JPH05263121A - Production of high carbon and high purity molten steel - Google Patents

Production of high carbon and high purity molten steel

Info

Publication number
JPH05263121A
JPH05263121A JP6395592A JP6395592A JPH05263121A JP H05263121 A JPH05263121 A JP H05263121A JP 6395592 A JP6395592 A JP 6395592A JP 6395592 A JP6395592 A JP 6395592A JP H05263121 A JPH05263121 A JP H05263121A
Authority
JP
Japan
Prior art keywords
molten steel
mns
inclusions
carbon
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6395592A
Other languages
Japanese (ja)
Inventor
Shinya Kitamura
信也 北村
Hidehiro Kuwatori
英宏 鍬取
Shinji Sasagawa
真司 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6395592A priority Critical patent/JPH05263121A/en
Publication of JPH05263121A publication Critical patent/JPH05263121A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide high carbon and high purity molten steel low in elongated inclusion. CONSTITUTION:After the molten steel containing 0.51-1.50% C is melted in an atmospheric refining furnace and tapped off in the undeoxidizing or weakly deoxidizing condition, the dissolved oxygen is made to be <=30ppm by a vacuum treatment at <=1Torr the vacuum degree, and successively, Al in the range of 0.005-O.015% and Si in the range of 0.1-0.8%, are added. Thereafter, by adding Mn, number of secondary deoxidizing produced materials as the crystallized nuclei of MnS crystallized in the last solidified part is reduced, and MnO concn. in the oxides is reduced and the crystallization of MnS is restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は伸長介在物の少ない高炭
素高清浄溶鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-carbon, high-cleanliness molten steel containing few elongated inclusions.

【0002】[0002]

【従来の技術】鋼材における伸長介在物は種々の分野で
材質上の問題となっている。例えば、軌条においてはコ
ーナー部のシェリング損傷の起点として伸長介在物の存
在が問題であることが知られており、その低減が望まれ
ている。伸長介在物としては、アルミナを主成分とする
ものが群列状に連なった形態をとるものや、シリケート
を主体として線状に伸長したものの如き酸化物系介在物
に加え、同様に線状に伸長した形態を呈するMnSも問
題を引き起こすことが知られている。
2. Description of the Related Art Stretched inclusions in steel materials have been a material problem in various fields. For example, in rails, it is known that the presence of elongated inclusions is a problem as a starting point of shelling damage at the corners, and reduction thereof is desired. As the elongated inclusions, in addition to oxide-based inclusions such as those in which alumina as a main component is arranged in a row in a group and those in which a silicate is mainly stretched in a linear form, similarly linear It is also known that MnS exhibiting an elongated morphology causes a problem.

【0003】このうちMnSは、凝固の進展に伴い樹枝
状晶の晶間にMnやSが濃厚偏析した結果、樹枝状晶樹
間の最終凝固部において、固相側で溶解度積を越えて析
出するものであり、特に炭素を0.51%以上含有する
鋳片の場合に、その析出は避け難いものであった。つま
り、この場合にはオーステナイト凝固(γ凝固)である
がゆえにSの凝固偏析が極めて大きい上に、オーステナ
イト中のMnSの溶解度積が小さいため、炭素が0.5
0%以下でフェライト凝固(δ凝固)する場合と比較す
るとMnSの析出が極めて生じ易いという不利さによる
ものである。
Of these, MnS is concentrated and segregated between dendrites as the solidification progresses. As a result, MnS precipitates in the final solidification portion between the dendrites in excess of the solubility product on the solid phase side. In particular, in the case of a slab containing 0.51% or more of carbon, its precipitation was unavoidable. That is, in this case, the solidification segregation of S is extremely large due to austenite solidification (γ solidification), and the solubility product of MnS in austenite is small, so that carbon content is 0.5
This is due to the disadvantage that precipitation of MnS is extremely likely to occur as compared with the case of ferrite solidification (δ solidification) at 0% or less.

【0004】これに対して、従来技術では対処すること
が困難であり、実施されていた事例はないが、以下の方
法を用いることが一般的である。 Al濃度を0.001%以下になるように徹底的に
低下させる方法。 S濃度を低下させることによりMnSの析出を抑制
する方法。 特開昭63−227748号公報に開示されている
高強度ばね用鋼線の製造方法や、特開昭52−2979
6号公報や「鉄と鋼」第66巻354ページ以降に開示
されている方法と同様にCaを添加する方法。
On the other hand, it is difficult to deal with the problem with the conventional technique, and there are no cases in which it is implemented, but the following method is generally used. A method of thoroughly reducing the Al concentration to 0.001% or less. A method of suppressing the precipitation of MnS by reducing the S concentration. Japanese Patent Application Laid-Open No. 63-227748 discloses a method for manufacturing a high-strength spring steel wire, and Japanese Patent Application Laid-Open No. 52-2979.
A method of adding Ca in the same manner as the method disclosed in Japanese Patent No. 6 or "Iron and Steel" Vol.

【0005】しかし、の方法の様にAlを極限まで低
下させSi脱酸を強化する方法によってのみではアルミ
ナ系介在物は低下させ得ても、シリケート系の伸長介在
物が増加するという問題が生じ、の方法によってのみ
ではMnSを低下させるためには、S濃度を20ppm
以下にする必要があるため大幅な経済性、生産性の低下
を招くという問題があった。さらに、アルミナ系、Mn
Sのすべてを低下させるためには、との両方を同時
に実施する必要があるため、酸素ポテンシャルが充分に
は低下させ得ないSiキルド鋼で極低硫化させる必要が
あるという、一層の技術的困難さを伴うことになる。
However, although the alumina-based inclusions can be reduced only by the method of lowering Al to the limit and strengthening Si deoxidation like the method of 1, there arises a problem that the silicate-based elongated inclusions increase. In order to reduce MnS only by the method of, the S concentration should be 20 ppm.
Since it is necessary to make it below, there has been a problem that it causes a significant decrease in economic efficiency and productivity. Furthermore, alumina type, Mn
In order to reduce all of S, it is necessary to perform both and at the same time, so it is necessary to perform extremely low sulfurization with Si-killed steel whose oxygen potential cannot be lowered sufficiently. It will be accompanied by

【0006】一方、の方法を適用した場合には、溶鋼
中でのCaSの粗大析出によるCaS系の群列状介在物
が発生する場合があり、効果としては極めて不安定なも
のでしかなかった。ここで、アルミキルド鋼を対象とし
て提案された、特開昭52−29796号公報や「鉄と
鋼」第66巻354ページ以降に開示されている方法の
条件は、生成されるカルシウムアルミネートのS吸収能
が高い上に、この酸化物が凝固末期も安定して分解しに
くいため、物質バランスに基づいて、添加したCaの中
で酸素もしくは酸化物と結合してカルシウムアルミネー
トの生成に消費される分を差し引き、残りを有効Caと
見なして添加量を決定したものである。しかし、この条
件に基づき軌条向け鋳片に添加した場合には、酸化物周
囲にCaSが粗大に析出するため、CaS系の群列状介
在物が発生する傾向が特に強いことに加えて、カルシウ
ムアルミネートの融点が低いために伸長介在物となり易
いという問題が生じ、適用することが困難であった。
On the other hand, when the above method is applied, CaS-based grouped inclusions may be generated due to coarse precipitation of CaS in molten steel, and the effect was only extremely unstable. .. Here, the conditions of the method disclosed in Japanese Patent Application Laid-Open No. 52-29796 and "Iron and Steel", Vol. 66, page 354 and thereafter, which are proposed for aluminum-killed steel, are as follows. In addition to its high absorption capacity, this oxide is stable and difficult to decompose even at the end of coagulation, so it is consumed in the formation of calcium aluminate by combining with oxygen or oxide in the added Ca based on the substance balance. The amount of addition is determined by deducting the remaining amount and regarding the rest as effective Ca. However, when CaS is coarsely precipitated around the oxide when added to the cast strip for rails based on this condition, CaS-based grouped inclusions are particularly prone to be generated, and in addition, calcium is added. Since the aluminate has a low melting point, there is a problem that it tends to be an elongated inclusion, and it is difficult to apply.

【0007】[0007]

【発明が解決しようとする課題】本発明は、Al濃度や
S濃度を徹底的に低下させる方法における、シリケート
系の伸長介在物の増加やSiキルド鋼の脱硫による経済
性、生産性の低下という問題や、特開昭63−2277
48号公報、特開昭52−29796号公報および「鉄
と鋼」第66巻354ページ以降に開示されている方法
におけるCaS系の群列状介在物の発生や伸長カルシウ
ムアルミネート系介在物の生成という問題を解決する高
炭素シリコンキルド高清浄溶鋼の製造方法を提供するも
のである。
DISCLOSURE OF THE INVENTION The present invention is to reduce the economical efficiency and productivity due to the increase of silicate-based elongated inclusions and the desulfurization of Si-killed steel in the method of thoroughly reducing the Al concentration and the S concentration. Problems and JP-A-63-2277
48, Japanese Unexamined Patent Publication No. 52-29796, and "Iron and Steel" Vol. 66, pages 354 et seq., The generation of CaS-based grouped inclusions and extended calcium aluminate-based inclusions. The present invention provides a method for producing high carbon silicon killed high clean molten steel that solves the problem of formation.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、Cを0.51〜1.50%含有する高炭素溶鋼
を、転炉あるいは電気炉等の大気精錬炉において溶製
し、未脱酸状態もしくは弱脱酸状態で出鋼後、真空度1
Torr以下での真空処理を施し、溶解酸素濃度を30
ppm以下とし、次いでAlを0.005〜0.015
%の範囲で、Siを0.10〜0.80%の範囲で添加
し、さらにその後にMnを添加することを特徴とする高
炭素高清浄溶鋼の製造方法にある。このことにより、伸
長介在物が少ない高炭素シリコンキルド高清浄溶鋼の製
造を実現し、例えば耐シェリング損傷特性に優れた軌条
を提供することができる。ここで、Al、Si、Mnの
順に添加することが好ましい。
The gist of the present invention is that high carbon molten steel containing 0.51 to 1.50% of C is melted in an atmospheric refining furnace such as a converter or an electric furnace. After tapping in undeoxidized state or weakly deoxidized state, vacuum degree 1
Performed vacuum treatment at less than Torr to reduce dissolved oxygen concentration to 30
ppm or less, then 0.005 to 0.015 Al
%, Si is added in the range of 0.10 to 0.80%, and Mn is further added after that. As a result, it is possible to realize the production of a high carbon silicon killed and highly clean molten steel with a small amount of extension inclusions, and to provide a rail with excellent shelling damage resistance, for example. Here, it is preferable to add Al, Si, and Mn in this order.

【0009】[0009]

【作用】本発明は、MnSの析出に対してMnO濃度の
高い2次脱酸生成物の存在が、極めて大きな役割を果た
すことの発見に基づくものである。つまり、MnSは、
凝固の進展に伴い樹枝状晶の晶間にMnやSが濃厚偏析
した結果、樹枝状晶樹間の最終凝固部において、固相側
で溶解度積を越えて析出するものであるが、この時、M
nSが容易に析出するためには晶出の核となる物質が存
在する必要がある。これに対して、SiO2 やMnO系
の酸化物のうちの一部は、MnSと同様に、凝固の進展
に伴い樹枝状晶の晶間にMnやSi、Oが濃厚偏析し、
最終凝固部においてその溶解度積を越えて析出するもの
であり、2次脱酸生成物と呼ばれている。このような酸
化物は溶解度積がMnSよりも小さいためMnSよりも
先に析出する上に、析出する場所が最終凝固部のため、
引き続いて析出するMnSの析出核として作用する。し
たがって、2次脱酸生成物が多い場合には、最終凝固部
でMnSが容易に析出するのに対して、逆に2次脱酸生
成物が少ない場合には、最終凝固部で溶解度積を越えた
としてもMnSは析出できず、過飽和に固溶した状態で
凝固せしめることが可能となる。
The present invention is based on the discovery that the presence of secondary deoxidation products having a high MnO concentration plays an extremely large role in the precipitation of MnS. That is, MnS is
As the solidification progresses, Mn and S are densely segregated between the dendrites. As a result, in the final solidification part between the dendrites, the precipitates exceed the solubility product on the solid phase side. M
In order for nS to be easily precipitated, it is necessary to have a substance serving as a crystallization nucleus. On the other hand, in some of the SiO 2 and MnO-based oxides, Mn, Si, and O are densely segregated between the dendrites as the solidification progresses, similar to MnS.
It precipitates in the final coagulation part beyond its solubility product and is called a secondary deoxidation product. Since the solubility product of such an oxide is smaller than that of MnS, it precipitates before MnS, and since the place of precipitation is the final solidified portion,
It acts as a precipitation nucleus for MnS that is subsequently precipitated. Therefore, when the amount of the secondary deoxidation product is large, MnS is easily precipitated in the final solidification portion, while when the amount of the secondary deoxidation product is small, the solubility product is reduced in the final solidification portion. Even if MnS is exceeded, MnS cannot be precipitated and can be solidified in a supersaturated solid solution.

【0010】さらに、2次脱酸生成物としては、MnO
濃度が高い酸化物がMnSの析出核として作用し易いと
いう知見も得られた。このような技術的見地に立脚した
MnSの析出抑制方法としては、第一の項目としては、
2次脱酸生成物を減少させるために、1次脱酸力を強化
して凝固前の溶解酸素を低下させることであり、第二の
項目としては、2次脱酸生成物の組成をMnO濃度の低
いものとすることである。
Further, MnO is used as a secondary deoxidation product.
It was also found that an oxide having a high concentration easily acts as a precipitation nucleus of MnS. The first item of the MnS precipitation suppressing method based on such a technical viewpoint is as follows.
In order to reduce the secondary deoxidation product, the primary deoxidation power is strengthened to reduce the dissolved oxygen before solidification. As the second item, the composition of the secondary deoxidation product is MnO 2. The concentration should be low.

【0011】このうち、第一の項目である2次脱酸生成
物の減少については、数多くの実験により、凝固前の溶
解酸素を5ppm以下に低下させる必要のあることが明
らかになった。しかし、これを成し遂げるために、未脱
酸状態でAlの如き強脱酸元素を用いた場合にはAl2
3 系の介在物が多量に生成し、群列状の有害伸長介在
物となることが知られている。これに対して、高炭素鋼
はその材質特性上、炭素が0.51%以上含まれるた
め、真空処理を施すことにより(1)式の反応、いわゆ
るカーボン脱酸が進むという性質を有している。
Regarding the reduction of the secondary deoxidation product, which is the first item, it has been clarified by many experiments that it is necessary to reduce the dissolved oxygen before coagulation to 5 ppm or less. However, in order to achieve this, when a strong deoxidizing element such as Al is used in the undeoxidized state, Al 2
It is known that a large amount of O 3 -based inclusions are produced and become harmful elongated inclusions in a row. On the other hand, high-carbon steel contains 0.51% or more of carbon due to its material characteristics, and therefore has the property of undergoing the reaction of formula (1), so-called carbon deoxidation, when subjected to vacuum treatment. There is.

【0012】〔C〕+〔O〕=CO …… (1) 本発明者による検討の結果、カーボン脱酸のみで酸素濃
度をアルミキルド鋼と同等レベルまで低下させることは
できないが、真空度1Torr以下での真空処理を実施
することにより酸素濃度を30ppm以下とした後、A
lを0.005〜0.015%の範囲で添加すれば、多
量のAl2 3 系の群列状伸長介在物の生成は防止さ
れ、かつ凝固前の酸素を5ppm以下に低下させること
ができるという知見が得られた。
[C] + [O] = CO (1) As a result of the study by the present inventors, the oxygen concentration cannot be reduced to a level equivalent to that of aluminum-killed steel only by deoxidizing carbon, but the degree of vacuum is 1 Torr or less. After the oxygen concentration is reduced to 30 ppm or less by performing vacuum treatment at
If 1 is added in the range of 0.005 to 0.015%, the formation of a large amount of Al 2 O 3 -based grouped elongated inclusions can be prevented and oxygen before solidification can be reduced to 5 ppm or less. The knowledge that it can be obtained was obtained.

【0013】ここで、Cが0.51%未満の場合には、
(1)式によるカーボン脱酸に充分に作用せず、また
1.50%超の場合には、軌条としての材質特性が得ら
れないため、C含有量を0.51〜1.50%とした。
また、Alが0.005%未満の場合には、凝固前の酸
素を5ppm以下に低下させることができず、0.01
5%超の場合には、多量のAl2 3 系の群列状伸長介
在物が生成するため、Alは0.005〜0.015%
の範囲とした。図1は軌条におけるMnS長さとアルミ
ナ系群列状介在物の長さに対するAlの影響を示したも
のであるが、上記濃度範囲に適正値が存在していること
がわかる。
When C is less than 0.51%,
If it does not sufficiently act on carbon deoxidation according to the formula (1), and if it exceeds 1.50%, the material characteristics as a rail cannot be obtained, so the C content is set to 0.51 to 1.50%. did.
When Al is less than 0.005%, oxygen before solidification cannot be reduced to 5 ppm or less,
If it exceeds 5%, a large amount of Al 2 O 3 -based grouped elongated inclusions are generated, so Al is 0.005 to 0.015%.
And the range. FIG. 1 shows the influence of Al on the MnS length in the rail and the length of the alumina group row inclusions, and it can be seen that there is an appropriate value in the above concentration range.

【0014】一方、第二の項目である、2次脱酸生成物
組成に対してはMnの添加時期が重要な要素である。通
常の脱酸は脱酸力の弱い順番に添加するため、軌条材の
場合には、Mn、Si、Alの順となる。しかし、Mn
は熱力学的にはSiやAlよりも酸素との親和力が弱い
ため、最初にMnを添加することにより一時的にはMn
Oが生成されるものの、SiやAlにより還元され、最
終的にはMnOは存在しなくなると考えられていた。と
ころが、本発明者らは詳細に微細な酸化物組成を調査し
た結果、このような順番で合金を添加した場合には、酸
化物中にMnOが残存していることを発見した。これ
は、SiやAlが添加される前に生成された溶融球状の
MnOが、その後、溶鋼内部でSi、Alと反応する場
合、酸化物外周部にSiO2 やAl2 3 の固相が析出
するため、その後のMnOの還元速度が極めて小さくな
るためである。このようにして生成された、外部にSi
2やAl2 3 の濃度が高く、内部にMnO濃度の高
い領域を持つ酸化物は、内部領域のサルファイドキャパ
シティーが高いため、周囲の溶鋼から酸化物周囲にSが
拡散し集積し易く、したがって最終凝固部でMnSが析
出し易い特性を有することとなる。
On the other hand, the timing of Mn addition is an important factor for the second item, the composition of the secondary deoxidation product. Since normal deoxidation is added in the order of weak deoxidizing power, in the case of a rail material, the order is Mn, Si, and Al. However, Mn
Thermodynamically has a weaker affinity for oxygen than Si or Al, so Mn is temporarily added by first adding Mn.
It was thought that although O was generated, it was reduced by Si and Al and eventually MnO did not exist. However, as a result of detailed investigation of the fine oxide composition, the present inventors have found that MnO remains in the oxide when the alloys are added in this order. This is because when molten spherical MnO produced before Si or Al is added and thereafter reacts with Si or Al inside the molten steel, a solid phase of SiO 2 or Al 2 O 3 is formed on the outer periphery of the oxide. The reason is that the MnO reduction rate after that is extremely small because of the precipitation. Externally generated Si generated in this way
Oxides having a high concentration of O 2 and Al 2 O 3 and having a region with a high MnO concentration inside have a high sulfide capacity in the internal region, so S easily diffuses from the surrounding molten steel to the periphery of the oxide and accumulates easily. Therefore, MnS is likely to precipitate in the final solidified portion.

【0015】これを回避するためには、最初にMnOを
生成させないことが重要となり、本発明の如く、Siや
Alという脱酸力の強い元素をすべて添加し終わった後
に、Mnを投入することが必須となる。ここで、Alを
前記の理由により0.005〜0.015%の範囲とし
たため、Siは0.10〜0.80%の範囲とした。つ
まり、Siが0.10%未満の場合には、溶解酸素濃度
が充分に低下しない状態でMnが添加されるため、酸化
物中にMnOが含まれるという問題が生じ、またSiが
0.80%超では、酸化物中のSiO2 濃度が高くな
り、有害な伸長シリケートが生成するという問題を生じ
る。図2は軌条におけるMnS長さとシリケート系伸長
介在物の長さに対するSiの影響を示したものである
が、上記濃度範囲に適正値が存在していることがわか
る。
In order to avoid this, it is important not to generate MnO first, and as in the present invention, Mn is added after all elements having strong deoxidizing power such as Si and Al have been added. Is required. Here, since Al is set to a range of 0.005 to 0.015% for the above reason, Si is set to a range of 0.10 to 0.80%. That is, when Si is less than 0.10%, Mn is added in a state where the concentration of dissolved oxygen is not sufficiently lowered, so that there is a problem that MnO is contained in the oxide, and Si is 0.80. If it exceeds%, the SiO 2 concentration in the oxide becomes high, which causes a problem that harmful elongated silicate is produced. FIG. 2 shows the influence of Si on the MnS length on the rail and the length of the silicate-based elongated inclusions, and it can be seen that there is an appropriate value in the above concentration range.

【0016】[0016]

【実施例】実施例は以下の工程での溶製結果である。3
50トン規模の上底吹き転炉により炭素濃度が0.70
〜0.90%、硫黄濃度が0.010%以下の溶鋼を精
錬した後、脱酸剤を添加しない状態でDHを用いて真空
処理を施し、その後、Si、Al、Mnを添加した。
EXAMPLES Examples are results of melting in the following steps. Three
Carbon concentration of 0.70 due to 50 ton scale top-bottom blowing converter
After refining molten steel having a sulfur content of up to 0.90% and a sulfur concentration of 0.010% or less, vacuum treatment was performed using DH without adding a deoxidizer, and then Si, Al, and Mn were added.

【0017】このようにして溶製した溶鋼を連続鋳造機
により鋳片(約250〜400mm角)とした後、軌条
圧延した。軌条における介在物調査は、軌条頭面より1
0mm下部で、側面より10〜25mm内部の面を切り
出した15mm角の断面全体を100倍の光学顕微鏡に
より観察し、介在物の最大長さを評価した。ここで、ア
ルミナ系介在物の場合は群列状に連なっているものは、
個々の介在物長さではなく、それらを連続した1個のも
のと見なして長さを評価した。それぞれの介在物がMn
S、アルミナ系、シリケート系のいずれに対応するか
は、代表的なものをEPMAで分析した結果に基づき形
状や色調の特徴を整理し、多くの場合には光学顕微鏡で
の形状や色調の特徴により判断した。軌条での介在物
は、試料中の最長介在物長さが、500μm以上を×、
499〜251μmを○、250μm以下を◎とした。
また、評価の項は軌条での耐シェリング損傷特性を示し
ている。結果を表1、2に示す。
The molten steel thus melted was cast into pieces (about 250 to 400 mm square) by a continuous casting machine, and then rail-rolled. The inclusion survey on the rail is 1 from the rail head surface.
The maximum length of the inclusions was evaluated by observing the entire 15 mm square cross section obtained by cutting out the inner surface of 10 to 25 mm from the side surface at the lower part of 0 mm with a 100 times optical microscope. Here, in the case of alumina-based inclusions, those connected in a group are
The lengths were evaluated by considering them as one continuous piece rather than as individual inclusion lengths. Each inclusion is Mn
The characteristics of the shape and color tone are summarized based on the results of EPMA analysis of typical ones, and in most cases, the characteristics of the shape and color tone with an optical microscope are selected. It was judged by. The longest inclusion length in the sample is 500 μm or more.
499 to 251 μm was marked with ◯, and 250 μm or less was marked with ⊚.
In addition, the evaluation section shows the anti-shelling damage characteristics on the rail. The results are shown in Tables 1 and 2.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明により、MnS系伸長介在物、ア
ルミナ系群列状介在物、シリケート系伸長介在物のいず
れの種類の介在物も減少させることが可能となり、50
0μm以上の有害介在物が存在しなくなることにより高
炭素高清浄溶鋼の製造が可能となり、例えば耐シェリン
グ損傷特性に優れた高清浄軌条の提供が可能となった。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to reduce any type of inclusions such as MnS-based elongated inclusions, alumina-based grouped inclusions, and silicate-based elongated inclusions.
The absence of harmful inclusions of 0 μm or more made it possible to produce high-carbon, high-cleanliness molten steel, and, for example, it was possible to provide a high-cleanness rail with excellent shelling damage resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】軌条におけるMnS長さとアルミナ系群列状介
在物の長さに対するAlの影響を示した図である。
FIG. 1 is a diagram showing the influence of Al on the MnS length of a rail and the length of alumina group row inclusions.

【図2】軌条におけるMnS長さとシリケート系伸長介
在物の長さに対するSiの影響を示した図である。
FIG. 2 is a diagram showing the influence of Si on the MnS length of rails and the length of silicate-based elongated inclusions.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Cを0.51〜1.50%含有する高炭
素溶鋼を、転炉あるいは電気炉等の大気精錬炉において
溶製し、未脱酸状態もしくは弱脱酸状態で出鋼後、真空
度1Torr以下での真空処理を施し、溶解酸素濃度を
30ppm以下とし、次いでAlを0.005〜0.0
15%の範囲で、Siを0.10〜0.80%の範囲で
添加し、さらにその後にMnを添加することを特徴とす
る高炭素高清浄溶鋼の製造方法。
1. A high carbon molten steel containing 0.51 to 1.50% of C is melted in an atmospheric refining furnace such as a converter or an electric furnace, and is tapped in an undeoxidized state or a weakly deoxidized state. Vacuum treatment at a vacuum degree of 1 Torr or less is performed so that the dissolved oxygen concentration is 30 ppm or less, and then Al is 0.005 to 0.05.
A method for producing a high-carbon high-cleanliness molten steel, comprising adding Si in an amount of 0.10 to 0.80% in a range of 15%, and further adding Mn thereafter.
JP6395592A 1992-03-19 1992-03-19 Production of high carbon and high purity molten steel Withdrawn JPH05263121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6395592A JPH05263121A (en) 1992-03-19 1992-03-19 Production of high carbon and high purity molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6395592A JPH05263121A (en) 1992-03-19 1992-03-19 Production of high carbon and high purity molten steel

Publications (1)

Publication Number Publication Date
JPH05263121A true JPH05263121A (en) 1993-10-12

Family

ID=13244257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6395592A Withdrawn JPH05263121A (en) 1992-03-19 1992-03-19 Production of high carbon and high purity molten steel

Country Status (1)

Country Link
JP (1) JPH05263121A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291317A (en) * 1995-04-20 1996-11-05 Nippon Steel Corp Production of medium-carbon aluminum killed steel
WO2010050238A1 (en) 2008-10-31 2010-05-06 新日本製鐵株式会社 Pearlite rail having superior abrasion resistance and excellent toughness
US8469284B2 (en) 2009-02-18 2013-06-25 Nippon Steel & Sumitomo Metal Corporation Pearlitic rail with excellent wear resistance and toughness
US8747576B2 (en) 2009-06-26 2014-06-10 Nippon Steel & Sumitomo Metal Corporation Pearlite-based high carbon steel rail having excellent ductility and process for production thereof
US10995396B2 (en) 2016-05-19 2021-05-04 Nippon Steel Corporation Rail

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291317A (en) * 1995-04-20 1996-11-05 Nippon Steel Corp Production of medium-carbon aluminum killed steel
WO2010050238A1 (en) 2008-10-31 2010-05-06 新日本製鐵株式会社 Pearlite rail having superior abrasion resistance and excellent toughness
US8469284B2 (en) 2009-02-18 2013-06-25 Nippon Steel & Sumitomo Metal Corporation Pearlitic rail with excellent wear resistance and toughness
US8747576B2 (en) 2009-06-26 2014-06-10 Nippon Steel & Sumitomo Metal Corporation Pearlite-based high carbon steel rail having excellent ductility and process for production thereof
US10995396B2 (en) 2016-05-19 2021-05-04 Nippon Steel Corporation Rail

Similar Documents

Publication Publication Date Title
JP4568190B2 (en) Non-oriented electrical steel sheet
JP3294245B2 (en) High carbon steel wire with excellent drawability and fatigue resistance after drawing
KR100675709B1 (en) Steel having finely dispersed inclusions
KR20010100866A (en) Low iron loss non-oriented electrical steel sheet excellent in workability and method for producing the same
JPH05263121A (en) Production of high carbon and high purity molten steel
KR100711410B1 (en) Highly Ductile Steel Sheet and Method of Manufacturing the Same
JP6354411B2 (en) Mold flux for continuous casting
JP4510787B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP3040227B2 (en) Manufacturing method of high carbon silicon killed high clean molten steel
JP2001316716A (en) Method for producing base material for amorphous iron alloy
JP4267437B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method
JPH07122090B2 (en) Method of melting directional silicon steel material
JP4107801B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP3456295B2 (en) Melting method of steel for non-oriented electrical steel sheet
JP3105525B2 (en) Melting method of silicon steel material
JP3013961B2 (en) Non-oriented electrical steel sheet with little iron loss after magnetic annealing
JP5215327B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP4218136B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP7261345B1 (en) Austenitic Ni-Cr-Fe alloy excellent in oxidation resistance and its production method
JP7047818B2 (en) Refining method of molten steel
JP3179530B2 (en) Melting method of extremely low Ti steel
JPS5974257A (en) Nondirectional silicon steel plate with small iron loss
JP3807377B2 (en) Ca treatment method for low Al molten steel
JPH07241655A (en) Continuous casting powder for ti-containing steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608