JP3143764B2 - Method for removing impurities from chromium-containing molten steel - Google Patents

Method for removing impurities from chromium-containing molten steel

Info

Publication number
JP3143764B2
JP3143764B2 JP04344866A JP34486692A JP3143764B2 JP 3143764 B2 JP3143764 B2 JP 3143764B2 JP 04344866 A JP04344866 A JP 04344866A JP 34486692 A JP34486692 A JP 34486692A JP 3143764 B2 JP3143764 B2 JP 3143764B2
Authority
JP
Japan
Prior art keywords
molten steel
chromium
final refining
gas
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04344866A
Other languages
Japanese (ja)
Other versions
JPH06192720A (en
Inventor
隆二 中尾
重典 田中
隆司 柳井
裕二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP04344866A priority Critical patent/JP3143764B2/en
Publication of JPH06192720A publication Critical patent/JPH06192720A/en
Application granted granted Critical
Publication of JP3143764B2 publication Critical patent/JP3143764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は含クロム溶鋼の最終精錬
期において、鋼の熱間加工性に悪影響を及ぼすPb、Z
n、Snを効率よく除去する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to Pb, Z which adversely affects the hot workability of chromium-containing molten steel in the final refining stage.
The present invention relates to a method for efficiently removing n and Sn.

【0002】[0002]

【従来の技術】従来、ステンレス鋼のごとき11wt%
以上のクロムを含むような含クロム溶鋼中のPb、Z
n、Snの不純物の除去に関する定量的な知見はない。
Pb、Zn、Snは鋼の熱間加工性に悪影響を及ぼすた
めに、一般的に鋼の母地の性状に合わせて上限が定めら
れている。
2. Description of the Related Art Conventionally, 11 wt% such as stainless steel
Pb, Z in chromium-containing molten steel containing chromium
There is no quantitative knowledge regarding the removal of impurities of n and Sn.
Since Pb, Zn, and Sn adversely affect the hot workability of steel, the upper limits are generally set according to the properties of the steel base.

【0003】普通鋼においては、例えば「材料とプロセ
ス」、vol.1、 No.4、page1169〜117
2(1988年)に示されているように、Pb、Znは
攪拌ガス流量の増大により除去が促進されること、およ
びSnは若干の除去が可能であることが示されている。
しかし、含クロム溶鋼については、多量に含まれるクロ
ムの影響が不明なために、例えば除去限界値を求めるよ
うな定量的な知見はない。
In ordinary steel, for example, “Materials and Processes”, vol. 1, No.4, pages 1169 to 117
2 (1988), it has been shown that removal of Pb and Zn is promoted by increasing the flow rate of the stirring gas, and that Sn can be removed a little.
However, regarding the chromium-containing molten steel, the effect of chromium contained in a large amount is unclear, and thus there is no quantitative knowledge to determine, for example, a removal limit value.

【0004】そのため、スラグ中のクロム酸化物の還元
および成分、温度の調整を行う最終精錬期に添加する還
元材、成分調整材および冷却材については、Pb、Z
n、Snの濃度管理を徹底し、かつ濃度の低い材料を優
先的に使用すると共に、過剰のガス吹込みを行ってい
た。しかし、このような操業管理を行っても、目標とす
るPb、Zn、Snの規制値を外れることがある。ま
た、Pb、Zn、Snの濃度の低い材料は価格が高く、
コスト高を招く。さらに、Pb、Zn、Snの濃度を下
げるために、過剰のガス吹込みをするとコストを上げる
ことになり、効率的な精錬法とは言えない。
[0004] Therefore, the reducing agent, the component adjusting agent and the cooling agent added in the final refining stage for reducing the chromium oxide in the slag and adjusting the component and temperature are Pb, Z
Thorough control of the concentration of n and Sn was carried out, and a material having a low concentration was preferentially used, and excessive gas was blown. However, even if such operation management is performed, the target Pb, Zn, and Sn regulated values may be deviated. Materials with low concentrations of Pb, Zn, and Sn are expensive,
High costs are incurred. Further, if excessive gas is blown to lower the concentrations of Pb, Zn, and Sn, the cost increases, and this cannot be said to be an efficient refining method.

【0005】[0005]

【発明が解決しようとする課題】本発明はスラグ中のク
ロム酸化物の還元および成分、温度調整を行う含クロム
溶鋼の最終精錬期において、添加する材料からのPb、
Zn、Snの戻りを考慮して、吹込みガス流量を決定す
ることにより、Pb、Zn、Snの濃度が目標値を外れ
ることを防止し、かつ効率的なガス吹込みを行うことを
課題とする。
SUMMARY OF THE INVENTION The present invention relates to a method for reducing the content of chromium oxide in slag and controlling the composition and temperature of the chromium-containing steel during the final refining stage of the molten chromium-containing steel.
It is an object to prevent the concentrations of Pb, Zn, and Sn from deviating from target values and perform efficient gas injection by determining the flow rate of the injected gas in consideration of the return of Zn and Sn. I do.

【0006】[0006]

【課題を解決するための手段】本発明は上述の課題を有
利に解決したものであり、含クロム溶鋼の最終精錬期に
おいて、溶鋼中のPb、Zn、Snの不純物濃度を目標
値以下に低下させるために、最終精錬期に添加する材料
からのPb、Zn、Snの戻りを考慮して、下記(1)
式を満足する流量QG で、ガス吹込みを行うことを特徴
とする含クロム溶鋼の不純物除去方法を要旨とするもの
である。
Means for Solving the Problems The present invention advantageously solves the above-mentioned problems, and reduces the impurity concentrations of Pb, Zn, and Sn in molten steel to below a target value in the final refining period of chromium-containing molten steel. In consideration of the return of Pb, Zn, and Sn from the material added in the final refining period, the following (1)
At a flow rate Q G satisfying formula, it is an gist method of removing impurities containing chromium molten steel and performing included gas blowing.

【0007】 QG ≧−αM 101-T/1873・ln(〔M〕t /〔M〕0 ) ……(1) QG ;最終精錬期のガス吹込み流量(Nm3 溶鋼トン) αM ;不純物元素M毎に定まる定数 αPb=3.0、 αZn=2.5、 αSn=60.2 T ;最終精錬開始時の溶鋼温度〔K〕 〔M〕;不純物元素Mの濃度(ppm) 添字のtは精錬終了後の目標値、0は最終精錬開始時の計算濃度を 示す。Q G ≧ −α M 10 1−T / 1873 · ln ([M] t / [M] 0 ) (1) Q G ; gas injection flow rate in the final refining stage (Nm 3 / ton of molten steel) Α M ; constants determined for each impurity element M α Pb = 3.0, α Zn = 2.5, α Sn = 60.2 T; molten steel temperature at the start of final refining [K] [M]; impurity element M The subscript t indicates the target value after refining, and 0 indicates the calculated concentration at the start of final refining.

【0008】以下本発明について詳細に説明する。本発
明は図1に例示するような含クロム溶鋼の精錬法に適用
するものであり、図1(a)はAOD法、(b)は上底
吹き転炉法、(c)はVOD法とよばれている吹錬法で
ある。これらの吹錬法では、まず酸素あるいは酸素と不
活性ガスの吹込みによって脱炭精錬を行った後に、脱炭
時に酸化してスラグ中に移行したクロム酸化物を還元す
ると同時に、成分および温度の調整を行うための最終精
錬期を設けている。
Hereinafter, the present invention will be described in detail. The present invention is applied to the refining method of chromium-containing molten steel as exemplified in FIG. 1, wherein FIG. 1 (a) shows an AOD method, FIG. 1 (b) shows a top-bottom blowing converter method, and FIG. This is a known blowing technique. In these blowing methods, first, decarburization and refining are performed by blowing oxygen or oxygen and an inert gas, and then chromium oxide that has been oxidized during decarburization and transferred to the slag is reduced, and at the same time, components and temperature are reduced. There is a final refining period to make adjustments.

【0009】この最終精錬期には、クロム酸化物を還元
するためのAlやSi等の還元材、成分調整を行うため
のSi、Mn、Ni等の成分調整材および溶鋼温度を所
定の温度に低下させるためのスクラップ等の冷却材が多
量に添加される。これらの材料には量の大小はあるが、
Pb、Zn、Snの不純物が含まれている。これらの材
料よりピックアップされるPb、Zn、Snの濃度は、
添加する材料の不純物濃度および添加量を表1の記号と
すると、(2)〜(4)式によって求められる。
In the final refining period, a reducing agent such as Al or Si for reducing chromium oxide, a component adjusting material such as Si, Mn, or Ni for adjusting the components, and the temperature of the molten steel are set to predetermined temperatures. A large amount of coolant such as scrap for lowering is added. Although these materials vary in size,
Pb, Zn, and Sn impurities are contained. The concentrations of Pb, Zn, and Sn picked up from these materials are as follows:
Assuming that the impurity concentration and the amount of the material to be added are the symbols in Table 1, the impurity concentration and the amount are obtained by the equations (2) to (4).

【0010】[0010]

【表1】 [Table 1]

【0011】 〔Pb〕1 =(aPba +bPbb +cPbc +dPbd +ePbe +fPbf )÷(1000Wm ) ……(2) 〔Zn〕1 =(aZna +bZnb +cZnc +dZnd +eZne +fZnf )÷(1000Wm ) ……(3) 〔Sn〕1 =(aSna +bSnb +cSnc +dSnd +eSne +fSnf )÷(1000Wm ) ……(4) ここで、〔Pb〕1 、〔Zn〕1 、〔Sn〕1 はPb、
Zn、Snの添加材料からのピックアップ濃度(pp
m)を示し、Wm は添加材添加後の溶鋼重量(ton)
を示す。
[Pb] 1 = (a Pb W a + b Pb W b + c Pb W c + d Pb W d + e Pb We e + f Pb W f ) ÷ (1000 W m ) (2) [Zn] 1 = ( a Zn W a + b Zn W b + c Zn W c + d Zn W d + e Zn W e + f Zn W f) ÷ (1000W m) ...... (3) [Sn] 1 = (a Sn W a + b Sn W b + c Sn W c + d Sn W d + e Sn W e + f Sn W f) ÷ (1000W m) ...... (4) where [Pb] 1, [Zn] 1, [Sn] 1 Pb,
Pickup concentration (pp) from Zn, Sn additive material
m), and W m is the weight of molten steel after addition of additives (ton)
Is shown.

【0012】また、最終精錬開始時の濃度〔M〕0
(5)〜(7)式によって求まる。 〔Pb〕0 =〔Pb〕1 +〔Pb〕D ……(5) 〔Zn〕0 =〔Zn〕1 +〔Zn〕D ……(6) 〔Sn〕0 =〔Sn〕1 +〔Sn〕D ……(7) ここで、〔Pb〕D 、〔Zn〕D 〔Sn〕D はPb、
Zn、Snの脱炭精錬終了時の濃度(ppm)を示す。
これらの濃度は脱炭精錬条件より経験的に求められるも
のであり、一般的には、〔Pb〕D ≦3ppm、〔Z
n〕D ≦1ppm、〔Sn〕D ≦50〜200ppmの
範囲にある。
Further, the concentration [M] 0 at the start of the final refining is obtained by the equations (5) to (7). [Pb] 0 = [Pb] 1 + [Pb] D (5) [Zn] 0 = [Zn] 1 + [Zn] D ... (6) [Sn] 0 = [Sn] 1 + [Sn ] D (7) where [Pb] D , [Zn] D , [Sn] D is Pb,
Shows the concentrations (ppm) of Zn and Sn at the end of decarburization refining.
These concentrations are empirically determined from decarburization refining conditions, and are generally [Pb] D ≦ 3 ppm, [Z
n] D ≦ 1 ppm and [Sn] D ≦ 50-200 ppm.

【0013】一方、最終精錬終了後の目標値〔M〕t
鋼の母材の性状および後工程より要求される熱間加工性
より、鋼種毎に定められる値であり、〔Pb〕t =1〜
20ppm、〔Zn〕t =10〜150ppm、〔S
n〕t =100〜500ppmの範囲にある。上述の関
係より、最終精錬期に要求される除去率(〔M〕t
〔M〕0 )が決定される。
On the other hand, the target value [M] t after the final refining is a value determined for each steel type from the properties of the base material of the steel and the hot workability required from the post-process, and [Pb] t = 1 to
20 ppm, [Zn] t = 10 to 150 ppm, [S
n] t = 100-500 ppm. Based on the above relationship, the removal rate ([M] t /
[M] 0 ) is determined.

【0014】次に、最終精錬期のガス吹込み流量QG
限定理由について説明する。最終精錬期には溶鋼の酸化
を防止するために、一般に、Ar、N2 等の不活性ガス
が吹き込まれる。図2に60tAOD炉を用いてArガ
ス吹込みにより、SUS 304ステンレス鋼の最終精
錬を行った場合のガス流量と〔Pb〕の除去率(〔P
b〕t /〔Pb〕0 )の関係を示す。同様に、図3には
ガス流量と〔Zn〕の除去率(〔Zn〕t /〔Z
n〕0 )の関係、図4にはガス流量と〔Sn〕の除去率
(〔Sn〕t /〔Sn〕0 )の関係を示す。なお、最終
精錬開始時の溶鋼温度は1590〜1610℃の範囲に
あった。
[0014] Next, a description will be given of reasons for limiting the gas blowing flow rate Q G of the final refining stage. In the final refining period, an inert gas such as Ar or N 2 is generally blown to prevent oxidation of molten steel. FIG. 2 shows the gas flow rate and the removal rate of [Pb] ([Pb] when SUS 304 stainless steel was subjected to final refining by blowing Ar gas using a 60 tAOD furnace.
b] t / [Pb] 0 ). Similarly, FIG. 3 shows the gas flow rate and the removal rate of [Zn] ([Zn] t / [Z
relationship n] 0), in FIG. 4 shows the relationship between removal rate and the gas flow rate [Sn] ([Sn] t / [Sn] 0). The molten steel temperature at the start of the final refining was in the range of 1590 to 1610 ° C.

【0015】3元素とも、若干のばらつきはあるが、吹
込みガス流量の増大により、除去率が向上し、かつ除去
率は吹込みガス流量に対して、対数的に変化することが
確認された。図2〜4の実線で示す除去率が最も悪い条
件を定式化すると、(8)〜(10)式となる。 QPb=−3.0×ln(〔Pb〕t /〔Pb〕0 ) ……(8) QZn=−2.5×ln(〔Zn〕t /〔Zn〕0 ) ……(9) QSn=−60.2×ln(〔Sn〕t /〔Sn〕0 ) ……(10) 図5に60tAOD炉を用いてArガス吹込みにより、
SUS 304 ステンレス鋼の最終精錬を行った場合
の最終精錬開始時の溶鋼温度と〔Pb〕の除去率(〔P
b〕t /〔Pb〕0 )の関係を示す。なお、ガス吹込み
流量の範囲は0.9〜1.1Nm3 /Tの範囲の値であ
る。溶鋼温度の上昇とともに、除去率が向上する傾向に
あり、これを定式化すると、(11)式のように表され
る。
Although there is a slight variation in all three elements, it was confirmed that the removal rate was improved by increasing the flow rate of the blown gas, and that the removal rate changed logarithmically with the flow rate of the blown gas. . Formulating the condition with the worst removal rate shown by the solid line in FIGS. 2 to 4 yields equations (8) to (10). Q Pb = −3.0 × ln ([Pb] t / [Pb] 0 ) (8) Q Zn = −2.5 × ln ([Zn] t / [Zn] 0 ) (9) Q Sn = −60.2 × ln ([Sn] t / [Sn] 0 ) (10) In FIG. 5, by using a 60 tAOD furnace and injecting Ar gas,
When the final refining of SUS 304 stainless steel is performed, the molten steel temperature at the start of the final refining and the removal rate of [Pb] ([P
b] t / [Pb] 0 ). Note that the range of the gas injection flow rate is a value in the range of 0.9 to 1.1 Nm 3 / T. The removal rate tends to increase as the temperature of the molten steel increases, and when this is formulated, it is expressed as in equation (11).

【0016】 (〔Pb〕t /〔Pb〕0 )=r(1−T/1873) ……(11) ここで、Tは最終精錬開始時の溶鋼温度(K)を示し、
rは定数である。(11)式の関係は、Zn、Snにつ
いても、定数値が変わるだけで、溶鋼温度に対しては同
一の関係をもつことが確認された。以上の知見をまとめ
ると、不純物元素Mについて、最終精錬終了後の目標値
を達成するために必要なガス吹込み流量QG (Nm3
溶鋼トン)は下式のようにまとめられる。
([Pb] t / [Pb] 0 ) = r (1−T / 1873) (11) where T represents the molten steel temperature (K) at the start of final refining.
r is a constant. It has been confirmed that the relationship of the formula (11) has the same relationship with the molten steel temperature only for the constant values of Zn and Sn. Summarizing the above findings, for the impurity element M, the gas injection flow rate Q G (Nm 3 / N) required to achieve the target value after the final refining is completed.
The molten steel ton ) is summarized as the following equation.

【0017】 QG =−αM 101-T/1873・ln(〔M〕t /〔M〕0 ) ……(1) αPb=3.0、 αZn=2.5、 αsn=60.2 (1)式により、最終精錬期に必要なガス流量は容易に
求まる。なお、最終精錬期にはクロム酸化物の還元およ
び成分および温度の調整に必要なガス吹込み量があり、
(1)式のQG より、この量が大きい場合には(1)式
の規制は必要でない。また、(1)式のQG はPb、Z
n、Snのそれぞれについて求め、それぞれの値よりも
大きい値でガスを吹込む必要がある。また、ガス吹込み
は必要な流量以上はかえってコスト増を招くために、適
度に抑える必要がある。
Q G = −α M 101 -T / 1873 · ln ([M] t / [M] 0 ) (1) α Pb = 3.0, α Zn = 2.5, α sn = 60.2 From equation (1), the gas flow rate required in the final refining period can be easily determined. In the final refining period, there is a gas injection amount necessary for reduction of chromium oxide and adjustment of components and temperature.
If this amount is larger than Q G in equation (1), the regulation in equation (1) is not necessary. Also, Q G in equation (1) is Pb, Z
It is necessary to determine each of n and Sn and to inject gas with a value larger than each value. In addition, the gas injection must be moderately suppressed, since the gas flow increases more than the required flow rate.

【0018】[0018]

【作用】図6に溶鋼温度と各種金属元素の純金属状態で
の蒸気圧の関係を示す。Pb、Zn、SnはFe、C
r、Niに比べ蒸気圧が大きく、1450〜1750℃
の溶鋼温度状態では蒸発による除去が進行する。また、
蒸発除去速度は蒸気圧の高いZn、Pb、Snの順に大
きいものと考えられる。
FIG. 6 shows the relationship between the molten steel temperature and the vapor pressure of various metal elements in the pure metal state. Pb, Zn, Sn are Fe, C
Vapor pressure is higher than r and Ni, 1450-1750 ° C
In the molten steel temperature state, removal by evaporation proceeds. Also,
It is considered that the evaporative removal rate is higher in the order of Zn, Pb, and Sn having higher vapor pressures.

【0019】この蒸発除去反応は、溶鋼内での蒸発元素
の反応界面への移動あるいは蒸発元素の反応界面から気
相側への離脱が反応の律速過程と考えられている。この
反応を促進させる要因としては、下記が挙げられる。 1)溶鋼温度を上昇させる。 2)雰囲気を減圧あるいは真空状態にする。
In the evaporative removal reaction, it is considered that the movement of the evaporating element to the reaction interface in the molten steel or the desorption of the evaporating element from the reaction interface to the gas phase is a rate-determining process of the reaction. Factors that promote this reaction include the following. 1) Increase the molten steel temperature. 2) Reduce the atmosphere or make a vacuum.

【0020】3)反応界面積を大きくするために、ガス
発生速度を大きくする。 含クロム溶鋼の最終精錬期は一般に、大気圧下で行うた
めに、2)の効果を享受することはできない。従って、
1)および3)がポイントとなる。従来より、1)およ
び3)効果は定性的に示されていたが、特にクロムを多
量に含む含クロム溶鋼の分野については定量的な知見は
なかった。本発明では、Pb、Zn、Snの除去率が蒸
気圧の高いZn、Pb、Snの順に大きいこと、溶鋼温
度に比例すること、および吹込みガス流量の増大により
対数的に大きくなることを見出し、定式化した。本発明
の(1)式からも、溶鋼温度の上昇および吹込みガス流
量の増大によって、除去が促進されることがわかる。
3) The gas generation rate is increased to increase the area of the reaction interface. Since the final refining period of the chromium-containing molten steel is generally performed at atmospheric pressure, the effect of 2) cannot be enjoyed. Therefore,
1) and 3) are the points. Conventionally, the effects 1) and 3) have been qualitatively shown, but no quantitative knowledge has been found particularly in the field of chromium-containing molten steel containing a large amount of chromium. In the present invention, it has been found that the removal rates of Pb, Zn, and Sn are larger in the order of Zn, Pb, and Sn having higher vapor pressures, are proportional to the molten steel temperature, and logarithmically increase due to an increase in the flow rate of the injected gas. , Formulated. It can also be seen from equation (1) of the present invention that the removal is promoted by the increase in the temperature of the molten steel and the flow rate of the blown gas.

【0021】また、鋼の熱間加工性等より、不純物の含
有量は一般的に、鋼種毎に上限が規制されており、規制
値を満足するために、(1)式を利用して、吹込みガス
流量を決定し、ガス吹込みを行えば、効率的な精錬が可
能となる。
In addition, due to the hot workability of steel and the like, the upper limit of the content of impurities is generally regulated for each steel type. In order to satisfy the regulation value, the following equation (1) is used. If the gas flow rate is determined and gas is blown, efficient refining becomes possible.

【0022】[0022]

【実施例】60tonAOD炉を用いて、SUS304
ステンレス鋼(8mass%Ni−18mass%C
r)を対象として行った実施例について説明する。表2
に最終精錬期に添加した材料の種類とPb、Zn、Sn
の不純物濃度を示す。表2に示す材料を最終精錬期初期
に所定量添加し、Arガス吹込みを行った。なお、最終
精錬期の還元および、成分および温度の調整に必要なガ
ス流量は0.70Nm3 /Tであり、ガス吹込み速度は
いずれも2000Nm3 /Hr一定で実施した。
[Example] SUS304 using 60 ton AOD furnace
Stainless steel (8 mass% Ni-18 mass% C
An example performed for r) will be described. Table 2
Of the materials added in the final refining period and Pb, Zn, Sn
Is shown. The materials shown in Table 2 were added in a predetermined amount at the beginning of the final refining period, and Ar gas was blown. The gas flow rate required for the reduction in the final refining stage and the adjustment of the components and the temperature was 0.70 Nm 3 / T, and the gas blowing rate was constant at 2000 Nm 3 / Hr.

【0023】また、最終精錬期までの吹錬はいずれの場
合も同一にして実施したことにより、脱炭終了時点のP
bは2.0ppm、Znは0.1ppm、Snは140
ppmとなった。なお、各実施例も最終精錬終了後の目
標値はPb≦3.0ppm、Zn≦20ppm、Sn≦
150ppmの鋼に適用した。表3に最終精錬期に添加
した材料の種類と添加量および最終精錬開始時の計算濃
度を本発明例と比較例を併せて示す。
In addition, since blowing was carried out in the same manner in each case until the final refining period, P
b is 2.0 ppm, Zn is 0.1 ppm, Sn is 140 ppm.
ppm. In each example, the target values after the final refining were Pb ≦ 3.0 ppm, Zn ≦ 20 ppm, Sn ≦
Applied to 150 ppm steel. Table 3 shows the types and amounts of the materials added in the final refining period and the calculated concentrations at the start of the final refining for the examples of the present invention and the comparative examples.

【0024】実施例の結果を表4に示す。表中の精錬コ
ストは No.1の例を100として換算した値である。ま
た、 No.7の例はPbの値が成分外れとなったために、
そのままでは製品とならず、コストの算出は不可能であ
った。
Table 4 shows the results of the examples. The refining cost in the table is a value obtained by converting the example of No. 1 to 100. In the example of No.7, the value of Pb was out of the component,
It was not a product as it was, and it was impossible to calculate the cost.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【発明の効果】本発明によると、含クロム溶鋼の最終精
錬期において、Pb、Zn、Snの規制値外れをなく
し、また過剰なガス吹込みを防止することが可能とな
る。さらに、Pb、Zn、Snを規制値以下にするため
のガス吹込み流量が定量化できるために、最終精錬期に
安価な添加材料を使用できるようになり、大幅な精錬コ
ストの低減が可能となる。また、本発明によれば、P
b、Znと同レベルの蒸気圧をもつBi、Sb等の効率
的な除去がはかれる。
According to the present invention, in the final refining period of the chromium-containing molten steel, it is possible to prevent Pb, Zn, and Sn from being out of regulation, and to prevent excessive gas injection. Further, since the gas injection flow rate for reducing Pb, Zn, and Sn to the regulated value or less can be quantified, inexpensive additive materials can be used in the final refining period, and the refining cost can be significantly reduced. Become. Also, according to the present invention, P
Efficient removal of Bi, Sb, etc. having the same vapor pressure as b and Zn is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の適用する精錬法の例に関する図で、
(a)はAOD法、(b)は上底吹き転炉法、(c)は
VOD法を示す。
FIG. 1 is a diagram relating to an example of a refining method to which the present invention is applied;
(A) shows the AOD method, (b) shows the top and bottom blown converter method, and (c) shows the VOD method.

【図2】本発明におけるガス吹込み流量と〔Pb〕の除
去率の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a gas injection flow rate and a removal rate of [Pb] in the present invention.

【図3】本発明におけるガス吹込み流量と〔Zn〕の除
去率の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a gas injection flow rate and a removal rate of [Zn] in the present invention.

【図4】本発明におけるガス吹込み流量と〔Sn〕の除
去率の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the gas injection flow rate and the removal rate of [Sn] in the present invention.

【図5】本発明における溶鋼温度と〔Pb〕の除去率の
関係を示す図である。
FIG. 5 is a diagram showing a relationship between molten steel temperature and a removal rate of [Pb] in the present invention.

【図6】不純物元素の純粋状態での蒸気圧と温度の関係
を示す図である。
FIG. 6 is a diagram showing a relationship between a vapor pressure and a temperature in a pure state of an impurity element.

【符号の説明】[Explanation of symbols]

1 横吹き羽口 2 上吹きランス 3 底吹き羽口 4 溶鋼 5 スラグ 6 上吹き火点部 DESCRIPTION OF SYMBOLS 1 Side blowing tuyere 2 Top blowing lance 3 Bottom blowing tuyere 4 Molten steel 5 Slag 6 Top blowing point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉村 裕二 山口県光市大字島田3434番地 新日本製 鐵株式会社光製鐵所内 (56)参考文献 特開 昭64−17814(JP,A) 特開 昭55−125221(JP,A) 特開 昭56−127723(JP,A) 特開 昭60−67629(JP,A) 特開 昭62−80218(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21C 7/00,7/076,7/10 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yuji Yoshimura 3434 Shimada, Hikari-shi, Yamaguchi Prefecture Inside Nippon Steel Corporation Hikari Works (56) References JP-A-64-17814 (JP, A) JP-A-55-125221 (JP, A) JP-A-56-127723 (JP, A) JP-A-60-67629 (JP, A) JP-A-62-80218 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) C21C 7/00, 7/076, 7/10 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 含クロム溶鋼の最終精錬期において、溶
鋼中のPb、Zn、Snの不純物濃度を目標値以下に低
下させるために、最終精錬期に添加する材料からのP
b、Zn、Snの戻りを考慮して、下記(1)式を満足
する流量QG でガス吹込みを行うことを特徴とする含ク
ロム溶鋼の不純物除去方法。 QG ≧−αM 101-T/1873・ln(〔M〕t /〔M〕0 ) ……(1) QG ;最終精錬期のガス吹込み流量(Nm3 溶鋼トン) αM ;不純物元素M毎に定まる定数 αPb=3.0、 αZn=2.5、 αSn=60.2 T ;最終精錬開始時の溶鋼温度〔K〕 〔M〕;不純物元素Mの濃度(ppm) 添字のtは精錬終了後の目標値、0は最終精錬開始時の計算濃度を 示す。
1. In a final refining period of a chromium-containing molten steel, in order to reduce an impurity concentration of Pb, Zn, and Sn in the molten steel to a target value or less, P from a material added in the final refining period.
b, Zn, taking into account the return of Sn, the following (1) method of removing impurities from chromium-containing molten steel and performing inclusive gas blown at a flow rate Q G that satisfies the equation. Q G ≧ −α M 101 -T / 1873 · ln ([M] t / [M] 0 ) …… (1) Q G ; gas injection flow rate in final refining stage (Nm 3 / ton of molten steel ) α M Constants α Pb = 3.0, α Zn = 2.5, α Sn = 60.2 T determined for each impurity element M; molten steel temperature at the start of final refining [K] [M]; concentration of impurity element M ( ppm) The subscript t indicates the target value after the end of refining, and 0 indicates the calculated concentration at the start of final refining.
JP04344866A 1992-12-24 1992-12-24 Method for removing impurities from chromium-containing molten steel Expired - Fee Related JP3143764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04344866A JP3143764B2 (en) 1992-12-24 1992-12-24 Method for removing impurities from chromium-containing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04344866A JP3143764B2 (en) 1992-12-24 1992-12-24 Method for removing impurities from chromium-containing molten steel

Publications (2)

Publication Number Publication Date
JPH06192720A JPH06192720A (en) 1994-07-12
JP3143764B2 true JP3143764B2 (en) 2001-03-07

Family

ID=18372601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04344866A Expired - Fee Related JP3143764B2 (en) 1992-12-24 1992-12-24 Method for removing impurities from chromium-containing molten steel

Country Status (1)

Country Link
JP (1) JP3143764B2 (en)

Also Published As

Publication number Publication date
JPH06192720A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
JP3143764B2 (en) Method for removing impurities from chromium-containing molten steel
JP7126103B2 (en) Melting method of high manganese steel
JP3230067B2 (en) Method for removing impurities from chromium-containing molten steel
JP3333795B2 (en) Method for denitrification of molten metal and method for denitrification and decarburization
JP3099152B2 (en) Raw material blending method and smelting method for chromium-containing molten steel
JPH06158234A (en) Austenitic stainless steel excellent in workability
JP3279161B2 (en) Melting method of ultra low carbon high manganese steel
JP3619283B2 (en) Method for producing medium carbon Al killed steel
JP3412924B2 (en) Refining method of chromium-containing molten steel
JPH06192719A (en) Method for removing impurity in chromium-containing molten steel
JPS6043408B2 (en) Molten steel decarburization control method
JPS6234801B2 (en)
JP3305313B2 (en) Decarburization method using RH degasser
JP2607337B2 (en) Method for dephosphorizing chromium-containing steel
JP3226768B2 (en) Slag reforming method
JP2795513B2 (en) Decarburization refining method of chromium-containing molten steel
JP2750208B2 (en) Prevention method of hot crack of continuous cast slab
JP3036389B2 (en) Denitrification refining method of molten stainless steel
JP2000026913A (en) Method for refining high nitrogen, low oxygen and chromium-containing molten steel
JP3134789B2 (en) Demanganese method for high chromium molten iron alloy
JPH07233409A (en) Method for refining chromium-containing molten steel
JPH07242927A (en) Method for adjusting nitrogen concentration in molten steel
JP3353969B2 (en) Melting method of high Al ferritic stainless steel
JPH0619102B2 (en) Ultra low carbon steel melting method
JPH0645818B2 (en) Bearing steel manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001031

LAPS Cancellation because of no payment of annual fees