approximately equal to that of the molten steel from before treatment to decarburization. Or it is in a low state. Further, since the oxygen potential of the slag is affected by the molten steel, the ladle slag (T. Fe) during this period tends to be constant or increased. After the decarburization process, (T.Fe) in the ladle slag converges to about 6%, which is almost in equilibrium with the molten steel. Next, after deoxidizing the molten steel with an Al alloy or the like, the dissolved oxygen activity [O] f in the molten steel is reduced to about 1 to 2 ppm, and the oxygen potential is lower in the molten steel than in the slag. For this reason, (T.Fe) in the ladle slag begins to decrease after deoxidation and decreases to about 4 to 6% after vacuum decarburization treatment.
[0017]
Next, when the (T.Fe) in the ladle slag before vacuum decarburization treatment exceeds 6% and is 12% or less, the oxygen potential of the slag is from that of molten steel from before treatment to decarburization. Is also in a high state. Further, the oxygen potential of the slag is affected by the molten steel, and (T.Fe) of the ladle slag during this period tends to decrease. After decarburization, (T.Fe) in the ladle slag converges to 6%, and the slag reaches an almost equilibrium state with the molten steel. Next, after deoxidizing the molten steel with an Al alloy or the like, the dissolved oxygen activity [O] f in the molten steel is reduced to about 1 to 2 ppm, and the oxygen potential is lower in the molten steel than in the slag. For this reason, (T.Fe) in the ladle slag begins to decrease after deoxidation and decreases to about 4 to 6% after vacuum decarburization treatment.
[0018]
Furthermore, when (T.Fe) in the ladle slag before the vacuum decarburization treatment is more than 12%, the oxygen potential of the slag is higher than that of the molten steel before the vacuum decarburization treatment until the decarburization. Is in a state. Further, the oxygen potential of the slag is affected by the molten steel, and (T.Fe) of the ladle slag during this period tends to decrease. However, in this case, the reduction rate of (T.Fe) in the ladle slag is not sufficient, and (T.Fe) in the ladle slag after decarburization is higher than about 6%. . Next, after deoxidizing the molten steel with an Al alloy or the like, the dissolved oxygen activity [O] f in the molten steel decreases to 1 to 2 ppm, and the oxygen potential is lower in the molten steel than in the slag. For this reason, (T.Fe) in ladle slag after decarburization decreases, but (T.Fe) after deoxidation is higher than 6%, so in ladle slag after vacuum decarburization treatment Unlike the other cases, (T.Fe) does not decrease below 6% and remains at a high level.
[0019]
FIG. 2 is a graph showing the transition in the ladle slag (T.Fe) before vacuum decarburization treatment (before RH treatment) and after vacuum decarburization treatment (after RH treatment) during the melting of ultra-low carbon steel. It is. As is clear from this result, when (T.Fe) in the ladle slag before vacuum decarburization treatment is 12% or less, regardless of the (T.Fe) amount before treatment, (T.Fe) converges to approximately 6% and decreases to 4 to 5% after the vacuum decarburization process is completed.
[0020]
The original purpose of slag reforming is to prevent reoxidation due to slag in deoxidizing elements such as Al in molten steel. Accordingly, (T.Fe) in the ladle slag becomes a problem after actually adding a deoxidizing element such as Al to the molten steel. On the other hand, as described above, (T.Fe) after vacuum decarburization will eventually converge to 6% if (T.Fe) in the ladle slag before vacuum decarburization is 12% or less. become. That is, if it is only necessary to prevent reoxidation due to slag in a deoxidizing element such as Al in molten steel, the slag is modified so that the ladle slag before vacuum decarburization treatment (T.Fe) is 12% or less. Just do it.
[0021]
However, when (T.Fe) in the ladle slag before vacuum decarburization is 6% or less, dissolved oxygen in the molten steel is consumed for the production of (T.Fe) in the ladle slag. As a result, the amount of oxygen that can be used for decarburization decreases, leading to an extension of the deoxidation time and lowering the productivity. For these reasons, it is necessary to keep the ladle slag reformed within a range that does not adversely affect the vacuum deoxidation rate.
[0022]
FIG. 3 is a graph showing the effect of (T.Fe) in the ladle slag before vacuum decarburization treatment on the decarburization time. In FIG. 3, the decarburization time is such that the carbon concentration in the molten steel reaches 0.005 to 0.007% immediately after the start of vacuum degassing in the case of (T.Fe) = 0 to 12%. It is shown as an index based on the average time until deoxidizing elements such as. As is clear from this result, it can be seen that if the (T.Fe) is 6% or less, the decarburization time becomes longer and the productivity is lowered.
[0023]
On the other hand, when the ladle slag before vacuum decarburization treatment (T.Fe) exceeds 12%, (T.Fe) after decarburization is from 6% as shown in FIG. Even after vacuum decarburization, (T.Fe) shows a value slightly higher than 4%. In this case, the difference in oxygen potential between the slag and the molten steel after deoxidation is larger than in the case where the ladle slag before vacuum decarburization treatment (T.Fe) is 12% or less. .Fe) decrease rate increases. That is, the degree of reoxidation of the deoxidizing element in the molten steel by the slag is increased. In this state, inclusions due to re-oxidation increase, and inclusion defects such as sliver cracks in the rolling stage increase, which adversely affects product quality.
[0024]
From these results, in order to produce ultra-low carbon steel with excellent cleanliness with high productivity, ladle before vacuum decarburization treatment is used when decarburization treatment is performed with a vacuum degasser at the melting stage. It can be seen that (T.Fe) in the slag may be set to more than 6% and not more than 12%.
[0025]
As described above, in the present invention, the ladle slag before the vacuum decarburization treatment (T.Fe) is controlled to be more than 6% and 12% or less. For example, when using molten steel blown with oxygen in a converter, a ladle with slag modifiers such as Al and Al ash immediately after the converter steel is used. The method of adding on slag is mentioned. What is necessary is just to determine the addition amount of the slag modifier at this time according to the (T.Fe) density | concentration in the ladle slag before slag modifier addition. At this time, the ladle slag (T.Fe) before the addition of the slag modifier can be estimated from the dissolved oxygen activity in the molten steel before the converter steel. That is, for example, when using molten steel by blowing oxygen in a converter, it is unavoidable that the slag in the converter flows out onto the ladle, and (T. This is because Fe) depends on the dissolved oxygen activity in the molten steel before the steel starts.
[0026]
In the present invention, the above configuration is basically used for the purpose of making the oxygen potentials of the molten steel and ladle slag after vacuum decarburization equal. Moreover, that the oxygen potential in molten steel and ladle slag is equivalent means that the dissolved oxygen in molten steel and the ladle (T, Fe) are in a thermodynamic equilibrium state. In addition, the above “equivalent” means that the ladle slag (T.Fe) is within about 2% from the value when the dissolved oxygen activity in the molten steel is completely in equilibrium. It is.
[0027]
Further, when the dissolved oxygen activity [O] f in the molten steel and the ladle slag (T.Fe) are completely in an equilibrium state, the above-described equation (2) is established. Therefore, in order to make the dissolved oxygen [O] f in the molten steel equal to the oxygen potential in the ladle slag at the end of the vacuum decarburization treatment, the relationship of the above formula (1) is considered in consideration of the allowable range. In the ladle slag so that the dissolved oxygen activity [O] f in the molten steel at the end of the vacuum decarburization treatment and the ladle slag (T.Fe) satisfy the relationship of the above formula (1). (T.Fe) may be controlled.
[0028]
In the present invention, the decarburization process is performed by vacuum degassing. However, the form of vacuum degassing at this time is not particularly limited. In addition to the RH method described above, the pan-type vacuum degassing method is also used. Further, a method using a new shape degassing equipment (REDA: Revolutionary Degassing Activator) [for example, “CAMP-ISIJ” Vol.12 (1999) -747] can be applied.
[0029]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
[0030]
【Example】
Example 240 After hot metal was blown out in a 240 t converter, an appropriate amount of Al or Al ash was placed on a ladle after steeling (Table 1 described later), and then RH treatment was performed. Reduced to 0050-0.0070%. FIG. 3 shows the relationship between the decarburization time and the ladle slag before the RH treatment (T.Fe) at this time. As is clear from this result, it is understood that the decarburization time is very long when the ladle slag before RH treatment (T. Fe) is 6% or less.
[0031]
Next, after the RH treatment, the occurrence of surface sliver defects after the continuous casting and hot rolling steps were investigated. In addition, about the generation | occurrence | production condition of the surface sliver property defect, the number of generation | occurrence | production was observed visually, and it evaluated by the generation frequency when 1 defect was detected per 1 km of coils. The results are shown in Table 1 below together with the amount of Al ash and (T.Fe) before RH treatment, and FIG. 4 shows the relationship between the amount of (T.Fe) before RH treatment and the frequency of occurrence. As apparent from these results, when the ladle slag before RH treatment (T.Fe) is 12% or less, the frequency of occurrence of sliver flaws is almost constant, but the ladle slag before RH treatment (T.Fe) .Fe) exceeds 12%, it can be seen that the occurrence frequency of sliver flaws increases with an increase in (T.Fe).
[0032]
[Table 1]
[0033]
【The invention's effect】
The present invention is configured as described above, and a highly clean ultra-low carbon steel in which inclusions in the steel are reduced as much as possible can be obtained without reducing the decarburization rate.
[Brief description of the drawings]
1 is a graph showing the transition of dissolved oxygen activity [O] f in molten steel and (T.Fe) in ladle slag during the RH treatment of ultra-low carbon steel.
FIG. 2 is a graph showing the relationship between ladle slag before RH treatment (T.Fe) and ladle slag after RH treatment (T.Fe).
FIG. 3 is a graph showing the relationship between the RH treatment time in ladle slag before the RH treatment of ultra low carbon steel (T.Fe).
FIG. 4 is a graph showing the relationship between the ladle slag before RH treatment (T.Fe) and the frequency of occurrence of hot rolled sheet sliver defects.
Claims (2)
43.1 ×(T.Fe)− 37.5 ≧[O]f≧ 43.1 ×(T.Fe)− 57.5 …(1)The dissolved oxygen activity [O] f (ppm) in the molten steel at the end of the decarburization treatment and the total iron amount (T.Fe) (%) in the ladle slag satisfy the following formula (1). The melting method according to claim 1, wherein the total iron amount (T.Fe) is controlled.
43.1 × (T.Fe) −37.5 ≧ [O] f ≧ 43.1 × (T.Fe) −57.5 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001312957A JP3734736B2 (en) | 2001-10-10 | 2001-10-10 | Method of melting ultra-low carbon steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001312957A JP3734736B2 (en) | 2001-10-10 | 2001-10-10 | Method of melting ultra-low carbon steel |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003119514A JP2003119514A (en) | 2003-04-23 |
JP2003119514A5 JP2003119514A5 (en) | 2005-06-23 |
JP3734736B2 true JP3734736B2 (en) | 2006-01-11 |
Family
ID=19131521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001312957A Expired - Fee Related JP3734736B2 (en) | 2001-10-10 | 2001-10-10 | Method of melting ultra-low carbon steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3734736B2 (en) |
-
2001
- 2001-10-10 JP JP2001312957A patent/JP3734736B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003119514A (en) | 2003-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5277556B2 (en) | Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab | |
JP2575827B2 (en) | Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness | |
JP3893770B2 (en) | Melting method of high clean ultra low carbon steel | |
JP3734736B2 (en) | Method of melting ultra-low carbon steel | |
JP3915386B2 (en) | Manufacturing method of clean steel | |
JP3627755B2 (en) | Method for producing high cleanliness ultra low carbon steel with extremely low S content | |
JP2991796B2 (en) | Melting method of thin steel sheet by magnesium deoxidation | |
JP4811018B2 (en) | Deoxidation method for molten steel | |
JP4502944B2 (en) | Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate | |
JP3832222B2 (en) | Method for refining molten steel | |
JP4882249B2 (en) | Manufacturing method of high clean steel | |
JP3640167B2 (en) | Manufacturing method of high cleanliness steel | |
JP4066674B2 (en) | Manufacturing method of manganese-containing ultra-low carbon steel | |
JP3752080B2 (en) | Vacuum refining method for molten steel with less dust | |
JP2002030330A (en) | Method for heating molten steel in vacuum refining furnace | |
JP3297998B2 (en) | Melting method of high clean ultra low carbon steel | |
JP4020125B2 (en) | Method of melting high cleanliness steel | |
JP2773525B2 (en) | Melting method for grain-oriented electrical steel sheets | |
JPH06256836A (en) | Production of high cleanliness and ultra-low carbon steel | |
JP4312068B2 (en) | Method of melting ultra-low carbon steel | |
JP3305313B2 (en) | Decarburization method using RH degasser | |
JPH08283823A (en) | Production of dead soft steel excellent in surface property | |
JPH0717937B2 (en) | Manufacturing method of high cleanliness ultra low carbon steel | |
JP2962163B2 (en) | Melting method of high clean ultra low carbon steel | |
JP2675432B2 (en) | Melting method of ultra low carbon steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040806 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040929 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050705 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051019 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081028 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091028 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091028 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101028 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111028 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111028 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121028 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131028 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |