JPH06330148A - Method for melting low n steel in vacuum refining furnace - Google Patents

Method for melting low n steel in vacuum refining furnace

Info

Publication number
JPH06330148A
JPH06330148A JP12273293A JP12273293A JPH06330148A JP H06330148 A JPH06330148 A JP H06330148A JP 12273293 A JP12273293 A JP 12273293A JP 12273293 A JP12273293 A JP 12273293A JP H06330148 A JPH06330148 A JP H06330148A
Authority
JP
Japan
Prior art keywords
molten steel
refining
low
steel
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12273293A
Other languages
Japanese (ja)
Inventor
Takeshi Kimura
武 木村
Akio Shinkai
新飼昭男
Toshitaka Yuki
湯木敏隆
Koji Sugano
菅野浩至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12273293A priority Critical patent/JPH06330148A/en
Publication of JPH06330148A publication Critical patent/JPH06330148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To produce molten steel having low N content by efficiently executing reduction- refining of molten steel with stirred small grain Al with inert gas under the reduced atmospheric pressure after executing decarburize-refining by oxygen-blowing refining of the molten steel in the low vacuum range and finish refining under the reduced atmospheric pressure. CONSTITUTION:At the time of producing a low carbon stainless steel by executing the decarburize-refining to a raw high Cr steel with a VOD method, at first C in the molten steel is oxidized by the oxygen-blowing in the low vacuum atmosphere to execute the decarburization, and in order to lower further C content, the oxygen-blowing is executed in the low CO partial pressure at <=10Torr to execute the finish decarburize-refining to the aimed low carbon grade. Successively, in the condition of holding the refining atmosphere to high vacuum at <=10Torr, the blowing quantity of inert gas of Ar, etc., from the bottom blowing tuyere is increased and the stirring energy Eg shown in the equation is made to be >=400W/ton of molten steel to stir the molten steel. On the stirred molten steel surface, the small grain Al having <=30mm grain diameter is added to reduce the oxide of Cr, etc., produced by oxygen-blowing. As this operation is executed in the high vacuumn atmosphere, absorbing action of nitrogen from the air is not executed and the extra low N stainless steel can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明法は、真空精錬炉による溶
鋼を製造する方法に係わり、特に、低N鋼を経済的に溶
製する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing molten steel in a vacuum refining furnace, and particularly to a method for economically producing low N steel.

【0002】[0002]

【従来の技術】最近、高純度鋼の需要が多くなっている
が、例えば、Cr5〜35%を含有するフェライト系ス
テンレス鋼等の高クロム鋼は、N溶解度が高いため低N
鋼には不利な鋼種であるにもかかわらず、極低N化が要
求される。
2. Description of the Related Art Recently, the demand for high-purity steel is increasing. For example, high chromium steel such as ferritic stainless steel containing 5 to 35% of Cr has low N content because of high N solubility.
Despite being a disadvantageous steel type, extremely low N is required.

【0003】このような極低Nステンレス鋼は、従来、
VOD法で脱炭精錬して製造されている。VOD法脱炭
精錬は、脱ガス期と還元期からなり、脱ガス期におい
て、高炭素ステンレス溶鋼を減圧下で脱炭脱窒した後、
還元期において、合金用および還元用Al等と造滓剤を
溶鋼に添加し、脱ガス期に生成したクロム酸化物の還元
と、溶鋼の脱酸を進めるようにしている。
Such ultra-low N stainless steel has hitherto been used.
It is manufactured by decarburizing and refining by the VOD method. The VOD decarburization refining consists of a degassing period and a reducing period. In the degassing period, after decarburizing and denitrifying high carbon stainless molten steel under reduced pressure,
During the reduction period, alloying and reducing Al, etc. and a slag forming agent are added to the molten steel to promote the reduction of the chromium oxide generated during the degassing period and the deoxidation of the molten steel.

【0004】極低N鋼溶製において極めて重要なこと
は、還元期において雰囲気ガスからの吸窒を防止し、且
つ、Alを歩留り良く添加することである。
What is extremely important in the melting of ultra-low N steel is to prevent the absorption of nitrogen from the atmospheric gas during the reduction period and to add Al in a good yield.

【0005】従来の技術としては、例えば、特開平3−
211216公報のように、常圧下でAlを溶鋼浴面下
に浸漬添加した後、Alが溶鋼中に拡散するに充分な時
間が経過するまでは40torr以上の低真空に維持す
ることを特徴とする方法がある。
As a conventional technique, for example, Japanese Unexamined Patent Publication No.
As disclosed in Japanese Patent No. 211216, after the Al is dipped and added under the surface of the molten steel under normal pressure, a low vacuum of 40 torr or more is maintained until a sufficient time for Al to diffuse into the molten steel elapses. There is a way.

【0006】[0006]

【発明が解決しようとする課題】前記した従来技術は次
のような欠点を有する。
The above-mentioned prior art has the following drawbacks.

【0007】Alを浸漬添加するための常圧下での溶鋼
表面部の露出や40torrの低真空下で長時間保持す
ることは、雰囲気ガス中の窒素が溶鋼中に吸収されるた
め極低N鋼を溶製するためには不都合である。また、減
圧下での脱炭後、常圧に戻してAlを添加し、さらに、
減圧し還元処理すると処理時間が長くなるため、Alの
蒸発による歩留りのばらつきや生産性の悪化を引き起こ
す上、耐火物の溶損を促進しコストアップにつながる。
Exposing the surface of the molten steel under normal pressure for dipping and adding Al and maintaining it for a long time under a low vacuum of 40 torr are extremely low N steel because nitrogen in the atmospheric gas is absorbed in the molten steel. Is inconvenient for melting. After decarburization under reduced pressure, the pressure is returned to normal pressure and Al is added.
Since the treatment time becomes long when the pressure is reduced and the reduction treatment is carried out, variation of yield due to evaporation of Al and deterioration of productivity are caused, and melting loss of refractory material is promoted, leading to cost increase.

【0008】本発明は、このような欠点を解決すべくな
されたものである。
The present invention has been made to solve such drawbacks.

【0009】[0009]

【課題を解決するための手段】本発明は、真空脱ガス精
錬炉により低N鋼を溶製するに当たり、低真空域で吹酸
精錬し、次いで、10torr以下の減圧下で仕上げ脱
炭した後、真空度を10torr以下に保持し、底吹き
不活性ガス量を増加して攪拌エネルギーEg を400W
/ton以上にせしめ、攪拌により生じた溶鋼露出面に
粒子径が30mm以下のAlを添加し、引き続き前記真
空度で還元精錬を行うことを特徴とした真空精錬炉によ
る低N鋼の溶製法である。
According to the present invention, in melting low N steel in a vacuum degassing and refining furnace, blast acid refining is performed in a low vacuum region, and then final decarburization is performed under reduced pressure of 10 torr or less. , The degree of vacuum is maintained below 10 torr, the amount of bottom-blown inert gas is increased, and the stirring energy E g is 400 W.
/ Ton or more, by adding Al having a particle size of 30 mm or less to the exposed surface of molten steel produced by stirring, and subsequently performing reduction refining at the vacuum degree in a low N steel melting process by a vacuum refining furnace. is there.

【0010】[0010]

【数2】 [Equation 2]

【0011】 但し、Qg :底吹き不活性ガス流量(Nl/min) T1 :溶鋼温度(K) ρ1 :溶鋼比重(kg/m3 ) Ζ :溶鋼深さ(mm) p :真空炉内圧力(torr) W1 :溶鋼重量(ton) ここで、10torr以下で仕上げ脱炭を完了するの
は、高真空下で溶鋼を保持することにより平衡炭素濃度
を低下させ高純化をすすめること、および、還元工程に
入るための真空度調整時間を省略するためである。底吹
き不活性ガス量を増加して攪拌エネルギーEg を400
W/ton以上にせしめるのは、Alがスラグ上に乗ら
ないように溶鋼露出面を大きくし、投入したAlをすば
やく溶鋼内に巻き込むためである。この方法によりAl
は溶鋼内で溶解、拡散されるため、Alの蒸発を防ぐこ
とができる。粒子径が30mm以下のAlを使用するの
は、溶鋼内に巻き込んだAlが溶解する前に浮上し蒸発
するのを防止するためである。また、10torr以下
の減圧下で還元精錬を行うのは、平衡窒素濃度を低下せ
しめることにより、雰囲気中の窒素が溶鋼に溶け込むの
を防止するためである。
However, Q g : bottom blown inert gas flow rate (Nl / min) T 1 : molten steel temperature (K) ρ 1 : specific gravity of molten steel (kg / m 3 ) Ζ: molten steel depth (mm) p: vacuum furnace Internal pressure (torr) W 1 : Molten steel weight (ton) Here, finishing decarburization at 10 torr or less is completed by holding the molten steel under high vacuum to lower the equilibrium carbon concentration and promote high purification. Also, the time for adjusting the degree of vacuum for entering the reduction step is omitted. The amount of bottom blowing inert gas is increased to increase the stirring energy E g to 400
The reason why it is set to W / ton or more is to increase the exposed surface of the molten steel so that Al does not ride on the slag, and to quickly wind the injected Al into the molten steel. By this method Al
Since is melted and diffused in the molten steel, evaporation of Al can be prevented. The reason why Al having a particle diameter of 30 mm or less is used is to prevent the Al caught in the molten steel from floating and evaporating before melting. The reason why the reduction refining is performed under a reduced pressure of 10 torr or less is to prevent the nitrogen in the atmosphere from melting into the molten steel by lowering the equilibrium nitrogen concentration.

【0012】この方法によれば、添加されたAlは溶鋼
内に押し込まれると瞬時に溶鋼中に拡散するため蒸発に
よる歩留りロスはなく、また、高真空下における処理で
あるから雰囲気N2 分圧が低く吸Nを防止することがで
きる。また、仕上げ脱炭と同程度の真空度でAlを添加
し還元処理を開始することで、還元処理時間を短縮で
き、したがって、生産性が向上し、耐火物の溶損抑制に
も有利である。
According to this method, the added Al diffuses into the molten steel instantly when it is pushed into the molten steel, so that there is no yield loss due to evaporation, and since it is a process under a high vacuum, the partial pressure of the atmosphere N 2 is reduced. Is low, and N absorption can be prevented. Further, by adding Al at the same degree of vacuum as that of the finish decarburization and starting the reduction treatment, the reduction treatment time can be shortened, therefore the productivity is improved and it is also advantageous in suppressing the melting loss of refractory materials. .

【0013】[0013]

【実施例】図1に示す条件で、本発明法と従来法により
19Crステンレス鋼を溶製した。本発明法は、吹酸精
錬、仕上げ脱ガスは全て同じ条件で処理し、還元は、真
空度、攪拌エネルギー、Al粒径の組み合わせを変えた
条件で処理を行った。また、従来法は、吹酸精錬後、常
圧下でAlを溶鋼浴面下に浸漬添加し、40torrの
真空下で3分間維持し、その後、1torrの真空下で
2分間攪拌を実施した。これらの結果をまとめて表1に
示すが、吸N防止、還元処理時間短縮、Al歩留り向上
において本発明法が有効であることは明らかである。
EXAMPLE 19Cr stainless steel was melted by the method of the present invention and the conventional method under the conditions shown in FIG. In the method of the present invention, all treatments were carried out under the same conditions for the refining of blown acid and finish degassing, and the reduction was carried out under the conditions where the combination of vacuum degree, stirring energy and Al particle size was changed. Further, in the conventional method, Al was dipped and added under the surface of the molten steel bath under atmospheric pressure after refining with blown acid, maintained under a vacuum of 40 torr for 3 minutes, and then stirred under a vacuum of 1 torr for 2 minutes. These results are summarized in Table 1, and it is clear that the method of the present invention is effective in preventing N absorption, shortening the reduction treatment time, and improving Al yield.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】以上説明したごとく、本発明法によれ
ば、真空脱ガス精錬炉内における還元処理工程における
吸Nを防止でき、低N鋼を安定して製造することが可能
となる。また、Al等の歩留りを高めるとともに短時間
で処理できるため、Al原単位、耐火物コストが低減で
き大きな経済効果が得られる。
As described above, according to the method of the present invention, it is possible to prevent N absorption in the reduction treatment step in the vacuum degassing and refining furnace and to stably manufacture the low N steel. In addition, since the yield of Al and the like can be improved and the treatment can be performed in a short time, the Al unit consumption and the refractory cost can be reduced and a large economic effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来法と本発明法の代表例における還元期の真
空度と攪拌エネルギーのパターンを示す図。
FIG. 1 is a diagram showing patterns of vacuum degree and stirring energy in a reducing period in a typical example of a conventional method and a method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅野浩至 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Sugano 1-1, Toibata-cho, Tobata-ku, Kitakyushu City Nippon Steel Yawata Works Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空脱ガス精錬炉により低N鋼を溶製す
るに当たり、低真空域で吹酸精錬し、次いで、10to
rr以下の減圧下で仕上げ脱炭した後、真空度を10t
orr以下に保持し、底吹き不活性ガス量を増加して攪
拌エネルギーEg を400W/ton以上にせしめ、攪
拌により生じた溶鋼露出面に粒子径が30mm以下のA
lを添加し、引き続き前記真空度で還元精錬を行うこと
を特徴とした真空精錬炉による低N鋼の溶製法 【数1】 但し、Qg :底吹き不活性ガス流量(Nl/min) T1 :溶鋼温度(K) ρ1 :溶鋼比重(kg/m3 ) Ζ :溶鋼深さ(mm) p :真空炉内圧力(torr) W1 :溶鋼重量(ton)
1. When melting low N steel in a vacuum degassing refining furnace, it is smelted with blown acid in a low vacuum region and then 10 to
After finishing decarburization under reduced pressure of rr or less, the degree of vacuum is 10t.
The amount of the bottom-blown inert gas was increased to set the stirring energy E g to 400 W / ton or more, and the particle diameter of the molten steel exposed surface generated by stirring was 30 mm or less.
1. Addition of 1 and subsequent reduction refining at the above-mentioned degree of vacuum, a method for melting low N steel in a vacuum refining furnace. However, Q g : Bottom blown inert gas flow rate (Nl / min) T 1 : Molten steel temperature (K) ρ 1 : Molten steel specific gravity (kg / m 3 ) Ζ: Molten steel depth (mm) p: Vacuum furnace pressure ( torr) W 1 : Molten steel weight (ton)
JP12273293A 1993-05-25 1993-05-25 Method for melting low n steel in vacuum refining furnace Pending JPH06330148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12273293A JPH06330148A (en) 1993-05-25 1993-05-25 Method for melting low n steel in vacuum refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12273293A JPH06330148A (en) 1993-05-25 1993-05-25 Method for melting low n steel in vacuum refining furnace

Publications (1)

Publication Number Publication Date
JPH06330148A true JPH06330148A (en) 1994-11-29

Family

ID=14843221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12273293A Pending JPH06330148A (en) 1993-05-25 1993-05-25 Method for melting low n steel in vacuum refining furnace

Country Status (1)

Country Link
JP (1) JPH06330148A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523106B1 (en) * 2001-12-17 2005-10-19 주식회사 포스코 method for refining a stainless steel sheet with low nitrogen
JP2006152390A (en) * 2004-11-30 2006-06-15 Nisshin Steel Co Ltd Method for melting chromium-containing steel
JP2008240126A (en) * 2007-03-28 2008-10-09 Jfe Steel Kk Method for refining molten stainless steel
JP2011179049A (en) * 2010-02-26 2011-09-15 Sumitomo Metal Ind Ltd Method for producing superclean steel
KR101431026B1 (en) * 2012-12-27 2014-08-19 주식회사 포스코 Vacuum oxygen decarbrization method for ferritic stainless steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523106B1 (en) * 2001-12-17 2005-10-19 주식회사 포스코 method for refining a stainless steel sheet with low nitrogen
JP2006152390A (en) * 2004-11-30 2006-06-15 Nisshin Steel Co Ltd Method for melting chromium-containing steel
JP4667841B2 (en) * 2004-11-30 2011-04-13 日新製鋼株式会社 Method for melting chromium-containing steel
JP2008240126A (en) * 2007-03-28 2008-10-09 Jfe Steel Kk Method for refining molten stainless steel
JP2011179049A (en) * 2010-02-26 2011-09-15 Sumitomo Metal Ind Ltd Method for producing superclean steel
KR101431026B1 (en) * 2012-12-27 2014-08-19 주식회사 포스코 Vacuum oxygen decarbrization method for ferritic stainless steel

Similar Documents

Publication Publication Date Title
JPH06330148A (en) Method for melting low n steel in vacuum refining furnace
US4615730A (en) Method for refining molten metal bath to control nitrogen
JP2002012912A (en) Method for producing high-carbon/low-nitrogen steel
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
SU1068526A1 (en) Alloy for alloying and reducing steel
JP3273205B2 (en) Decarburization refining method of chromium-containing molten steel
JPH05331523A (en) Method for refining molten steel for bearing steel
JP3305313B2 (en) Decarburization method using RH degasser
US4065297A (en) Process for dephosphorizing molten pig iron
KR100832996B1 (en) Method for Manufacturing High Carbon Steel Using Molten Pig Iron with High Phosphorus Content
JPS59162249A (en) Mild steel wire rod
RU2278169C2 (en) Method for production of chromium-manganese stainless steel
JP3230067B2 (en) Method for removing impurities from chromium-containing molten steel
JPH05195046A (en) Method for melting high manganese and extremely low carbon steel
JPH02225615A (en) Method for refining high-nitrogen and low-oxygen steel
JPH0633133A (en) Production of ultralow carbon steel
JPH0247215A (en) Manufacture of extremely low carbon steel
RU1774958C (en) Method of smelting steel in two-vat smelting unit
JPS63134623A (en) Denitrification method utilizing iron oxide
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
SU759597A1 (en) Method of smelting chrome-containing steels and alloys
JPH04329818A (en) Low carbon range decarbonizing method of molten chromium-containing steel
JPH10310817A (en) Decarburizing method in vacuum degassing apparatus
JPH05186818A (en) Melting method of high manganese and extremely low carbon steel
JPH06116625A (en) Method for degassing and decarburizing molten stainless steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010626