KR100523106B1 - method for refining a stainless steel sheet with low nitrogen - Google Patents

method for refining a stainless steel sheet with low nitrogen Download PDF

Info

Publication number
KR100523106B1
KR100523106B1 KR10-2001-0080130A KR20010080130A KR100523106B1 KR 100523106 B1 KR100523106 B1 KR 100523106B1 KR 20010080130 A KR20010080130 A KR 20010080130A KR 100523106 B1 KR100523106 B1 KR 100523106B1
Authority
KR
South Korea
Prior art keywords
nitrogen
refining
concentration
stainless steel
aod
Prior art date
Application number
KR10-2001-0080130A
Other languages
Korean (ko)
Other versions
KR20030049810A (en
Inventor
송효석
박종환
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2001-0080130A priority Critical patent/KR100523106B1/en
Publication of KR20030049810A publication Critical patent/KR20030049810A/en
Application granted granted Critical
Publication of KR100523106B1 publication Critical patent/KR100523106B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0026Introducing additives into the melt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • F27D2027/002Gas stirring

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

본 발명은 10-12%크롬 함유 스테인레스강의 질소를 효율적으로 제거하기 위한 방법으로, AOD에서의 아르곤 부족 문제를 해결하고, 질소 농도를 낮추기 위해 아래와 같이 AOD정련로와 진공 설비를 순차적으로 이용하는 것을 특징으로 하는 저질소 스테인레스강의 정련 방법으로써, 먼저, AOD 정련로에서 시작 탄소 농도를 1.3 중량% 이상으로 하고, 탄소농도 0.3%까지는 질소를 불활성 가스로 사용하며, 탄소농도 100ppm이하까지는 아르곤을 사용하여 탄소를 제거하며, 질소농도를 250ppm이하가 되도록 한다. 그리고 진공정련에서는 1660oC이상의 용강중에 Al농도가 0.05-0.1%이 되도록 첨가하고, 10mbar이하의 진공조건에서 래들 바닥으로부터 8.5-12.5l/min/t의 아르곤 가스를 취입하여 10-13분간 용강을 교반시킴으로써 질소를 제거하는 저질소 스테인레스강의 정련방법을 요지로 한다.The present invention is a method for efficiently removing nitrogen in 10-12% chromium-containing stainless steel, to solve the problem of argon deficiency in AOD, and to sequentially use the AOD refining furnace and vacuum equipment as follows to reduce the nitrogen concentration. As a method for refining low-nitrogen stainless steel, the starting carbon concentration is 1.3% by weight or more in an AOD refining furnace, nitrogen is used as an inert gas up to 0.3% carbon concentration, and argon is used up to 100 ppm carbon concentration. Remove the nitrogen concentration to 250ppm or less. In vacuum refining, the Al concentration is added to 0.05-0.1% in molten steel of 1660 o C or more, and molten steel of 8.5-12.5 l / min / t is blown from the bottom of the ladle under a vacuum condition of 10 mbar or less for 10-13 minutes. The method of refining low nitrogen stainless steel which removes nitrogen by stirring is made into the summary.

Description

저질소 스테인레스강의 정련 방법{method for refining a stainless steel sheet with low nitrogen}Method for refining a stainless steel sheet with low nitrogen}

본 발명은 저질소 스테인레스강의 정련방법에 관한 것으로, 더욱 상세하게는 스테인레스강의 질소농도를 낮추는 데 있어서 AOD정련로와 진공 설비를 이용하여 저질소 스테인레스강을 제조하는 정련 방법에 관한 것이다.The present invention relates to a method for refining low nitrogen stainless steel, and more particularly, to a method for refining low nitrogen stainless steel using an AOD refining furnace and a vacuum equipment in lowering the nitrogen concentration of stainless steel.

일반적으로, 스테인레스강 중의 질소는 가공중의 연신율 및 용접부의 인성 저하 등과 같은 제품의 기계적 성질을 나쁘게 하기때문에 사용 용도에 따라 극히 낮은 수준까지 제거해야 하는 원소이다. In general, nitrogen in stainless steel is an element that needs to be removed to an extremely low level depending on the intended use because it deteriorates the mechanical properties of the product, such as elongation during processing and lowered toughness of the weld.

스테인레스강은 크롬, 망간 등 질소와의 친화력이 높은 원소를 다량 함유하고 있기 때문에 스테인레스강의 정련에서 질소를 제거하는 기술은 매우 중요하다.특히 STS409L강과 같이 Ti를 함유하는 강은 탄소 및 질소가 각각 탄화물 또는 질화물을 형성하기 때문에 두 성분의 농도를 낮추어야 하는데 특히 질소의 경우에는 응고 과정 중에 TiN이 생성되어 연속주조시의 노즐 막힘 현상을 일으키거나 열연 코일의 표면 결함을 야기시키므로 용강중의 질소농도를 낮추어야 한다. Since stainless steel contains a large amount of elements having high affinity with nitrogen such as chromium and manganese, the technology of removing nitrogen from the refining of stainless steel is very important.In particular, steel containing Ti, such as STS409L steel, is carbon and nitrogen carbide, respectively. Alternatively, the concentration of the two components should be reduced because of the formation of nitrides. Especially, in the case of nitrogen, the concentration of nitrogen in molten steel should be reduced because TiN is formed during the solidification process, causing nozzle clogging during continuous casting or surface defects in the hot rolled coil. .

스테인레스강의 용강중 질소농도는, Ti농도가 증가함에 따라 감소하게 된다. 만일 용강중 질소가 평형 질소농도 보다 높으면 질소는 Ti와 반응하여 TiN으로 석출하며 TiN은 전술한 바 같은 제반문제를 야기시키게 된다. Nitrogen concentration in molten steel of stainless steel will decrease as Ti concentration increases. If the nitrogen in the molten steel is higher than the equilibrium nitrogen concentration, the nitrogen reacts with Ti to precipitate TiN and TiN causes various problems as described above.

전기로-AOD(Argon Oxygen Decarburization) 공정으로 스테인레스강을 제조할 때 전기로를 이용하여 합금철 및 일반 스크랩을 용해하는데 아크(Arc)방전에 의해 공기중의 질소가 용강중으로 용해되기도 하고, 출강 시에 용강과 공기의 접촉에 의해 질소가 흡수되어 AOD시작 시점의 질소농도는 200-250ppm정도가 함유되어 있다. AOD에서는 산소와 아르곤의 혼합가스를 이용하여 전기로에서 제조한 스테인레스강 용강의 탄소를 제거하고 있는데, 이때 질소를 낮은 수준까지 낮추기 위해 정련로 시작 탄소 농도를 높이고, 산소와의 혼합가스로 정련 과정에서 아르곤만을 사용하는 것이 일반적인 방법이며, 이는 탈탄 과정 중에 생성되는 CO 가스 기포와 아르곤 가스 기포를 탈질 반응에 이용하기 위함이다. Electric furnace-AOD (Argon Oxygen Decarburization) process is used to dissolve ferroalloy and general scrap by using electric furnace. Nitrogen in air is dissolved into molten steel by arc discharge. Nitrogen is absorbed by the contact of molten steel and air, and the nitrogen concentration at the start of AOD is about 200-250ppm. AOD removes carbon from stainless steel molten steel produced in an electric furnace using a mixed gas of oxygen and argon.In this case, it is necessary to increase the starting carbon concentration in the refinery in order to lower the nitrogen to a low level, and in the refining process with the mixed gas with oxygen. It is common practice to use only argon, in order to use CO gas bubbles and argon gas bubbles generated during the decarburization process in the denitrification reaction.

그러나 정련로 개시 탄소를 높이는 경우 최종 정련 단계에서 용강중의 탄소 농도를 높이는 문제를 야기 시키므로 탄소 농도를 높여 질소를 제거하는 방법을 적용하는 데는 한계가 있다. 또 AOD출강 중에 용강과 대기와의 접촉에 의해 용강중의 질소농도가 높아지기 때문에 저질소 스테인레스강의 질소 농도 조절에 곤란을 겪고 있다. However, increasing the starting carbon by refining causes a problem of increasing the carbon concentration in the molten steel in the final refining step, so there is a limit in applying a method of removing nitrogen by increasing the carbon concentration. In addition, since the concentration of nitrogen in molten steel increases due to the contact between molten steel and the atmosphere during AOD tapping, it is difficult to control the nitrogen concentration of low nitrogen stainless steel.

AOD를 이용한 저질소 스테인레스강의 제조에서는 탈탄 반응시에 발생하는 CO가스에 의해 질소가 제거되므로, 초기 탄소농도를 높이기 위해 가탄제를 첨가하게 된다. 그러나 탄소 농도를 높이면, 상술한 바와 같은 탈탄 종료 후 탄소 픽업에 의해 탄소 농도가 증가하는 문제를 발생시키게 될 뿐 아니라, AOD정련시간이 길어지고, 불활성 가스인 아르곤의 소비가 늘어나게 되는 등 많은 문제를 야기시키게 된다. 즉 AOD단독처리의 경우 저 질소농도의 스테인레스강을 안정적으로 생산하는 것이 곤란하며, AOD정련시간이 과다하게 소요되고, Ar소비량이 증가하여 Ar부족에 의해 정련로 휴지가 빈번하게 발생된다. In the production of low-nitrogen stainless steel using AOD, nitrogen is removed by CO gas generated during the decarburization reaction, so that a carbonaceous agent is added to increase the initial carbon concentration. Increasing the carbon concentration, however, not only causes the carbon concentration to be increased by the carbon pick-up after the decarburization is completed, but also increases the AOD refining time and increases the consumption of argon as an inert gas. Cause it. That is, in the case of AOD alone treatment, it is difficult to stably produce low-nitrogen stainless steel, excessive AOD refining time, and increased Ar consumption result in frequent refining due to lack of Ar.

이에 본 발명의 발명자들은 상기한 종래방법의 문제점을 개선하기 위해 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명의 목적은 저질소 스테인레스강의 제조를 위해 AOD정련로와 진공 설비를 이용하는 방법으로, AOD 정련로에서는 탄소만을 제거하고, 질소는 진공 설비를 이용하여 제거하는 것을 목적으로 한다. Accordingly, the inventors of the present invention conduct research and experiments to improve the problems of the conventional method described above, and propose the present invention based on the results, and an object of the present invention is an AOD refining furnace for the production of low nitrogen stainless steel. By using a vacuum equipment, an AOD refining furnace removes only carbon, and nitrogen is removed using a vacuum equipment.

본 발명은 AOD정련로에서 질소를 낮추는 부담이 없기 때문에 아르곤 가스의 소비가 절감되기 때문에 아르곤 부족 문제를 해결하고, 질소는 대기와의 접촉을 차단한 진공 설비를 이용하여 제거하는 방법을 제공함으로써 전체 정련시간을 단축하고, 스테인레스강의 질소 농도를 효율적으로 낮출 수 있는 저질소 스테인레스강의 정련법에 관한 것이다.The present invention solves the problem of argon shortage because the consumption of argon gas is reduced because there is no burden to lower the nitrogen in the AOD refining furnace, and by providing a method for removing nitrogen by using a vacuum equipment that blocks the contact with the atmosphere The present invention relates to a method for refining low nitrogen stainless steel that can shorten refining time and efficiently lower the nitrogen concentration of stainless steel.

이하, 본 발명을 도면을 참조하여 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.

본 발명은 10-12%크롬 함유 스테인레스강의 질소를 효율적으로 제거하기 위한 방법으로, AOD에서의 아르곤 부족 문제를 해결하고, 질소 농도를 낮추기 위해 아래와 같이 AOD정련로와 진공 설비를 순차적으로 이용하는 것을 특징으로 하는 저질소 스테인레스강의 정련 방법으로써, 먼저, AOD 정련로에서 시작 탄소 농도를 1.3 중량% 이상으로 하고, 탄소농도 0.3%까지는 질소를 불활성 가스로 사용하며, 탄소농도 100ppm이하까지는 아르곤을 사용하여 탄소를 제거하며, 질소농도를 250ppm이하가 되도록 한다. 그리고 진공정련에서는 1660oC이상의 용강중에 Al농도가 0.05-0.1%이 되도록 첨가하고, 10mbar이하의 진공조건에서 래들 바닥으로부터 8.5-12.5l/min/t의 아르곤 가스를 취입하여 10-13분간 용강을 교반시킴으로써 질소를 제거하는 저질소 스테인레스강의 정련법이다.The present invention is a method for efficiently removing nitrogen in 10-12% chromium-containing stainless steel, to solve the problem of argon deficiency in AOD, and to sequentially use the AOD refining furnace and vacuum equipment as follows to reduce the nitrogen concentration. As a method for refining low-nitrogen stainless steel, the starting carbon concentration is 1.3% by weight or more in an AOD refining furnace, nitrogen is used as an inert gas up to 0.3% carbon concentration, and argon is used up to 100 ppm carbon concentration. Remove the nitrogen concentration to 250ppm or less. In vacuum refining, the Al concentration is added to 0.05-0.1% in molten steel of 1660 o C or more, and molten steel of 8.5-12.5 l / min / t is blown from the bottom of the ladle under a vacuum condition of 10 mbar or less for 10-13 minutes. It is a refining method of low nitrogen stainless steel which removes nitrogen by stirring.

이하, 상술한 용강 성분의 농도 한정 이유와 정련방법에 대해 설명한다. The reason for concentration limitation of the molten steel component described above and the refining method will be described below.

본 발명에서 AOD 정련로와 진공 설비를 순차적으로 이용하는 이유는 탄소 제거 효율이 우수한 AOD 정련로와 질소 제거 능력이 우수한 진공 정련 설비를 이용하여 저질소 스테인레스강의 각 공정간의 부하를 분산시키기 위한 것이다. AOD 정련에서 시작 탄소 농도가 1.3중량% 이상으로 한정한 이유는 탄소농도가 높을수록 정련로의 탈탄 시간이 길어지기 때문에 바람직하지 않지만, 이보다 탄소농도가 낮으면 정련로에서의 탈탄량이 부족하여 목표 온도에 도달하는 데 열량이 부족할 수가 있기 때문이다. 또 1.3중량%의 탄소 농도는 전기로에서 원료 합금철에 포함된 탄소만을 고려한 값으로 가탄제를 사용하지 않아도 되는 장점이 있다. 그리고 정련로의 탈탄 과정중 0.3%의 탄소농도까지 질소가스를 사용하는 것은 아르곤 가스를 절감하기 위한 것으로, 0.3% 미만에서도 질소가스를 사용하게 되면, 종점 질소 목표인 250ppm이하로 만들기가 어렵게 된다. 그리고 정련로에서의 질소 농도가 250ppm이하가 되어야 하는 것은 진공 공정에서도 질소 제거 능력에 한계가 있기 때문이다. 또 진공 탈질 공정에서 용강온도가 높을수록 탈질반응이 잘 일어나는데, AOD내화물 용손 등을 고려하면 진공정련 개시 시점의 용강 온도가 1660℃이상이 바람직하다. 진공 정련 공정에서 진공도를 10mbar 이하로 한정한 것은 10mbar 초과의 경우에 질소 제거 속도가 늦어지기 때문이다. 또 Al농도를 0.05-0.1%로 한정한 것은 Al 농도 0.05% 미만에서는 탈산이 부족하여 표면 활성 원소인 산소의 제거가 불충분하여 탈질 반응을 방해하고, 0.1% 초과의 Al농도에서는 산소가 충분히 제거되기 때문에 그 이상으로 Al을 첨가하면 Al사용량만 증가시키게 된다. 저질소 농도영역에서의 탈질반응은 물질 이동 율속으로 알려져 있기 때문에 용강의 교반이 특히 중요하며, 래들 바닥의 포러스 플러그를 이용하여 아르곤을 불어넣게 되며, 아르곤 유량이 부족하면 용강 교반이 부족하여 탈질 반응이 늦어지고, 아르곤 유량이 너무 많으면 용강의 비산에 의해 진공 정련 조업이 곤란해지는 문제를 야기하기 때문에 저취 아르곤 유량을 8.5-12.5ㅣ/min/t하였다. 그리고 용강 교반 시간을 한정한 이유는 본 발명의 유량 범위 내에서 탈질소 반응이 충분히 일어나기 위해 필요한 시간과 시간이 너무 길면, 용강의 온도가 강하하는 문제를 야기시키게 않는 범위에서 설정하였다.The reason for using the AOD refining furnace and the vacuum equipment in order in the present invention is to distribute the load between the processes of low nitrogen stainless steel by using the AOD refining furnace with excellent carbon removal efficiency and the vacuum refining equipment with excellent nitrogen removal ability. The reason for limiting the starting carbon concentration to 1.3 wt% or more in AOD refining is not preferable because the higher the carbon concentration, the longer the decarburization time in the refining furnace is. However, the lower the carbon concentration, the lower the decarburization amount in the refining furnace. Because you may not have enough calories to reach. In addition, the carbon concentration of 1.3% by weight is a value in consideration of only the carbon contained in the raw iron alloy in the electric furnace has the advantage that does not need to use a carbonization agent. The use of nitrogen gas to a carbon concentration of 0.3% during the decarburization process of the refinery is intended to reduce argon gas, and when nitrogen gas is used even at less than 0.3%, it is difficult to make it below the target nitrogen of 250 ppm. In addition, the nitrogen concentration in the refinery should be 250 ppm or less because the nitrogen removal capability is limited even in the vacuum process. In the vacuum denitrification process, the higher the molten steel temperature, the better the denitrification reaction. In consideration of AOD refractory loss, the molten steel temperature at the start of vacuum refining is preferably 1660 ° C or higher. The vacuum degree in the vacuum refining process is limited to 10 mbar or less because the rate of nitrogen removal is slowed above 10 mbar. In addition, the Al concentration is limited to 0.05-0.1% because the deoxidation is insufficient at the Al concentration of less than 0.05%, so that the removal of oxygen as a surface active element is insufficient, which hinders the denitrification reaction and the oxygen is sufficiently removed at the Al concentration above 0.1%. Therefore, if Al is added more than that, only Al consumption is increased. The denitrification reaction in the low nitrogen concentration region is known as mass transfer rate, so the stirring of molten steel is particularly important, and argon is blown by using a forrus plug at the bottom of the ladle. This delayed, too much argon flow rate causes a problem that the vacuum refining operation becomes difficult due to the scattering of molten steel, the low odor argon flow rate was 8.5-12.5 | / min / t. And the reason for limiting the molten steel stirring time was set in the range which does not cause the problem that the temperature of molten steel falls if the time and time required in order for a denitrification reaction to fully occur in the flow range of this invention are too long.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

본 발명의 실시예는 실제 스테인레스강을 생산하고 있는 AOD정련로와 진공 정련 설비인 VOD를 이용하여 실시하였다. 시험대상으로는 11.5%Cr함유 저질소강인 STS409L강을 선정하였으며 표 1에 조성을 나타내었다. The embodiment of the present invention was carried out using an AOD refining furnace that produces actual stainless steel and VOD, which is a vacuum refining facility. STS409L steel, a low nitrogen steel containing 11.5% Cr, was selected for the test and the composition is shown in Table 1.

표 2에 종래 방법과 본 발명의 409L강의 정련방법을 비교하여 나타내었다. 표 2에서 보듯이 종래법에서는 AOD정련로만을 이용하여 질소를 제거하지만, 본 발명에서는 AOD와 진공 탈탄 설비를 순차적으로 이용하여 탄소를 효과적으로 제거하게 된다. 본 발명에서는 AOD시작 탄소농도를 종래법의 평균 2.0%보다 1.5%로 낮추어, AOD정련시간의 단축이 가능하며, 종점 목표 질소를 종래의 60ppm이하보다 높은 250ppm이하로 하여 AOD정련로에서 산소와의 혼합가스로 탄소 농도 1.5%에서 0.3%까지는 질소 가스를 사용하고, 그 이후는 아르곤을 사용하였다. 본 발명에서 질소 제거를 위해 사용되는 진공 정련에서의 초기 용강 온도를 1670oC, 진공도를 10mbar이하로 조절하고, 교반 시간은 13분, 그리고 저취가스 유량은 80톤 기준으로 800 l/min의 아르곤을 흘려 주어 탈질 반응이 일어나도록 하였다. 그림 1은 본 발명의 진공 탈질의 실시예 결과로 진공 탈질 공정에서 개시 질소 농도와 처리후 질소 농도의 관계를 나타낸 것이다. 그림에서 보듯이 본 발명의 진공 정련에서는 시작 질소농도가 약 250ppm에서도 처리후의 질소 농도를 90ppm이하로 낮추는 것이 가능하며, 그 이상의 질소 농도에서는 처리후의 질소 농도가 높아지는 것을 알 수 있다. 그림 2는 종래의 409L제조방법에서의 질소 농도 거동을 나타낸 것이다. 종래방법으로는 AOD에서 질소 농도를 56ppm까지 낮춘 다음 출강과정이 있기 때문에 용강 성분 조정 단계 인 LT처리전의 질소 농도가 84ppm으로 높아지고, 주조까지 92ppm까지 증가하였다. 그림 3은 본 발명의 실시예를 나타낸 것으로 AOD종점에서 정련로의 종점 질소 농도가 약 250ppm으로 높기 때문에 출강과정에서의 질소 농도 증가가 없으며, 진공 정련에 의해 질소 농도를 72ppm까지 낮출 수 있었고, 주조후의 질소 농도를 80ppm이었다. 종래법에서는 AOD정련과 용강 미세 조정을 위해 약 97분이 소요되었으나, 본 발명의 실시예에서는 90분으로 약 7분의 정련시간이 단축되었고, 질소의 농도도 종래의 92ppm에서 80ppm수준으로 10ppm이상 농도가 감소한 것을 알 수 있다.Table 2 shows a comparison between the conventional method and the refining method of the 409L steel of the present invention. As shown in Table 2, in the conventional method, nitrogen is removed using only an AOD refining furnace, but in the present invention, carbon is effectively removed using AOD and vacuum decarburization equipment sequentially. In the present invention, the AOD starting carbon concentration is lowered to 1.5% from the average 2.0% of the conventional method, and the AOD refining time can be shortened. Nitrogen gas was used as a mixed gas from 1.5% to 0.3% of carbon concentration, and argon was used after that. In the present invention, the initial molten steel temperature in vacuum refining used for nitrogen removal is controlled to 1670 o C, the vacuum degree is 10 mbar or less, the stirring time is 13 minutes, and the low odor gas flow rate is 800 l / min based on 80 tons. Was flowed to allow denitrification. Figure 1 shows the relationship between the starting nitrogen concentration and the treated nitrogen concentration in the vacuum denitrification process as a result of the vacuum denitrification example of the present invention. As shown in the figure, in the vacuum refining of the present invention, even after the starting nitrogen concentration is about 250 ppm, it is possible to lower the nitrogen concentration after treatment to 90 ppm or less, and the nitrogen concentration after the treatment becomes higher. Figure 2 shows the nitrogen concentration behavior of the conventional 409L manufacturing process. In the conventional method, since the nitrogen concentration in the AOD was lowered to 56 ppm and the tapping process was performed, the nitrogen concentration before the LT treatment, the molten steel component adjusting step, was increased to 84 ppm and increased to 92 ppm until casting. Figure 3 shows an embodiment of the present invention, because the nitrogen concentration in the refining furnace at the AOD end point is about 250ppm, there is no increase in nitrogen concentration during the tapping process, and the nitrogen concentration can be lowered to 72ppm by vacuum refining. The nitrogen concentration after this was 80 ppm. In the conventional method, it took about 97 minutes to refine the AOD and refine the molten steel, but in the embodiment of the present invention, the refinement time of about 7 minutes was shortened to 90 minutes, and the concentration of nitrogen was more than 10 ppm from the conventional 92 ppm to 80 ppm. It can be seen that the decrease.

(중량%)(weight%) CC SiSi MnMn CrCr TiTi NN 0.015이하0.015 or less 0.30.3 0.40.4 11.511.5 0.150.15 <0.02<0.02

구분division 종래방법Conventional method 본발명Invention 비고Remarks 공정fair AOD정련로-용강성분미세조정-주조AOD refining furnace-molten steel component-adjustment-casting AOD정련로-진공탈질공정-주조AOD Refinery-Vacuum Denitrification Process-Casting 본 발명에서 용강성분 미세조정은 진공상태에서 실시Fine adjustment of molten steel component in the present invention is carried out in a vacuum state AOD정련로AOD refining furnace 시작탄소Starting carbon 2.5%2.5% 1.5%1.5% 종점질소Terminal nitrogen 60ppm이하Less than 60ppm 250ppm이하250ppm or less 종점탄소Terminal carbon 100ppm이하100ppm or less 100ppm이하100ppm or less 질소/아르곤 가스 사용Nitrogen / Argon Gas Use 아르곤만 사용Argon only 질소를 0.3%C까지 사용Nitrogen up to 0.3% C 진공처리공정Vacuum process 진공도Vacuum degree 진공처리 없음No vacuum treatment 10mbar이하Less than 10mbar 교반시간Stirring time Al첨가후 13분13 minutes after Al addition Al농도Al concentration 0.05%0.05% 저취유량Low Odor Flow 10 ㅣ/min/t10 l / min / t

이상 상술한 바와 같이, 저질소 스테인레스강의 정련시에 본 발명을 적용하면, 정련 시간 단축은 물론이고, 저질소 스테인레스강의 성분 중 가장 중요한 원소인 질소 농도를 안정적이고, 효율적으로 낮추는 데에 효과가 있음을 알 수 있다.As described above, when the present invention is applied during the refining of low nitrogen stainless steel, it is effective not only to shorten the refining time but also to stably and efficiently lower the nitrogen concentration, which is the most important element among the components of the low nitrogen stainless steel. It can be seen.

도 1은 진공 정련 공정에서의 처리, 전후의 질소농도를 도시한 그래프도.BRIEF DESCRIPTION OF THE DRAWINGS The graph which shows the nitrogen concentration before and after the process in a vacuum refining process.

도 2는 STS409L강의 제조를 위한 종래기술에서의 질소농도의 거동을 도시한 그래프도.2 is a graph showing the behavior of nitrogen concentration in the prior art for the production of STS409L steel.

도 3은 STS409L강의 제조를 위한 본 발명의 질소농도의 거동을 도시한 그래프도.Figure 3 is a graph showing the behavior of the nitrogen concentration of the present invention for the production of STS409L steel.

Claims (3)

삭제delete 10-12% 크롬 함유 저질소 스테인레스강을 AOD 정련로에서는 탄소만을 제거하고, 질소는 진공 설비를 이용하여 순차적으로 제거하는 저질소 스테인레스강의 정련방법에 있어서,In the method of refining low nitrogen stainless steel, in which 10-12% chromium-containing low nitrogen stainless steel is removed from the AOD refining furnace, only carbon and nitrogen is sequentially removed using a vacuum equipment. 상기 AOD 정련로에서 시작 탄소 농도를 1.3 중량% 이상으로 하고, 탄소농도 0.3%까지는 질소를 사용하고 탄소농도 100ppm이하까지는 아르곤을 사용하여 탄소를 제거하며, 질소농도를 250ppm이하가 되도록 하는 것을 특징으로 하는 저질소 스테인레스강의 정련방법.In the AOD refining furnace, the starting carbon concentration is 1.3% by weight or more, carbon concentration is 0.3%, nitrogen is used, carbon concentration is 100ppm or less, argon is used to remove carbon, and nitrogen concentration is 250ppm or less. Refining method of low nitrogen stainless steel 제2항에 있어서,The method of claim 2, 진공설비에서는 1660℃이상의 용강중에 Al 농도가 0.05-0.1%이 되도록 첨가하고, 10mbar이하의 진공조건에서 래들 바닥으로부터 8.5-12.5ㅣ/min/t의 아르곤 가스를 취입하면서 10-13분간 용강을 교반시킴으로써 질소를 제거하는 것을 특징으로 하는 저질소 스테인레스강의 정련방법.In a vacuum installation, the Al concentration is added to 0.05-0.1% in molten steel of 1660 ° C or more, and the molten steel is stirred for 10-13 minutes while blowing 8.5-12.5 l / min / t of argon gas from the bottom of the ladle under a vacuum condition of 10 mbar or less. Refining method of low nitrogen stainless steel, characterized in that to remove nitrogen.
KR10-2001-0080130A 2001-12-17 2001-12-17 method for refining a stainless steel sheet with low nitrogen KR100523106B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0080130A KR100523106B1 (en) 2001-12-17 2001-12-17 method for refining a stainless steel sheet with low nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0080130A KR100523106B1 (en) 2001-12-17 2001-12-17 method for refining a stainless steel sheet with low nitrogen

Publications (2)

Publication Number Publication Date
KR20030049810A KR20030049810A (en) 2003-06-25
KR100523106B1 true KR100523106B1 (en) 2005-10-19

Family

ID=29575602

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0080130A KR100523106B1 (en) 2001-12-17 2001-12-17 method for refining a stainless steel sheet with low nitrogen

Country Status (1)

Country Link
KR (1) KR100523106B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126745A (en) * 2020-09-27 2020-12-25 江油市长祥特殊钢制造有限公司 Nitrogen increasing method for stainless steel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026611A (en) * 1983-07-22 1985-02-09 Nisshin Steel Co Ltd Manufacture of extra-low nitrogen steel containing cr by refining
JPS60234916A (en) * 1984-05-08 1985-11-21 Nisshin Steel Co Ltd Manufacture of stainless steel containing low nitrogen
JPH06330148A (en) * 1993-05-25 1994-11-29 Nippon Steel Corp Method for melting low n steel in vacuum refining furnace
JPH09217108A (en) * 1987-09-17 1997-08-19 Nkk Corp Production of low nitrogen stainless steel
KR980009473A (en) * 1996-07-29 1998-04-30 김종진 Refining method of low carbon, low nitrogen stainless steel
JPH1129819A (en) * 1997-07-09 1999-02-02 Kawasaki Steel Corp Method for melting low nitrogen stainless steel
JPH11106823A (en) * 1997-10-03 1999-04-20 Kawasaki Steel Corp Method for refining extra-low carbon and extra-low nitrogen stainless steel
KR19990038334A (en) * 1997-11-04 1999-06-05 이구택 High speed refining method of low carbon stainless steel
KR20030003847A (en) * 2001-07-04 2003-01-14 주식회사 포스코 Method of refining low nitrogen, low carbon stainless steel sheets having stabilized titanium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026611A (en) * 1983-07-22 1985-02-09 Nisshin Steel Co Ltd Manufacture of extra-low nitrogen steel containing cr by refining
JPS60234916A (en) * 1984-05-08 1985-11-21 Nisshin Steel Co Ltd Manufacture of stainless steel containing low nitrogen
JPH09217108A (en) * 1987-09-17 1997-08-19 Nkk Corp Production of low nitrogen stainless steel
JPH06330148A (en) * 1993-05-25 1994-11-29 Nippon Steel Corp Method for melting low n steel in vacuum refining furnace
KR980009473A (en) * 1996-07-29 1998-04-30 김종진 Refining method of low carbon, low nitrogen stainless steel
JPH1129819A (en) * 1997-07-09 1999-02-02 Kawasaki Steel Corp Method for melting low nitrogen stainless steel
JPH11106823A (en) * 1997-10-03 1999-04-20 Kawasaki Steel Corp Method for refining extra-low carbon and extra-low nitrogen stainless steel
KR19990038334A (en) * 1997-11-04 1999-06-05 이구택 High speed refining method of low carbon stainless steel
KR20030003847A (en) * 2001-07-04 2003-01-14 주식회사 포스코 Method of refining low nitrogen, low carbon stainless steel sheets having stabilized titanium

Also Published As

Publication number Publication date
KR20030049810A (en) 2003-06-25

Similar Documents

Publication Publication Date Title
KR100889685B1 (en) A method for refining with high purity of stainless steel
KR100860656B1 (en) Refining method of molten steel and method of producting extra-low-carbon steel using thereof
KR101045967B1 (en) Method of manufacturing manganese-containing steel
JP6780695B2 (en) Melting method of ultra-low sulfur low nitrogen steel
KR100523106B1 (en) method for refining a stainless steel sheet with low nitrogen
KR100363417B1 (en) Decarburization of Low Carbon Stainless Steel
KR101249201B1 (en) Method for laddle treatment
CN103225009A (en) Method for producing high-cleanness steel
KR100729123B1 (en) Method of manufacturing for low-carbon austenite stainless steel
WO2022039036A1 (en) Production method for high-manganese steel
KR100388239B1 (en) Method for producing low sulfer, low carbon steel using eaf-vtd process
KR100491007B1 (en) A method for refining a molten steel in use for the manufacture of a stainles steel having low carbon
KR100270117B1 (en) The progressive temperature method of molten metal
KR950012409B1 (en) Making method of ladie slag
KR100992303B1 (en) Method for refining of extra low sulfur stainless steel
KR100314841B1 (en) Refinement method for reduction of slag foaming during ladle refining
JPH05230516A (en) Melting method for extra-low-carbon steel
KR101363923B1 (en) Method for producing of steel
KR100191010B1 (en) Oxygen refining method of low carbon steel
KR20170104071A (en) law carbon steel plate manufacturing method
KR100554142B1 (en) Refining process of invar steel
KR100402005B1 (en) A METHOD FOR REFINING ULTRA LOW CARBON Al-KILLED STEEL OF HIGH CLEANINESS
KR101431026B1 (en) Vacuum oxygen decarbrization method for ferritic stainless steel
KR100340573B1 (en) Manufacturing method of high clean steel
KR101046027B1 (en) How to prevent duplication after degassing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120928

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130927

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141008

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151008

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161007

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee