JPS5974257A - Nondirectional silicon steel plate with small iron loss - Google Patents

Nondirectional silicon steel plate with small iron loss

Info

Publication number
JPS5974257A
JPS5974257A JP57184166A JP18416682A JPS5974257A JP S5974257 A JPS5974257 A JP S5974257A JP 57184166 A JP57184166 A JP 57184166A JP 18416682 A JP18416682 A JP 18416682A JP S5974257 A JPS5974257 A JP S5974257A
Authority
JP
Japan
Prior art keywords
iron loss
silicon steel
steel plate
ppm
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57184166A
Other languages
Japanese (ja)
Inventor
Michiro Komatsubara
道郎 小松原
Isao Ito
伊藤 庸
Bunjiro Fukuda
福田 文二郎
Hiroto Nakamura
中村 広登
Hiroshi Matsumura
松村 洽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57184166A priority Critical patent/JPS5974257A/en
Publication of JPS5974257A publication Critical patent/JPS5974257A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a nondirectional silicon steel plate with a remarkably reduced iron loss value by restricting the amounts of S, O and N and the total amount of Ti, Zr, Ce and Ca among the impurities in a low C steel plate contg. specified amounts of Si, Al and Mn. CONSTITUTION:The amounts of impurity elements contained in a steel consisting of, by weight, <=0.005% C, 2.5-4.0% Si, 0.25-1.0% Al, 0.1-1.0% Mn and the balance essentially Fe are restricted to <=15ppm S, <=20ppm O, <=25ppm N and <=150ppm Ti+Zr+Ce+Ca. The regulated steel is rolled and annealed. The resulting nondirectional silicon steel plate shows a very small iron loss value and superior magnetic characteristics.

Description

【発明の詳細な説明】 本発明は、鉄損の少ない無方向性珪素鋼板に関し、特に
S、N、O含有量の低減にあわせ他の不純物元素である
Ti 、 Zr 、 Oe 、 Oaの含有量をより低
目に制御したものよりなる、極めて小さい鉄損値を示す
無方向性珪素鋼板について提案する。
[Detailed Description of the Invention] The present invention relates to a non-oriented silicon steel sheet with low core loss, and in particular reduces the content of other impurity elements Ti, Zr, Oe, and Oa in addition to reducing the S, N, and O contents. We propose a non-oriented silicon steel sheet that exhibits an extremely low iron loss value and is made by controlling the iron loss to a lower value.

無方向性珪素鋼板は、主としてモーターの固定子、回転
子、水力発電機の固定子、螢光灯の安定器の鉄心材料等
に使用されている。近年、°エネルギーコストの上昇の
おりから、これらの機器とく゛に大型回転機の鉄心材料
の場合、電力損失を抑える必要から低鉄損材料の開発が
強く望捷れている。
Non-oriented silicon steel sheets are mainly used as core materials for motor stators and rotors, hydroelectric generator stators, fluorescent lamp ballasts, and the like. In recent years, due to the rise in energy costs, there has been a strong desire to develop low core loss materials for these devices, especially in the case of large rotating machines, as it is necessary to suppress power loss.

無方向性珪素鋼板の鉄損を改善する従来知られた方法と
しては、SiやA/lの添′加量を高め、鉄板の電気抵
抗を増加させる方法がある。しかし、鉄損全現在の水準
よりもさらに向上させることが望まれるときに、これら
の成分の添加量を増すと、冷間圧廷性が劣化し、また素
材コストも高くなるし、さらに飽和磁束密変の低下をも
たらすので、・おのずと限界がある。また、無方向性珪
素鋼板には、副次的添加物として、熱間加工性を向上さ
せるためにInが添加されているが、 Knは鉄損低減
効果が小さく、このKn k多量に添加させると逆に磁
気特性を劣化させて好ましくない。
A conventionally known method for improving the iron loss of a non-oriented silicon steel plate is to increase the electrical resistance of the steel plate by increasing the amount of Si or A/l added. However, when it is desired to improve the total iron loss further than the current level, increasing the amount of these components added will deteriorate the cold compaction properties, increase the material cost, and further increase the saturation magnetic flux. Since it causes a decrease in density, there is a limit naturally. In addition, In is added to non-oriented silicon steel sheets as a secondary additive to improve hot workability, but Kn has a small iron loss reduction effect, so a large amount of Kn is added. On the contrary, it deteriorates the magnetic properties, which is undesirable.

このような理由から、従来の技術水準では、0.855
mの鋼板の鉄損において、低磁場におH,b鉄損”to
/soで0.90〜Q 、 95 ”7kg 、高磁場
における鉄損”15150でL15〜g、25 W/k
gが限界で、例えば87級相当の材料の安定した製造は
困難であ・つた。なお、ここで87級相当の材料とは、
50Hz −1,5テスラにおける鉄損W15150が
、製品厚0.35m71+で2.00W/4G9以下、
製品厚0.5111111で2.50wAcy以下の鉄
損値金示すものをいう。
For these reasons, at the conventional technical level, 0.855
In the iron loss of a steel plate of m, in the low magnetic field H, b iron loss"to
/so 0.90~Q, 95"7kg, iron loss in high magnetic field"15150 L15~g, 25 W/k
g is the limit, and it has been difficult to stably produce materials equivalent to grade 87, for example. In addition, here, the material equivalent to grade 87 is:
Iron loss W15150 at 50Hz -1.5 Tesla is 2.00W/4G9 or less at product thickness 0.35m71+,
Refers to a product with a thickness of 0.5111111 and an iron loss value of 2.50wAcy or less.

上記の点についての検討から、本発明者らは鋼中に含ま
れる不純物が鉄損に強い影響万全もっていることに着目
し、その不純物を抑制することにより、従来の上述した
技術の限界を有利に克服し、87級相当の極低鉄損値を
示す無方向性珪素鋼板を得るに到った。
After considering the above points, the present inventors focused on the fact that impurities contained in steel have a strong influence on iron loss, and by suppressing these impurities, the limitations of the conventional technology described above can be overcome. We have overcome this problem and have succeeded in obtaining a non-oriented silicon steel sheet that exhibits an extremely low iron loss value equivalent to class 87.

そこで、まず不純物が鉄損に及ぼす影響を調査するため
、G 、 S +’ 0 、 Nの含有量を変え、8.
2%s土、 0.60%AI、0.20%Inに成分を
調整した鋼を出鋼し、常法により、0.35朋の厚みの
無方向性珪素鋼板を製造した。この結果、Cは0.00
5%以下であるならば、鉄損に及ぼす影響は小さいが、
S、O,Nについては、第1図に明らがなように、鉄損
に対して極めて大きな影響全有することがわかった。ま
ず、S、0については、含有量の低減がそのiま鉄損の
改善に効果があることが判る。この点については、従来
特公昭56−22931号や、特開昭53−66816
号として既に開示されているところでもあり、また0 
’i 25 ppm以下、S ’i 50 ppm以下
(望壕しくはa o ppm以下)に規制することも提
案されている。さらにN含有量についてもs o pp
m以下に規制することが望ましいとの旨の報告がある。
Therefore, in order to first investigate the influence of impurities on iron loss, the contents of G, S+'0, and N were changed, and 8.
Steel whose composition was adjusted to 2% Soil, 0.60% Al, and 0.20% In was tapped, and a non-oriented silicon steel plate with a thickness of 0.35 mm was manufactured by a conventional method. As a result, C is 0.00
If it is 5% or less, the effect on iron loss is small, but
As for S, O, and N, as is clear from FIG. 1, it was found that they all had extremely large effects on iron loss. First, regarding S,0, it can be seen that reducing the content is effective in improving iron loss. Regarding this point, conventionally, Japanese Patent Publication No. 56-22931 and Japanese Patent Application Laid-Open No. 53-66816
It has already been disclosed as No. 0.
It has also been proposed to regulate ``i'' to 25 ppm or less and S ``i 50 ppm or less (desirably, ao ppm or less). Furthermore, regarding the N content, s o pp
There are reports that it is desirable to limit the amount to less than m.

しかし、これらの既知の報告や実施例においては、例え
ば、S含有量を例にとると20〜30ppm″t’sす
、さらに低いS、0.Nレベルでの鉄損に及ぼす影響に
ついては検討されておらず明確でなかった。第1図によ
ると、S:15ppm、0: 20 ppm 、 N 
: 25 ppmまTfl、これらの不純物含有蓋の低
減がそのまま鉄損低減効果に結びっき、S = 15 
ppm 、  O= 20 ppm 、  N = 2
51)I)mの領域での鉄損値はW10150 #”9
a1w15150 #2.20、すなわち、88級相当
のものが得られている。しかし、これ以下では、S、O
,Ni下げても、鉄損の低下は期待した程にはならず、
結局、W10150≦0.85、W、、15o(2,0
0、すなわち、S7・級相当の鉄損材料を得ることはで
きなかった。
However, in these known reports and examples, taking the S content as an example, it is 20 to 30 ppm''t's, and the influence on iron loss at even lower S and 0.N levels is not considered. According to Figure 1, S: 15 ppm, 0: 20 ppm, N
: 25 ppm Tfl, the reduction of these impurity-containing lids directly leads to the iron loss reduction effect, S = 15
ppm, O=20 ppm, N=2
51) The iron loss value in the region of I) m is W10150 #”9
a1w15150 #2.20, that is, equivalent to grade 88, was obtained. However, below this, S, O
, Even if the Ni was lowered, the iron loss did not decrease as much as expected.
In the end, W10150≦0.85, W,,15o(2,0
0, that is, it was not possible to obtain an iron loss material equivalent to S7.

そこで、本発明者らは、さらに他の不純物、即ちG 、
 P 、 B 、 Ti 、 Oe 、 (3a 、 
Zr含有量の影響について調べた。そのためにこれらの
不純物の各含有量を系統的に変えたSi : a、2a
%、Al:0.60%、Mn : 0.20%を含有す
るサンプル鋼塊を#製し、常法により鋼板厚み0,35
朋の無方向性珪素鋼板を作製し、その鉄損値を測定した
。その結果、Cについては、前述したように0.005
%以下であるならば鉄損に影響を及はさず、Pは通常の
含有量であるo、ooa〜0.1%の間では影響がなか
った。Bに関しても、通常鋼中に含有されるo、ooo
a%前後では鉄損に全く影響を及ぼさないことが判った
。しかしながら、Ti、Zr、CeオよびCaについて
は異なった挙!IIを示した。
Therefore, the present inventors further investigated other impurities, namely G,
P, B, Ti, Oe, (3a,
The influence of Zr content was investigated. Therefore, the content of each of these impurities was systematically changed.Si: a, 2a
%, Al: 0.60%, Mn: 0.20%. A sample steel ingot containing # is made, and the steel plate thickness is 0.35% by a conventional method.
We fabricated our non-oriented silicon steel plate and measured its iron loss value. As a result, for C, as mentioned above, 0.005
% or less, it had no effect on iron loss, and P had no effect at a normal content of o, ooa to 0.1%. Regarding B, o, ooo, which is normally contained in steel,
It was found that around a% it has no effect on iron loss at all. However, the results are different for Ti, Zr, Ce and Ca! II was shown.

すなわち、第2図に示すように、S≦15 ppfl+
That is, as shown in FIG. 2, S≦15 ppfl+
.

0(20ppm、N≦25 ppmのS、O,N’に含
有する領域では、かかるTi + Zr + Oe +
 Oaの量の如(+l] U鉄損と密接に結びついて直
線的な比例関係にあることが判明した。ところが、この
第2図から判るように、極低S、O,Nのこの領域では
、Ti 、 Zr 、 Ce 、 Oaの総和が150
 ppm以上と含有量が多い場合には、S、0.Hの含
有量に鉄損が依存しなくなり1例えばS、O,Nをさら
に低いレベルに下げても頭打ち現象を示してそれ以上に
は低乍しなぐる。逆に、Ti 、 zr 、 ce 、
 caの総和を150 ppm以下に抑えることによっ
て上述の直線的比例関係が回復することが判った。すな
わち、この不純物含有蓋の領域でS、O,N含有量をさ
らに低下させれば、それに比例して鉄損は1゜W101
50 = 0.82、W1515G−1,96といった
87級相当のものとなり、極めて鉄損値の低い材料會得
ることができるようになる。
0 (20 ppm, in the region containing S, O, N' of N≦25 ppm, such Ti + Zr + Oe +
It was found that the amount of Oa (+l) is closely related to U core loss and has a linear proportional relationship.However, as can be seen from Figure 2, in this region of extremely low S, O, and N, , Ti, Zr, Ce, Oa total is 150
If the content is large, ppm or more, S, 0. The iron loss no longer depends on the H content; for example, even if S, O, and N are lowered to even lower levels, it shows a plateauing phenomenon and does not continue to decrease beyond that level. On the contrary, Ti, zr, ce,
It was found that the above-mentioned linear proportional relationship was restored by suppressing the total amount of ca to 150 ppm or less. In other words, if the S, O, and N contents are further reduced in this impurity-containing lid region, the iron loss will be proportionally reduced to 1°W101.
50 = 0.82, equivalent to class 87 such as W1515G-1.96, making it possible to obtain a material with an extremely low iron loss value.

こうした現象が起る理由として本発明者らの知見によれ
ば、S、O,Hの含有量の高い領域では、これら不純物
の悪影響のもとて判然とじなかったTi 、 Zr 、
 Oe 、 Oaの影響が、有害成分であるS。
According to the findings of the present inventors, the reason why such a phenomenon occurs is that in regions with high contents of S, O, and H, the adverse effects of these impurities are not obvious.
The influence of Oe and Oa is a harmful component of S.

0、Hの除去によって顕在化し、第2図のような結果を
もたらしたものと考えられる。このことは第1図からも
理解できることであって、第1図の材料はいずれもTi
 、 Zr 、 Ce 、 Oaの総和が150ppm
 v超えていたものであるため、S、O,Nを下げてい
っても、37級相当の鉄損を示すものは得られなかった
のである。
It is thought that this phenomenon became apparent due to the removal of 0 and H, resulting in the results shown in Figure 2. This can be understood from Fig. 1, and the materials shown in Fig. 1 are all Ti.
, Zr, Ce, Oa total is 150ppm
Even if S, O, and N were lowered, it was not possible to obtain an iron loss equivalent to class 37.

なお、上記不純物中のTi 、 7.rは、溶鋼と接す
る耐火物から混入する不純物、ceとQaは、硫化物の
形態制御を行うため添加することのある成分である。た
だ、これらの成分が鉄損に及ぼす影響については従来よ
り明確にされていない。例えば、T1. zrが無方向
性珪素鋼板に及ばず影響に関しては、一般的にリジング
などの表面形状の観点からは調べられるのが普通であり
、鉄損と結びつけて、しかも、本発明のように、S、O
,Hの含有量が極めて低い領域での無方向性珪素鋼板の
鉄損と結ひつけられて検討された報告例はない。
Note that Ti in the above impurities, 7. r is an impurity mixed in from the refractory in contact with molten steel, and ce and Qa are components that may be added to control the form of sulfides. However, the effects of these components on iron loss have not been clarified until now. For example, T1. The influence of zr on non-oriented silicon steel sheets is generally investigated from the viewpoint of surface shape such as ridging, and in connection with iron loss, as in the present invention, S, O
, H content is extremely low, and there are no reports that have been related to the iron loss of non-oriented silicon steel sheets.

また、ae+caについてはS含有、量を多くした材料
について、硫化物の形態制御を行うためにある含有量以
上を残留させることが、鉄損改善に対し必要である旨報
告された例はあるが、本発明のような、15 ppm以
下という極めて低い3含有量において残留aeやOaと
の関係が問題となった報告はない。
Regarding ae+ca, it has been reported that it is necessary to retain a certain amount or more of S in order to control the form of sulfide in order to improve iron loss in materials with increased amounts of S. There is no report that the relationship with residual ae or Oa has become a problem at extremely low 3 content of 15 ppm or less as in the present invention.

以上説明したように、本発明者らは、不純物として残留
するS(15ppm、O≦20ppm、N≦251)1
)mが極めて少ないこと、そしてそれが達成されるとい
う条件下で同時に他に不純物として含むTi 、 Zr
 、 Oe 、 Oaの総和が、150 ppm以下で
あること、の2点が達成されれば、極めて低い鉄損値を
示す無方向性珪素鋼板が侵られることを新規に見出した
のである。
As explained above, the present inventors have discovered that S (15 ppm, O≦20 ppm, N≦251) 1 remains as an impurity.
) m is extremely small, and under the condition that this is achieved, at the same time other impurities such as Ti, Zr
It was newly discovered that a non-oriented silicon steel sheet exhibiting an extremely low iron loss value can be corroded if the two points of 150 ppm or less are achieved, in which the sum of Oe, Oa, and Oa are 150 ppm or less.

本発明の上述した無方向性珪素鋼板は、成分組成の調整
を除き従来の常法で#遺されるものでよい。即ち、吹錬
を行った溶鋼を脱ガス処理し、所定の成分に調合後、造
塊によりインゴツ゛トとしてから分塊圧延を行ってスラ
ブとするか、連続鋳造法によりスラブにした後、熱間圧
延を行い、以後、1回もしくは中間焼純金はさむ2回法
の冷間圧延工程によって製品とするものである。
The above-mentioned non-oriented silicon steel sheet of the present invention may be produced by a conventional conventional method except for adjusting the composition. In other words, the molten steel that has been blown is degassed and mixed into a predetermined composition, then it is made into an ingot by ingot formation and then bloomed into a slab, or it is made into a slab by continuous casting and then hot rolled. After that, the product is made into a product through a single or two-step cold rolling process in which intermediately fired pure gold is sandwiched.

次に、本発明の成分組成の範囲について述べる。Next, the range of the component composition of the present invention will be described.

CN量%は、0.005重童カケ超えると、時効を起こ
して特性を劣化させるので、0.005重量%以rとす
る。
If the CN amount exceeds 0.005% by weight, aging will occur and the properties will deteriorate, so the CN content is set to 0.005% by weight or less.

Si重重量は、4.0重量%を超えると冷延性が悪くな
るので4.0重量%までとする。また、2.5重量%未
満では電気抵抗が低く鉄損が増加して、本発明の目的で
ある低鉄損珪素鋼板を提供するという趣旨、cv逸脱す
ることになるので、2.5重量%を下限とする。
If the Si weight exceeds 4.0% by weight, cold rollability deteriorates, so the Si weight is limited to 4.0% by weight or less. In addition, if it is less than 2.5% by weight, the electrical resistance will be low and the iron loss will increase, which will deviate from the purpose of the present invention, which is to provide a low iron loss silicon steel sheet, so 2.5% by weight is the lower limit.

A!重蓋%は、Siと同様電気抵抗を高めて低鉄損化に
効果があるが、1.0重量%を超えると81四様冷間加
工性が悪くなり、0.25重量%未満では鉄損が大幅に
劣化するので、0.25重重童から1.0重量%とする
A! Like Si, heavy lid% is effective in increasing electrical resistance and lowering iron loss, but if it exceeds 1.0% by weight, 81 type cold workability deteriorates, and if it is less than 0.25% by weight, iron Since the loss is significantly deteriorated, the amount is increased from 0.25% by weight to 1.0% by weight.

Mn重重量は、熱間加工性の面から0.1重量%以上必
要であるが、1.0重量%を超えると磁性が劣化するの
で、0.1重量%から1.0重量%までとする。
The Mn weight must be 0.1% by weight or more from the viewpoint of hot workability, but if it exceeds 1.0% by weight, the magnetism will deteriorate, so it should be from 0.1% to 1.0% by weight. do.

上記の成分組成に調整した鋼に含ませる下記不純物の含
有量としては、S<151)Pm、O≦201)Pm 
、 N(25ppmで、かつTi、 + zr + a
e + ca≦150 pI)mとすることが必要であ
り、こうした成分組成の採用によって、本発明の極めて
低い鉄損値を示す無方向性珪素鋼板を得ることができる
The content of the following impurities to be included in the steel adjusted to the above composition is S<151)Pm, O≦201)Pm
, N (at 25 ppm, and Ti, + zr + a
It is necessary to satisfy e + ca≦150 pI)m, and by adopting such a component composition, it is possible to obtain the non-oriented silicon steel sheet of the present invention exhibiting an extremely low iron loss value.

実施例; 転炉で吹錬した後、脱ガス処理を施し、次いでsi :
 8.2%、AJ : 0.60%、Mn : 0.2
0%を目標にして、合金成分を添加して調整した溶鋼を
連続鋳造によりスラブとした。この際脱酸処理、脱硫処
理を、 Oaを使う脱硫フラックスまたはその脱硫フラ
ックスにREM (希土類元素Oeが約50%)を混合
したもので行い、しかも、その脱酸、脱硫の条件を変え
ることにより、Sや0の量を制御し、また鋳込み時の大
気による酸化や窒化の程If′kArシールの程度t−
変えることにより、0やHの量を制御した。Oaやae
Q量は、溶銑のS含有量と投与したCaやフラックスや
REMの童を変化させることにより制御した。またT1
やzrO量は、溶鋼が接するところの耐火物の組成やS
i添加のため投入されるフェロシリコン中の不純物成分
であるTiやzrの含有量の程度の異なるも6を使用し
て制御した。この結果、第1表に示される成分を有する
スラブを得た。これらのスラブは1200°Cで加熱し
た後、熱間圧延で2.0朋の板厚のコイルとし、酸洗後
2分割し、一方は、950℃X3分の連続焼鈍後0.5
0朋の板厚に冷間圧延し、980”OX3分の連続仕上
焼鈍を施した後、磁気測定を行った(冷延1回法)。他
の一方は、冷間圧延により0.70mmの板厚とし、9
50℃×3分の中間連続焼鈍後、さらに冷間圧延により
0.35Mの板厚にして980″C×3分の連続仕上焼
鈍を施した後、磁気測定を行った(冷延2回法)。
Example: After blowing in a converter, degassing treatment was performed, and then si:
8.2%, AJ: 0.60%, Mn: 0.2
The molten steel, which was adjusted by adding alloying components with the aim of achieving 0%, was made into a slab by continuous casting. At this time, the deoxidation treatment and desulfurization treatment are performed using a desulfurization flux that uses Oa or a mixture of REM (approximately 50% rare earth element Oe) in the desulfurization flux, and by changing the deoxidation and desulfurization conditions. , S and 0, and the degree of oxidation and nitridation caused by the atmosphere during casting If'kThe degree of Ar sealing t-
By changing the amount of 0 and H, the amount of 0 and H was controlled. Oa and ae
The amount of Q was controlled by changing the S content of the hot metal and the amount of Ca, flux, and REM applied. Also T1
The amount of zrO and zrO depends on the composition of the refractory and
The contents of Ti and Zr, which are impurity components in the ferrosilicon added for i addition, were controlled by using different amounts of Ti and Zr. As a result, a slab having the components shown in Table 1 was obtained. These slabs were heated at 1200°C, then hot-rolled into coils with a thickness of 2.0mm, pickled and divided into two parts, one of which was continuously annealed at 950°C for 3 minutes and then rolled into a coil with a thickness of 2.0mm.
The plate was cold rolled to a thickness of 0.0 mm and subjected to continuous finish annealing for 3 minutes at 980" OX, and then magnetic measurements were performed (one-time cold rolling method). The other one was cold rolled to a thickness of 0.70 mm. The board thickness is 9
After intermediate continuous annealing at 50°C for 3 minutes, the plate was further cold rolled to a thickness of 0.35M and subjected to continuous finish annealing at 980"C for 3 minutes, and then magnetic measurements were performed (cold rolling two-step method). ).

以上のようにして製造した鋼板の磁気特性測定結果を示
したのが第1表である。
Table 1 shows the results of measuring the magnetic properties of the steel sheets manufactured as described above.

第1表において、符号A、Bは本発明にかかる不純物量
の範囲内に潤製した鋼であるが、板厚0.85m1Mの
鋼板で、鉄損値は”10150 < O40、Wlr、
150≦2.00と極めて良好な特性を示している。
In Table 1, symbols A and B are steels prepared within the impurity content range according to the present invention, and the steel plate has a thickness of 0.85m1M, and the iron loss value is 10150 < O40, Wlr,
150≦2.00, showing extremely good characteristics.

一方、比較例として示す符号0.D、Eの鋼板は、それ
ぞれ06 、 Ti 、 Oaが高いために、いずれも
、Ti 、 Zr 、 Oe 、 Oaの総和が150
 pI)mを超える−、1ものであり、鉄損が本発明の
ものよジ劣る。また、同じく比較例として示す符号F、
G、Hの鋼板は、それぞれS、O,Nが本発明の範囲を
外れたものであり、鉄損が本発明のものより劣ることが
明らかである。
On the other hand, the code 0. shown as a comparative example. Steel plates D and E have high 06, Ti, and Oa, respectively, so the total of Ti, Zr, Oe, and Oa is 150.
pI)m exceeds -1, and the iron loss is inferior to that of the present invention. Also, the symbol F, which is also shown as a comparative example,
Steel plates G and H have S, O, and N values that are outside the range of the present invention, respectively, and it is clear that the iron loss is inferior to that of the present invention.

以−ヒ説明したように本発明鋼板にあっては、S10.
N7zらびにTi + Zr + Ce + Caの総
和で示される各不純物元素の量を所定の範囲のものにす
ることにより、従来程度を著しく超える鉄損特性の無方
向性珪素鋼板が得られる。
As explained below, in the steel plate of the present invention, S10.
By adjusting the amount of each impurity element represented by the sum of N7z and Ti + Zr + Ce + Ca to be within a predetermined range, a non-oriented silicon steel sheet with iron loss characteristics significantly exceeding conventional levels can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、板厚0.35+1131、Si 3.2%、
Mn (L、2%、AA O,6%の無方向性珪素鋼板
について、S。 0、N含有量と鉄損の関係を示したグラフである。 第2図は、板厚0.85 ram、si 3.2%、M
n0.2%、A# 0.6%無方向性珪素鋼板について
、S。 0、N含有量、Ti + Zr + Oe + (Ea
含有墓と鉄損の関係を示したグラフである。 第1図 0−−−5%(θ≦20ppm、N≦25ppすΔ−0
%(S≦15ppm、N≦25ppm)第2図
Figure 1 shows plate thickness 0.35+1131, Si 3.2%,
This is a graph showing the relationship between S. 0, N content and iron loss for a non-oriented silicon steel plate with Mn (L, 2%, AA O, 6%). , si 3.2%, M
For n0.2%, A#0.6% non-oriented silicon steel plate, S. 0, N content, Ti + Zr + Oe + (Ea
It is a graph showing the relationship between contained graves and iron loss. Figure 1 0---5% (θ≦20ppm, N≦25ppm Δ-0
% (S≦15ppm, N≦25ppm) Figure 2

Claims (1)

【特許請求の範囲】 1 重量%で主として、O: 0.005%以下、si
 + 2.5〜4.0%、AN : 0.25〜1,0
%、Mn : 0.1〜1.0%を含み残部が実質的に
Feであるものにおいて、不純物元素として混入するも
のを、S≦15ppm、Q≦20 ppm 。 N<25pI)mにするとともに、Ti+Zr+Oe十
Ca(150ppmに制限したことを特徴とする鉄損の
少ない無方向性珪素鋼板。
[Claims] 1% by weight, mainly O: 0.005% or less, si
+2.5~4.0%, AN: 0.25~1.0
%, Mn: 0.1 to 1.0% and the remainder is substantially Fe, and the impurity elements mixed in are S≦15 ppm and Q≦20 ppm. A non-oriented silicon steel sheet with low iron loss, characterized in that N<25 pI)m and Ti+Zr+Oe+Ca (150 ppm).
JP57184166A 1982-10-20 1982-10-20 Nondirectional silicon steel plate with small iron loss Pending JPS5974257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57184166A JPS5974257A (en) 1982-10-20 1982-10-20 Nondirectional silicon steel plate with small iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184166A JPS5974257A (en) 1982-10-20 1982-10-20 Nondirectional silicon steel plate with small iron loss

Publications (1)

Publication Number Publication Date
JPS5974257A true JPS5974257A (en) 1984-04-26

Family

ID=16148515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184166A Pending JPS5974257A (en) 1982-10-20 1982-10-20 Nondirectional silicon steel plate with small iron loss

Country Status (1)

Country Link
JP (1) JPS5974257A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389860A (en) * 1986-10-02 1988-04-20 Fuji Photo Film Co Ltd Liquid applying device for sheet
US4820485A (en) * 1985-04-26 1989-04-11 Mitsui Engineering And Ship Building Co., Ltd. Method of producing an iron-, cobalt- and nickel-base alloy having low contents of sulphur, oxygen and nitrogen
US4855195A (en) * 1988-07-11 1989-08-08 Eveready Battery Company, Inc. Electrochemical cell with internal circuit interrupter
EP2679695A1 (en) * 2011-02-24 2014-01-01 JFE Steel Corporation Non-oriented electromagnetic steel sheet and method for manufacturing same
WO2021037062A1 (en) * 2019-08-26 2021-03-04 宝山钢铁股份有限公司 Non-oriented electrical steel plate and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820485A (en) * 1985-04-26 1989-04-11 Mitsui Engineering And Ship Building Co., Ltd. Method of producing an iron-, cobalt- and nickel-base alloy having low contents of sulphur, oxygen and nitrogen
JPS6389860A (en) * 1986-10-02 1988-04-20 Fuji Photo Film Co Ltd Liquid applying device for sheet
US4855195A (en) * 1988-07-11 1989-08-08 Eveready Battery Company, Inc. Electrochemical cell with internal circuit interrupter
EP2679695A1 (en) * 2011-02-24 2014-01-01 JFE Steel Corporation Non-oriented electromagnetic steel sheet and method for manufacturing same
EP2679695A4 (en) * 2011-02-24 2014-10-29 Jfe Steel Corp Non-oriented electromagnetic steel sheet and method for manufacturing same
WO2021037062A1 (en) * 2019-08-26 2021-03-04 宝山钢铁股份有限公司 Non-oriented electrical steel plate and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP6451967B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6236466B2 (en) Oriented electrical steel sheet with excellent iron loss and method for producing the same
JP2012046806A (en) Method for manufacturing non-oriented electromagnetic steel sheet
US3853641A (en) Method for producing single-oriented silicon steel sheets having high magnetic induction
US4615750A (en) Process for producing a grain-oriented electrical steel sheet
JPS5974257A (en) Nondirectional silicon steel plate with small iron loss
KR102013820B1 (en) Non-oriented electrical steel sheet method for manufacturing the same
JP3458683B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
KR102176351B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102134311B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JPH0250190B2 (en)
JP4264987B2 (en) Non-oriented electrical steel sheet
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JPH09263908A (en) Nonoriented silicon steel sheet and its production
JPH10212556A (en) Nonoriented silicon steel sheet excellent in magnetic property after stress relieving annealing and its production
JP3915108B2 (en) Soft magnetic steel sheet
KR102361872B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR100530047B1 (en) A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
KR100398389B1 (en) A method of manufacturing non-oriented electrical steel sheet having superior magnetic properties
JPH10317111A (en) Non-oriented silicon steel having low iron loss
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JPH03249115A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JPS60135524A (en) Production of grain oriented silicon steel sheet
JPH11172384A (en) Nonoriented silicon steel sheet with low iron loss