JP2923182B2 - Melting method of ultra low carbon steel - Google Patents

Melting method of ultra low carbon steel

Info

Publication number
JP2923182B2
JP2923182B2 JP24553593A JP24553593A JP2923182B2 JP 2923182 B2 JP2923182 B2 JP 2923182B2 JP 24553593 A JP24553593 A JP 24553593A JP 24553593 A JP24553593 A JP 24553593A JP 2923182 B2 JP2923182 B2 JP 2923182B2
Authority
JP
Japan
Prior art keywords
steel
dissolved oxygen
vacuum degassing
low carbon
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24553593A
Other languages
Japanese (ja)
Other versions
JPH0797613A (en
Inventor
幸介 山下
龍介 三浦
逸朗 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17135144&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2923182(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24553593A priority Critical patent/JP2923182B2/en
Publication of JPH0797613A publication Critical patent/JPH0797613A/en
Application granted granted Critical
Publication of JP2923182B2 publication Critical patent/JP2923182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼の真空脱ガス処理
により極低炭素鋼を溶製する方法に関し、鋼中溶解酸素
濃度をコントロールすることにより、効果的に製品品質
を向上させる溶鋼の真空脱ガス処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultra-low carbon steel by vacuum degassing of molten steel. The present invention relates to a method for improving the product quality by controlling the dissolved oxygen concentration in the steel. The present invention relates to a vacuum degassing method.

【0002】[0002]

【従来の技術】極低炭素鋼の製造方法は、製鋼炉で溶製
された未脱酸溶鋼もしくは弱脱酸溶鋼をRH法、DH法
あるいはその他の取鍋精錬法によって、真空脱ガス・脱
炭処理されることが一般的によく知られており、例えば
特開平2−213410号公報、特開平4−22851
5号公報等がある。この精錬による極低炭素材は、薄板
の連焼材、無方向性電磁鋼板等に製造され、それらの製
品の品質あるいは電磁特性の向上には、極力製品鋼板の
C含有量は低いことが好ましい。
2. Description of the Related Art Ultra-low carbon steel is manufactured by vacuum degassing and degassing of undeoxidized or weakly deoxidized molten steel in a steelmaking furnace by RH method, DH method or other ladle refining methods. It is generally well known that charcoal treatment is performed. For example, JP-A-2-213410, JP-A-4-22851
No. 5 publication. The ultra-low carbon material by this refining is manufactured into a continuously fired thin sheet, a non-oriented electrical steel sheet, and the like. In order to improve the quality or electromagnetic properties of those products, it is preferable that the C content of the product steel sheet is as low as possible. .

【0003】極低炭素鋼の製造工程で真空脱ガス・脱炭
処理を行う際、脱炭効率を上げるために鋼中の溶解酸素
濃度を高くすることが好ましい。しかしながら、真空脱
ガス・脱炭処理終了後、溶鋼中の溶解酸素はAl,S
i,Ti等で脱酸され、それによって脱酸生成物がで
き、これらの多くは介在物として鋼中に浮遊した状態で
残留する。これらの介在物は、脱酸時の溶鋼中溶解酸素
濃度が高いほど多い。
When performing vacuum degassing / decarburization treatment in the production process of ultra-low carbon steel, it is preferable to increase the concentration of dissolved oxygen in the steel in order to increase the decarburization efficiency. However, after the vacuum degassing / decarburizing treatment, the dissolved oxygen in the molten steel is changed to Al, S
It is deoxidized by i, Ti, etc., thereby producing deoxidation products, many of which remain as inclusions in the state of being suspended in the steel. These inclusions increase as the concentration of dissolved oxygen in the molten steel during deoxidation increases.

【0004】鋼中の介在物レベルが高いと、製鋼操業や
製品の品質特性に対し多くの悪影響を及ぼす。製鋼操業
に対しては、溶鋼鍋のノズル絞り、タンディシュのノズ
ル絞り、浸漬ノズルの介在物付着が発生し、製品の品質
特性に対しては、製品板の内質欠陥、表面疵を発生させ
たり、機能材料の磁束密度あるいは鉄損等の電磁特性を
悪化させる等の問題がある。
[0004] High levels of inclusions in steel have many adverse effects on steelmaking operations and product quality characteristics. In steelmaking operations, nozzle narrowing of molten steel pots, nozzle narrowing of tundishes, and inclusions of immersion nozzles occur, and on the quality characteristics of products, internal defects and surface defects on the product plate may occur. In addition, there are problems such as deterioration of magnetic properties such as magnetic flux density or iron loss of the functional material.

【0005】このように、極低炭素鋼を真空脱ガス・脱
炭処理により溶製する場合、脱炭効率向上を図るには鋼
中の溶解酸素濃度が高いほど有利である一方、鋳造時の
操業性や製品品質・特性を改善するに鋼中の溶解酸素濃
度は低いほど有利であり、両者は相反する操業条件を必
要としている。よって、両者を満足するには鋼中の溶解
酸素濃度をそれぞれの鋼種に応じてある適正な範囲に制
御することが重要である。
As described above, when ultra-low carbon steel is smelted by vacuum degassing and decarburization, the higher the dissolved oxygen concentration in the steel, the more advantageous it is to improve the decarburization efficiency. The lower the dissolved oxygen concentration in steel is, the more advantageous in improving operability and product quality / characteristics, and both require conflicting operating conditions. Therefore, in order to satisfy both, it is important to control the dissolved oxygen concentration in the steel to a certain appropriate range according to each steel type.

【0006】この溶解酸素濃度をコントロールするに
は、精錬炉の精錬終了時の炭素濃度を高くするかあるい
は酸化鉄の添加、酸素吹き込み等により溶解酸素濃度を
コントロールすることがRH法、DH法等の真空製錬で
採用されている。
In order to control the dissolved oxygen concentration, it is necessary to increase the carbon concentration at the end of refining in the refining furnace or to control the dissolved oxygen concentration by adding iron oxide, blowing oxygen, etc. Is used in vacuum smelting.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これ等
従来の溶解酸素濃度をコントロールしたRH法、DH法
等の真空精錬では、吹き止め炭素濃度により溶解酸素濃
度をコントロールするには吹き止め炭素濃度がバラツキ
を生じること、同じ炭素濃度でも溶解酸素濃度自体が大
きく異なる。
However, in the conventional vacuum refining such as the RH method and the DH method in which the dissolved oxygen concentration is controlled, in order to control the dissolved oxygen concentration by the blow-off carbon concentration, the blow-off carbon concentration is required. Variations occur, and the dissolved oxygen concentration itself differs greatly even at the same carbon concentration.

【0008】また、酸化鉄の添加、酸素吹き込み等によ
り溶解酸素濃度をコントロールすることは分解反応によ
る溶鋼の温度低下、酸素濃度のバラツキ、処理時間の延
長、耐火物の溶損を招き、しかも、大きな設備投資が必
要である等の欠点がある。
[0008] Controlling the dissolved oxygen concentration by adding iron oxide, blowing oxygen, etc., causes a decrease in the temperature of the molten steel due to a decomposition reaction, a variation in the oxygen concentration, a prolonged treatment time, and a loss of refractories. There are drawbacks such as a large capital investment required.

【0009】本発明は上述したような従来の問題を解決
し、介在物を極力低くし、かつ耐火物、操業性に悪影響
を与えないで真空脱ガス処理を行って極低炭素鋼を溶製
する方法を提供することにある。
The present invention solves the above-mentioned conventional problems, reduces the inclusions as much as possible, and performs vacuum degassing without adversely affecting the refractory and operability to melt ultra-low carbon steel. It is to provide a way to do it.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、製鋼炉で溶製された未脱酸溶鋼もしくは弱脱酸溶鋼
をRH法、DH法あるいはその他の真空脱ガス装置によ
って、極低炭素鋼(製品C含有量が100ppm 重量%以
下の極低炭素鋼)に溶製する真空脱ガス処理法におい
て、真空脱ガス処理後の鋼中溶解酸素濃度を350ppm
以下とし、次いで脱酸材を添加することにより極低炭素
鋼を溶製する。
In order to achieve the above object, undeoxidized molten steel or weakly deoxidized molten steel melted in a steelmaking furnace is reduced to an extremely low level by an RH method, a DH method, or another vacuum degassing apparatus. In a vacuum degassing method for melting carbon steel (extremely low carbon steel having a product C content of 100 ppm by weight or less), the dissolved oxygen concentration in the steel after vacuum degassing is 350 ppm.
Then, a very low carbon steel is melted by adding a deoxidizing material.

【0011】また、前記の真空脱ガス処理法において、
真空脱ガス処理時に炭材を添加して処理後の鋼中の溶解
酸素濃度を350ppm 以下とし、次いで脱酸材を添加す
る極低炭素鋼の溶製方法にある。
In the above-mentioned vacuum degassing method,
There is a method for producing ultra-low carbon steel in which a carbon material is added at the time of vacuum degassing to reduce the dissolved oxygen concentration in the steel after the treatment to 350 ppm or less, and then a deoxidizing material is added.

【0012】更に、鋼中溶解酸素濃度をある所要レベル
にコントロールするため、真空脱ガス処理中に少量の炭
材が連続的に添加され、かつ炭材の連続投入は真空脱ガ
ス、脱炭処理の前半に実施することにより溶解酸素濃度
を所定の値にコントロールすることが好ましい。
Further, in order to control the dissolved oxygen concentration in the steel to a required level, a small amount of carbon material is continuously added during the vacuum degassing process, and the continuous charging of the carbon material is performed by vacuum degassing and decarburizing processes. It is preferable to control the dissolved oxygen concentration to a predetermined value by performing the method in the first half.

【0013】少量の炭材の連続的な添加は、脱ガス設備
上部に設置されたホッパーより、供給装置を通して真空
槽内へ投入されるか、実用上少量を多数回に分割して投
入しても良い。
[0013] The continuous addition of a small amount of carbonaceous material is carried out by feeding it into a vacuum tank through a supply device from a hopper installed above the degassing equipment, or by putting a small amount of it in practice into a large number of times. Is also good.

【0014】また真空脱ガス、脱炭処理の前半に炭材投
入を実施する必要があり、好ましくは、処理開始からA
lあるいはSi,Mn,Ti等で脱酸されるまでの真空
脱炭処理時間の1/2、または10分間のどちらか短い
時間内に炭材が投入されることにより、真空脱炭処理効
率への影響をほぼなくすことができる。
In addition, it is necessary to carry out carbon material charging in the first half of the vacuum degassing and decarburizing treatments.
1 or half of the vacuum decarburization process time until deoxidation with Si, Mn, Ti, etc., or the carbon material is charged within 10 minutes, whichever is shorter, to improve the vacuum decarburization process efficiency. Can be almost eliminated.

【0015】このように、真空脱炭処理において処理後
(合金添加前)の鋼中の溶解酸素濃度を350ppm 以下
にコントロールすることで、連続鋳造時のノズル絞りの
防止、操業の安定化、品質および製品特性の向上が図れ
る。
As described above, by controlling the dissolved oxygen concentration in the steel after the treatment (before the addition of the alloy) to 350 ppm or less in the vacuum decarburization treatment, it is possible to prevent nozzle clogging during continuous casting, stabilize the operation, and improve the quality. In addition, the product characteristics can be improved.

【0016】更に、真空脱ガス、脱炭処理の前半に炭材
を投入することで図1に真空脱炭処理時に炭材としてピ
ッチコークスを20〜40kg、40〜60kg添加した場
合を示すが、真空脱炭処理前の鋼中溶解酸素濃度が高い
にも係わらず合金添加前の鋼中溶解酸素濃度は350pp
m 以下にコントロールでき、しかも、絶対値自体もより
低くコントロールできる。これは炭材の添加により、ノ
ズル絞りの防止、操業の安定化、品質および製品特性の
向上の効果がより優れていることである。
Further, FIG. 1 shows a case in which pitch coke is added as a carbon material in an amount of 20 to 40 kg and 40 to 60 kg during the vacuum decarburization process by charging a carbon material in the first half of the vacuum degassing and decarburizing process. Despite high dissolved oxygen concentration in steel before vacuum decarburization treatment, dissolved oxygen concentration in steel before alloy addition is 350 pp
m, and the absolute value itself can be controlled lower. This means that the addition of the carbon material is more effective in preventing nozzle throttling, stabilizing operation, and improving quality and product characteristics.

【0017】また、図2には前記の炭材を投入により鋼
中溶解酸素濃度の低い脱炭処理を行った場合の脱炭速度
定数を示すが、真空脱ガス、脱炭処理の前半に炭材を投
入することでこの脱炭速度定数の低下はわずかに抑制さ
れ、鋼中溶解酸素濃度の低下が顕著である。
FIG. 2 shows the decarburization rate constant in the case where the above-mentioned carbonaceous material is charged to perform a decarburization treatment with a low dissolved oxygen concentration in steel. By adding the material, the decrease in the decarburization rate constant is slightly suppressed, and the decrease in the dissolved oxygen concentration in the steel is remarkable.

【0018】これは真空脱ガス、脱炭処理前半の鋼中酸
素濃度が十分に高いレベルに炭材を投入するために添加
された炭材はかなり槽内で直接酸化されるために脱炭速
度定数の低下はわずかであり、逆に鋼中溶解酸素濃度の
低下の効果が大きくなる。本発明の精錬はAl,Si,
Mn等で脱酸した場合は鋼中に介在物が増加し鋼が汚染
されるが、炭材添加はCO,CO2 反応であり、生成物
による鋼の汚染がなく酸素濃度をコントロールできる。
[0018] This is because the carbon material added in order to put the carbon material in the steel in the first half of the vacuum degassing and decarburizing treatment to a sufficiently high level is directly oxidized considerably in the tank, so the decarburization rate is high. The decrease in the constant is slight, and conversely, the effect of decreasing the concentration of dissolved oxygen in the steel increases. The refining of the present invention is based on Al, Si,
In the case of deoxidation with Mn or the like, inclusions increase in the steel and the steel is contaminated, but the addition of the carbon material is a CO or CO 2 reaction, and the oxygen concentration can be controlled without contamination of the steel by the product.

【0019】[0019]

【実施例】処理容量が350tのDH法で本法を用いた
真空脱ガス、脱炭処理を行った結果を表1および図3,
図4に示すが、表1のNo.1〜4は本発明による真空脱
ガス、脱炭処理でNo.5は比較例である。
EXAMPLES The results of vacuum degassing and decarburization treatments using the present method by the DH method with a processing capacity of 350 t are shown in Table 1 and FIG.
As shown in FIG. Nos. 1 to 4 are vacuum degassing and decarburizing treatments according to the present invention. 5 is a comparative example.

【0020】炭材を脱ガス処理中に添加して、鋼中酸素
をコントロールすることにより、脱炭速度の低下が懸念
されたが、炭材の添加時期を脱ガス処理時間の1/2以
下の前半、あるいは脱ガス処理開始後10分以内のどち
らか短い時間のタイミングで実施することにより、脱炭
速度の低下は極めてわずかなものとなった。この理由と
して、脱ガス初期の溶鋼中酸素は充分に高いレベルに
あり、少量添加された炭材は槽内で直接酸化除去され
る。脱ガス初期における脱ガス装置の排気能力は充分
に高いため、少量添加された炭材の酸化による発生ガス
の排気性能に及ぼす影響はほとんどないと考えられる。
[0020] There was a concern that the decarburization rate could be reduced by adding carbonaceous material during the degassing process to control oxygen in the steel. In the first half, or within 10 minutes after the start of the degassing treatment, whichever is shorter, the reduction in the decarburization rate was extremely small. For this reason, the oxygen in the molten steel at the initial stage of degassing is at a sufficiently high level, and the carbon material added in a small amount is directly oxidized and removed in the tank. Since the exhaust capacity of the degassing device in the initial stage of degassing is sufficiently high, it is considered that there is almost no effect on the exhaust performance of the generated gas due to the oxidation of the carbon material added in small amounts.

【0021】また、図3に示すように合金添加前鋼中溶
解酸素濃度を表1および図3,図4から明らかなように
本法は350ppm 以下にコントロールすることで、鋳造
ノズルの開度変化(ノズル絞り)が確実に防止され、し
かも、製品表面疵も図4はもちろん表1でも明らかなよ
うに疵発生が大幅に改善されており、本法が優れている
ことがわかる。
Also, as shown in FIG. 3 and FIG. 3 and FIG. 4, the present method controls the dissolved oxygen concentration in the steel before adding the alloy to 350 ppm or less to change the opening degree of the casting nozzle. (Nozzle throttling) is surely prevented, and the surface flaws of the product are significantly improved as shown in Table 1 as well as in FIG. 4, indicating that this method is excellent.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】以上述べたように、本発明の真空脱ガ
ス、脱炭処理を用いることにより、合金添加前鋼中溶解
酸素濃度を350ppm 以下にすることで鋳造ノズルの開
度変化(ノズル絞り)が確実に防止し製品表面疵の発生
が大幅に改善できる。
As described above, by using the vacuum degassing and decarburizing treatment of the present invention to reduce the dissolved oxygen concentration in the steel before alloy addition to 350 ppm or less, the opening degree of the casting nozzle changes (nozzle throttle). ) Is reliably prevented, and the occurrence of product surface defects can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱炭処理開始時の鋼中溶解酸素濃度と処理後の
合金添加前の鋼中溶解酸素濃度の関係を示す図。
FIG. 1 is a graph showing the relationship between the concentration of dissolved oxygen in steel at the start of decarburization treatment and the concentration of dissolved oxygen in steel before alloy addition after the treatment.

【図2】合金添加前の鋼中溶解酸素濃度と脱炭速度定数
の関係を示し、この脱炭速度定数は図1で炭材を添加し
た際もほぼ同じ値であることを示す図。
FIG. 2 is a diagram showing the relationship between the concentration of dissolved oxygen in steel and the decarburization rate constant before the addition of an alloy, and shows that the decarburization rate constant is almost the same when the carbon material is added in FIG.

【図3】合金添加前の鋼中溶解酸素濃度とノズル開度変
化率を示す図。
FIG. 3 is a graph showing a dissolved oxygen concentration in steel and a nozzle opening degree change rate before adding an alloy.

【図4】合金添加前の鋼中溶解酸素濃度と製品表面疵の
発生率の関係を示す図。
FIG. 4 is a graph showing the relationship between the concentration of dissolved oxygen in steel before the addition of an alloy and the incidence of product surface defects.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−19417(JP,A) 特開 昭63−190113(JP,A) 特公 昭49−23732(JP,B1) (58)調査した分野(Int.Cl.6,DB名) C21C 7/10 C21C 7/06 C21C 7/068 C21C 7/00 101 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-19417 (JP, A) JP-A-63-190113 (JP, A) JP-B-49-23732 (JP, B1) (58) Field (Int.Cl. 6 , DB name) C21C 7/10 C21C 7/06 C21C 7/068 C21C 7/00 101

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 製鋼炉で溶製された未脱酸溶鋼もしくは
弱脱酸溶鋼を真空脱ガス精錬により、極低炭素鋼に溶製
する真空脱ガス処理法において、真空脱ガス処理後の鋼
中溶解酸素濃度を350ppm 以下とし、次いで脱酸材を
添加することを特徴とする極低炭素鋼の溶製方法。
In a vacuum degassing method for melting undeoxidized molten steel or weakly deoxidized molten steel into ultra-low carbon steel by vacuum degassing and refining in a steelmaking furnace, the steel after vacuum degassing is used. A method for melting ultra-low carbon steel, comprising reducing the concentration of dissolved oxygen to 350 ppm or less and then adding a deoxidizer.
【請求項2】 製鋼炉で溶製された未脱酸溶鋼もしくは
弱脱酸溶鋼を真空脱ガス精錬により、極低炭素鋼に溶製
する真空脱ガス処理法において、真空脱ガス処理時に炭
材を添加して処理後の鋼中溶解酸素濃度を350ppm 以
下とし、次いで脱酸材を添加することを特徴とする極低
炭素鋼の溶製方法。
2. A vacuum degassing method in which undeoxidized or weakly deoxidized molten steel melted in a steelmaking furnace is melted into ultra-low carbon steel by vacuum degassing and refining. To reduce the concentration of dissolved oxygen in the steel after the treatment to 350 ppm or less, and then to add a deoxidizing agent.
JP24553593A 1993-09-30 1993-09-30 Melting method of ultra low carbon steel Expired - Lifetime JP2923182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24553593A JP2923182B2 (en) 1993-09-30 1993-09-30 Melting method of ultra low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24553593A JP2923182B2 (en) 1993-09-30 1993-09-30 Melting method of ultra low carbon steel

Publications (2)

Publication Number Publication Date
JPH0797613A JPH0797613A (en) 1995-04-11
JP2923182B2 true JP2923182B2 (en) 1999-07-26

Family

ID=17135144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24553593A Expired - Lifetime JP2923182B2 (en) 1993-09-30 1993-09-30 Melting method of ultra low carbon steel

Country Status (1)

Country Link
JP (1) JP2923182B2 (en)

Also Published As

Publication number Publication date
JPH0797613A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
US3169058A (en) Decarburization, deoxidation, and alloy addition
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JP2923182B2 (en) Melting method of ultra low carbon steel
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
JP3752801B2 (en) Method for melting ultra-low carbon and ultra-low nitrogen stainless steel
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
JPH10317049A (en) Method for melting high clean steel
JP3870627B2 (en) Method for producing high phosphorus extra low carbon steel
JP3468121B2 (en) Melting method of ultra low carbon steel
JPH10298631A (en) Method for melting clean steel
JP3548273B2 (en) Melting method of ultra low carbon steel
JPH11279631A (en) Method for refining molten stainless steel
JP3577357B2 (en) Method for producing ultra-low carbon steel with excellent surface properties
JP2003027128A (en) Method for producing molten steel in vacuum degassing facility
JP3273205B2 (en) Decarburization refining method of chromium-containing molten steel
JP2855334B2 (en) Modification method of molten steel slag
JP3297998B2 (en) Melting method of high clean ultra low carbon steel
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JPH05331523A (en) Method for refining molten steel for bearing steel
JP2000119730A (en) Method for refining molten steel under reduced pressure
JPS60141818A (en) Production of dead soft steel by vacuum degassing treatment
JP3253138B2 (en) Melting method of high cleanness ultra low carbon steel
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990413