JP3353969B2 - Melting method of high Al ferritic stainless steel - Google Patents
Melting method of high Al ferritic stainless steelInfo
- Publication number
- JP3353969B2 JP3353969B2 JP26253393A JP26253393A JP3353969B2 JP 3353969 B2 JP3353969 B2 JP 3353969B2 JP 26253393 A JP26253393 A JP 26253393A JP 26253393 A JP26253393 A JP 26253393A JP 3353969 B2 JP3353969 B2 JP 3353969B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- rare earth
- stainless steel
- earth metal
- alkaline earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、成分的中精度を高めた
高Alフェライト系ステンレス鋼の溶製方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-Al ferritic stainless steel with improved medium precision in composition.
【0002】[0002]
【従来の技術】高Alフェライト系ステンレス鋼は、優
れた耐高温酸化特性を呈することから、チムニー材,電
熱材料,排ガス浄化装置の触媒コンバータ基材等として
使用されている。高Alフェライト系ステンレス鋼を基
材に使用したメタリックコンバータは、従来のセラミッ
クコンバータと比較して格段に熱衝撃性が強く、エンジ
ンにより近い場所に設置できる利点をもつ。また、他の
高温酸化性雰囲気に曝される構造用材料等の用途に適し
た材料として注目されている。高Alフェライト系ステ
ンレス鋼に添加される希土類金属,Y等は、鋼材表面に
形成される酸化皮膜を強固なものにし、鋼材の耐高温酸
化特性を向上させる。また、鋼中に含まれているS等の
有害元素を固定する作用も呈する。しかし、過剰に希土
類金属,Y等を添加すると、熱間加工性や靭性が劣化
し、熱間圧延による鋼材の製造が困難になる。しかも、
S等と反応して鋼中に多量の非金属介在物を生成する結
果、表面性状を悪化させる原因ともなる。希土類金属,
Y等の添加は、VOD開放後に取鍋上部から合金元素を
投入し、溶湯をArで撹拌することにより添加元素の均
一分散を図っている。調製された溶湯は、スラブ,イン
ゴット等に鋳造され、下工程に送られる。この製造プロ
セスにおいて、希土類金属,Y等に起因した悪影響を抑
えながら、耐高温酸化特性を向上させるためには、希土
類金属,Y等の添加量を厳格にコントロールすることが
要求される。2. Description of the Related Art High Al ferritic stainless steel is used as a chimney material, an electrothermal material, a catalytic converter base material of an exhaust gas purifying device, etc. because of its excellent high temperature oxidation resistance. Metallic converters using high-Al ferritic stainless steel as a base material have significantly higher thermal shock resistance than conventional ceramic converters, and have the advantage that they can be installed closer to the engine. In addition, it is attracting attention as a material suitable for applications such as structural materials exposed to other high-temperature oxidizing atmospheres. Rare earth metals, Y, and the like added to the high Al ferritic stainless steel strengthen the oxide film formed on the surface of the steel material and improve the high temperature oxidation resistance of the steel material. In addition, it also has the effect of fixing harmful elements such as S contained in steel. However, if a rare earth metal, Y, or the like is excessively added, hot workability and toughness deteriorate, and it becomes difficult to produce a steel material by hot rolling. Moreover,
As a result of producing a large amount of nonmetallic inclusions in steel by reacting with S and the like, it also causes deterioration of the surface properties. Rare earth metal,
For the addition of Y and the like, an alloy element is introduced from the upper part of the ladle after the VOD is opened, and the molten metal is stirred with Ar to achieve a uniform dispersion of the added element. The prepared molten metal is cast into a slab, an ingot, and the like, and sent to a lower process. In this manufacturing process, in order to improve the high-temperature oxidation resistance while suppressing the adverse effects caused by the rare earth metal, Y, and the like, it is required that the amount of the rare earth metal, Y, and the like be strictly controlled.
【0003】[0003]
【発明が解決しようとする課題】希土類金属,Y等は、
酸素親和力や比重が大きく、適正添加量で溶湯に添加し
ても、酸化損失,偏析等によって目標含有量に仕上げる
ことは困難であった。たとえば、VOD処理後又は処理
中の溶湯に希土類金属やYを添加し、Arガスで撹拌し
ながら成分調整するとき、希土類金属,Y等の歩留りに
18〜60%と大きなバラツキがある。このようなバラ
ツキは、希土類金属,Y等に類似した特性を付与するア
ルカリ土類金属を添加する際にも、同様な傾向を呈す
る。目標含有量を得るためには、歩留りを考慮してある
程度多量の希土類金属,Y,アルカリ土類金属等を添加
する。しかし、多量に添加する条件下で酸化損失等のロ
スが少なく、鋼中に取り込まれる量が多いと、希土類金
属,Y,アルカリ土類金属等を過剰に含む鋼材が得られ
る。その結果、前述した弊害が現れる。逆に、含有量が
目標含有量の下限に達しない場合、希土類金属,Y,ア
ルカリ土類金属等による性質改善効果が発揮されない。
本発明は、このような問題を解消すべく案出されたもの
であり、希土類金属,Y,アルカリ土類金属等をステン
レス鋼溶湯に添加する際、これら添加元素の鋼中濃度が
溶湯撹拌の時間と密接な関係があることに着目し、撹拌
条件を制御することによって高い成分的中精度で希土類
金属,Y,アルカリ土類金属等を含む高Alフェライト
系ステンレス鋼を溶製することを目的とする。SUMMARY OF THE INVENTION Rare earth metals, Y, etc.
Oxygen affinity and specific gravity are large, and it is difficult to achieve the target content due to oxidation loss, segregation, etc., even if it is added to the molten metal in an appropriate amount. For example, when the rare earth metal or Y is added to the molten metal after or during the VOD treatment and the components are adjusted while stirring with Ar gas, the yield of the rare earth metal, Y, etc., has a large variation of 18 to 60%. Such a variation exhibits the same tendency when an alkaline earth metal imparting properties similar to those of the rare earth metal and Y is added. In order to obtain the target content, a certain amount of rare earth metal, Y, alkaline earth metal or the like is added in consideration of the yield. However, a steel material containing excessive amounts of rare earth metal, Y, alkaline earth metal and the like can be obtained if the loss such as oxidation loss is small under the condition of addition in a large amount and the amount incorporated into steel is large. As a result, the above-mentioned adverse effects appear. Conversely, if the content does not reach the lower limit of the target content, the effect of improving properties by rare earth metals, Y, alkaline earth metals, and the like is not exhibited.
The present invention has been devised to solve such a problem. When rare earth metals, Y, alkaline earth metals, and the like are added to a molten stainless steel, the concentrations of these added elements in the steel are set to a value that is lower than that of the molten metal. Focusing on the fact that there is a close relationship with time, the aim is to produce high-Al ferritic stainless steels containing rare earth metals, Y, alkaline earth metals, etc. with high elemental and medium precision by controlling the stirring conditions. And
【0004】[0004]
【課題を解決するための手段】本発明の溶製方法は、そ
の目的を達成するため、3〜6重量%のAlを含有する
フェライト系ステンレス鋼に希土類金属,Y及びアルカ
リ土類金属の1種又は2種以上を合計で0.01〜0.
2重量%含ませる際、前記ステンレス鋼の溶湯に希土類
金属,Y及びアルカリ土類金属の1種又は2種以上を添
加し、ガスバブリングにより溶湯を撹拌し、目標含有量
Xt に応じて次式(1)で定義される時点tで撹拌を停
止することを特徴とする。 t=log(X0 /Xt)/Kc ・・・・(1) ただし、式(1)におけるtは希土類金属,Y及びアル
カリ土類金属の1種又は2種以上を添加した後、溶湯の
撹拌を継続する時間(分),X0 は添加直後における希
土類金属,Y及びアルカリ土類金属の初期濃度(モル
%),Xt は添加からt分経過した時点における希土類
金属,Y及びアルカリ土類金属の濃度(モル%)及びK
c は見掛けの速度定数(/分)をそれぞれ示す。SUMMARY OF THE INVENTION In order to attain the object, a smelting method according to the present invention comprises a ferritic stainless steel containing 3 to 6% by weight of Al and one of rare earth metals, Y and alkaline earth metals. Species or two or more species in total of 0.01-0.
When included 2 wt%, rare earth metals to the melt of the stainless steel, the addition of one or more of Y and alkaline earth metals, the melt is stirred by gas bubbling, in accordance with the target amount X t following The stirring is stopped at a time point t defined by the equation (1). t = log (X 0 / X t ) / K c (1) where t in the formula (1) is one or two or more of a rare earth metal, Y and an alkaline earth metal. X 0 is the initial concentration (mol%) of the rare earth metal, Y and the alkaline earth metal immediately after the addition, and X t is the rare earth metal, Y and Alkaline earth metal concentration (mol%) and K
c indicates an apparent rate constant (/ min).
【0005】本発明に従って溶製される高Alフェライ
ト系ステンレス鋼は、たとえば3〜6重量%のAl及び
0.01〜0.2重量%の希土類金属,Y及びアルカリ
土類金属の1種又は2種以上の他に、C:0.03重量
%以下,Si:0.25重量%未満,Mn:0.25重
量%未満,P:0.03重量%以下,S:0.001重
量%以下,N:0.03重量%以下及びCr:15〜3
0重量%を含み、更に必要に応じてMo:3重量%以下
を含むものである。見掛けの速度定数Kc は、希土類金
属,Y及びアルカリ土類金属を除く合金元素の含有量が
定まっているステンレス鋼溶湯について予め求めてお
く。見掛けの速度定数Kc は、0.05〜0.1/分の
範囲にあり、式(1)に代入して撹拌継続時間tを定め
ることに使用される。[0005] The high Al ferritic stainless steel produced according to the present invention is, for example, 3 to 6% by weight of Al and 0.01 to 0.2% by weight of one or more of rare earth metals, Y and alkaline earth metals or Besides two or more, C: 0.03% by weight or less, Si: less than 0.25% by weight, Mn: less than 0.25% by weight, P: 0.03% by weight or less, S: 0.001% by weight N: 0.03% by weight or less and Cr: 15 to 3
0% by weight, and if necessary, Mo: 3% by weight or less. Rate constant K c of apparent, rare earth metals, determined in advance for stainless steel melt content of the alloy elements excluding Y and alkaline earth metals are definite. Rate constant K c of apparent is in the range of 0.05 to 0.1 / min, is used to determine the stirring duration t into Equation (1).
【0006】[0006]
【作用】希土類金属,Y及びアルカリ土類金属等を添加
する従来の溶製方法において、添加元素の歩留りにバラ
ツキが大きいことは、反応メカニズムが不明なことから
添加条件の設定が困難であったことに起因する。本発明
者等は、この前提に従って研究室的な規模で、溶湯に対
する希土類金属,Y及びアルカリ土類金属等の反応速度
を検討した。100kg誘導溶解炉でスラグ−メタルを
溶解し、希土類金属,Y,アルカリ土類金属等の1種又
は2種以上を添加し、定期的に溶湯をサンプリングし
た。そして、希土類金属,Y,アルカリ土類金属等の減
少速度を調査した。たとえば、鋼中のY濃度(以下、
[Y]と表記する)は、Y添加からの時間経過に応じ
て、図1に示すように低下した。添加Yと他の元素との
反応によって[Y]が減少するものと仮定し、−log(X
t /X0)と撹拌経過時間tとの関係を調査した。その結
果、図2に示すように[Y]が0.05重量%を超える
領域では、−log(Xt/X0)と撹拌経過時間tとの間
に、−log(Xt /X0)=t×Kc で表される直線的な比
例関係が成立していることを見い出した。係数Kc は、
図2に示した直線の傾きであり、見掛けの速度定数とな
る。In the conventional smelting method in which a rare earth metal, Y, an alkaline earth metal, etc. are added, the large variation in the yield of the added elements means that it is difficult to set the addition conditions because the reaction mechanism is unknown. Due to that. The present inventors have studied the reaction rates of rare earth metal, Y, alkaline earth metal and the like to the molten metal on a laboratory scale according to this premise. The slag-metal was melted in a 100 kg induction melting furnace, and one or more of rare earth metals, Y, alkaline earth metals, etc. were added, and the molten metal was sampled periodically. And the reduction rate of rare earth metals, Y, alkaline earth metals, etc. was investigated. For example, the Y concentration in steel (hereinafter, referred to as
[Y] is reduced as shown in FIG. 1 with the lapse of time from the addition of Y. Assuming that [Y] decreases due to the reaction between the added Y and other elements, -log (X
t / X 0 ) and the stirring time t were investigated. As a result, in a region as shown in FIG. 2 [Y] is more than 0.05 wt%, between -log (X t / X 0) and stirred elapsed time t, -log (X t / X 0 ) = T × K c and found that a linear proportional relationship holds. The coefficient K c is
This is the slope of the straight line shown in FIG. 2 and is an apparent speed constant.
【0007】スラグ組成,大気又は真空等の雰囲気等の
条件を変えて実験を行い、添加Yと溶湯及びスラグとの
反応を調査した。その結果、[Y]がスラグ中のMgO
により酸化されること、このときスラグ中を上昇するM
g(g)気泡によって酸化反応が律速されるとの推論を
得た。スラグ中のMgOによる[Y]の酸化は、次式に
よるものと推察される。 2[Y]+3(MgO)=(Y2 O3 )+3[Mg]
又は 2[Y]+3(MgO)=(Y2 O3 )+3Mg(g) 以上の知見に基づき、実際のVOD操業を解析した。Y
添加からの撹拌経過時間tとの関係で解析結果を示す図
3にみられるように、Ar吹込みにより溶湯を撹拌して
いるVOD工程と、VOD出鍋から鋳造までの撹拌して
いない状態とで、[Y]の減少速度に大きな相違がみら
れた。すなわち、Ar吹込みにより溶湯を撹拌している
VOD工程では、反応速度が大きく、[Y]の酸化によ
る傾向が強く現れている。他方、VOD出鍋から鋳造ま
での非撹拌工程では、[Y]の減少速度が非常に小さく
なっている。Experiments were conducted by changing the conditions such as slag composition, atmosphere or atmosphere such as vacuum, and the reaction between the added Y and the molten metal and slag was investigated. As a result, [Y] was changed to MgO in slag.
Oxidation by M
It was inferred that the oxidation reaction was limited by g (g) bubbles. The oxidation of [Y] by MgO in the slag is presumed to be due to the following equation. 2 [Y] +3 (MgO) = (Y 2 O 3 ) +3 [Mg]
Or 2 [Y] +3 (MgO) = (Y 2 O 3 ) + 3Mg (g) Based on the above findings, the actual VOD operation was analyzed. Y
As shown in FIG. 3 showing the analysis results in relation to the stirring elapsed time t from the addition, the VOD process in which the molten metal was stirred by Ar injection and the state in which the stirring was not performed from the VOD outlet to the casting. A great difference was observed in the rate of decrease of [Y]. That is, in the VOD step in which the molten metal is stirred by Ar blowing, the reaction rate is high, and the tendency due to oxidation of [Y] appears strongly. On the other hand, in the non-stirring process from the VOD outlet to the casting, the decreasing rate of [Y] is very small.
【0008】また、添加Yが溶湯から減少する過程を一
次反応によるものと仮定し、各実験データを撹拌経過時
間tと−log(Xt /X0)との関係で整理したところ、図
4に示す関係が成立していた。図4から、Y添加からV
OD出鍋までの撹拌工程においては、次式の関係で初期
添加濃度X0 及び撹拌経過時間tから鋼中に残留してい
るYの濃度Xt が定まることが判る。 Xt =X0 ×10(-Kc・t) 本発明が対象とする成分系のステンレス鋼溶湯にあって
は、速度定数Kc は、0.05〜0.1の範囲にあり、
溶製しようとする各ステンレス溶鋼について予め求める
ことができる。そこで、所定量X0 のYを添加した後、
単に撹拌経過時間tを調整することによって目標濃度X
t のYを含む溶鋼が溶製できる。所定時間撹拌した後の
[Y]は、Yの添加量に応じて変わる。しかし、撹拌経
過時間tと−log(Xt /X0)との関係は、Yの初期濃度
X0 が変化しても実質的に一定であった。たとえば、初
期濃度X0 を変更した場合の[Y]の経時的変化を図5
に示す。図5の結果から、初期濃度X0 に拘らず、Xt
=X0 ×10(-Kc ・t) の関係が成立していることが確認
された。Further, assuming that the process of adding Y from the molten metal is caused by the primary reaction, the respective experimental data were arranged in relation to the elapsed stirring time t and −log (X t / X 0 ). The relationship shown in FIG. From FIG.
In the stirring step to OD Denabe, it is seen that the concentration X t of Y remaining from the initial doping concentration X 0 and stirred elapsed the time t by the following relationship in the steel are determined. X t = X 0 × 10 (−Kc · t) In the stainless steel melt of the component system targeted by the present invention, the rate constant K c is in the range of 0.05 to 0.1,
It can be determined in advance for each stainless steel melt to be melted. Therefore, after adding a predetermined amount X 0 of Y,
The target concentration X is simply adjusted by adjusting the elapsed stirring time t.
Molten steel containing t of Y can be produced. [Y] after stirring for a predetermined time varies depending on the amount of Y added. However, the relationship between the stirring time elapsed t and -log (X t / X 0), was substantially constant even initial concentration X 0 and Y is changed. For example, the change over time of [Y] when the initial density X 0 is changed is shown in FIG.
Shown in From the results of FIG. 5, regardless of the initial concentration X 0, X t
= X 0 × 10 (-Kc · t) .
【0009】他の希土類金属やアルカリ土類金属に関し
ても、同様な方法によって初期添加濃度X0 及び撹拌経
過時間tから鋼中に残留している元素濃度Xt が推定さ
れ、撹拌経過時間tの調整によって目標濃度Xt の溶鋼
が得られる。本発明の溶製方法が適用されるステンレス
鋼は、合金元素を所定の含有量で含んでいることが好ま
しい。以下、各合金元素及びその含有量を説明する。 C:0.03重量%以下 高Alフェライト系ステンレス鋼においては、耐酸化性
に悪影響を与える有害元素である。C含有量の増加に応
じて、異常酸化が発生し易くなる。また、スラブ又はホ
ットコイルの靭性を劣化させる原因ともなる。 Si:0.25重量%未満 Siは、一般に耐高温酸化特性に対し有効な合金元素で
あるとされている。しかし、高Alフェライト系ステン
レス鋼では、Si含有量を低減することにより耐高温酸
化特性が著しく改善される。Si含有量低減による影響
は、Mn含有量の規制と相俟つて顕著になる。[0009] for the other rare earth metals or alkaline earth metals, the initial doping concentration X 0 and remaining in the steel from stirring the elapsed time t element concentration X t is estimated by the same method, stirring the elapsed time t liquid steel target concentration X t is obtained by the adjustment. The stainless steel to which the smelting method of the present invention is applied preferably contains a predetermined content of an alloying element. Hereinafter, each alloy element and its content will be described. C: 0.03% by weight or less In high Al ferritic stainless steel, it is a harmful element that adversely affects oxidation resistance. As the C content increases, abnormal oxidation tends to occur. Further, it also causes deterioration of the toughness of the slab or the hot coil. Si: less than 0.25% by weight Si is generally considered to be an effective alloy element for high-temperature oxidation resistance. However, in high Al ferritic stainless steel, the high-temperature oxidation resistance is significantly improved by reducing the Si content. The effect of reducing the Si content becomes remarkable in conjunction with the regulation of the Mn content.
【0010】Mn:0.25重量%未満 熱間加工性の改善に有効な合金元素であるものの、高A
lフェライト系ステンレス鋼においては耐高温酸化特性
に悪影響を及ぼす。そこで、耐高温酸化特性を確保する
ため、Mn含有量を0.25重量%未満に低減する。ま
た、Mn含有量の低減によって、靭性の向上も図られ
る。 P:0.03重量%以下 耐高温酸化特性に悪影響を与える元素であることから、
P含有量は低いほど好ましい。また、P含有量を低減す
るとき、熱延板の靭性も向上する。 S:0.001重量%以下 希土類金属,Y等と結合し、非金属介在物となって鋼材
の表面性状を劣化させる。また、耐高温酸化特性に有効
な希土類金属,Y等を消費することから、多量のSを含
むとき、損失分を見込んで多量の希土類金属,Y等を添
加することが必要になる。しかも、希土類金属,Y等と
の反応が一定化しないため、添加した希土類金属,Y等
の歩留りに大きくバラツキが生じる結果となる。したが
って、本発明においては、S含有量を0.001重量%
以下と厳しく規制することが必要である。Mn: less than 0.25% by weight An alloy element effective for improving hot workability, but having a high A
(1) Ferritic stainless steel adversely affects high-temperature oxidation resistance. Therefore, in order to secure high-temperature oxidation resistance, the Mn content is reduced to less than 0.25% by weight. In addition, toughness is improved by reducing the Mn content. P: 0.03% by weight or less P is an element that has an adverse effect on high-temperature oxidation resistance properties.
The lower the P content, the better. Further, when the P content is reduced, the toughness of the hot-rolled sheet is also improved. S: 0.001% by weight or less Bonds with rare earth metals, Y, etc., and becomes nonmetallic inclusions to deteriorate the surface properties of the steel material. Further, since rare earth metal, Y, and the like effective for high-temperature oxidation resistance are consumed, when a large amount of S is contained, it is necessary to add a large amount of rare earth metal, Y, etc. in anticipation of loss. In addition, since the reaction with the rare earth metal, Y or the like is not constant, the yield of the added rare earth metal, Y or the like greatly varies. Therefore, in the present invention, the S content is 0.001% by weight.
It is necessary to regulate strictly as follows.
【0011】N:0.03重量%以下 鋼材の靭性を低下させる有害元素である。また、耐高温
酸化特性に有効なAl量をAlNの生成により消費し、
異常酸化発生の原因となる。したがって、N含有量は、
上限を0.03重量%に設定する。 Cr:15〜30重量% 本発明に従った高Alフェライトステンレス鋼における
基本的な合金元素であり、15重量%以上のCr含有で
耐高温酸化特性の改善に顕著な効果がみられる。しか
し、25重量%を超える多量のCr含有は、スラブ又は
ホットコイルの靭性を劣化させ、製造性が悪くなる。 Al:3〜6重量% Crと同様に、耐高温酸化特性を確保する上で必要な合
金元素である。箔材料等の形態で使用するとき、異常酸
化の発生を抑制するために3重量%以上のAl含有が必
要とされる。しかし、6重量%を超える多量のAl含有
は、スラブ又はホットコイルの靭性を劣化させ、製造性
を悪くする。N: 0.03% by weight or less N is a harmful element that lowers the toughness of steel. In addition, the amount of Al effective for high-temperature oxidation resistance is consumed by the generation of AlN,
It causes abnormal oxidation. Therefore, the N content is
The upper limit is set to 0.03% by weight. Cr: 15 to 30% by weight Cr is a basic alloying element in the high Al ferritic stainless steel according to the present invention. When Cr is contained in an amount of 15% by weight or more, a remarkable effect on improvement of high-temperature oxidation resistance is observed. However, a large amount of Cr exceeding 25% by weight deteriorates the toughness of the slab or the hot coil, resulting in poor manufacturability. Al: 3 to 6% by weight Like Cr, it is an alloy element necessary for ensuring high-temperature oxidation resistance. When used in the form of a foil material or the like, 3% by weight or more of Al is required to suppress the occurrence of abnormal oxidation. However, a large content of Al exceeding 6% by weight deteriorates the toughness of the slab or the hot coil and deteriorates the manufacturability.
【0012】希土類金属,Y及びアルカリ土類金属の1
種又は2種以上: 0.01〜0.2重量% これら合金元素は、鋼材表面に生成する酸化皮膜の保護
作用を著しく改善し、また下地鋼に対する酸化皮膜の密
着性を向上させる。その結果、高Alフェライトステン
レス鋼の耐高温酸化特性が改善される。このような効果
は、含有量が0.01重量%以上になると顕著に現れ
る。しかし、0.2重量%を超えて多量に含有される
と、熱間加工性及び靭性の劣化によって製造が困難にな
るばかりでなく、多量の介在物生成により鋼材の表面性
状を劣化させる原因になる。 Mo:3重量%以下Rare earth metal, Y and alkaline earth metal 1
Species or two or more: 0.01 to 0.2% by weight These alloy elements remarkably improve the protective action of the oxide film formed on the surface of the steel material and improve the adhesion of the oxide film to the base steel. As a result, the high temperature oxidation resistance of the high Al ferritic stainless steel is improved. Such an effect becomes remarkable when the content is 0.01% by weight or more. However, when it is contained in a large amount exceeding 0.2% by weight, not only the production becomes difficult due to the deterioration of hot workability and toughness, but also the formation of a large amount of inclusions deteriorates the surface properties of the steel material. Become. Mo: 3% by weight or less
【0013】本発明においては、必要に応じて添加され
る任意元素であるが、Moを添加することによって耐高
温酸化性が著しく改善され、なおかつ高温強度も改善さ
れる。しかし、過剰添加は鋼の靭性を劣化し、製造性を
悪くする原因ともなるので、最高3%までとした。更
に、本発明に従った高Alフェライト系ステンレス鋼
は、C及び/又はNを固定するNb,V,Ti等を添加
することにより、靭性を向上させることもできる。過酷
な高温雰囲気に曝される用途にあっては、Nb,V,T
i等を0.05重量%以上添加することにより、高温強
度を改善することが有効である。In the present invention, although it is an optional element that is added as necessary, the addition of Mo significantly improves the high-temperature oxidation resistance and the high-temperature strength. However, excessive addition deteriorates the toughness of the steel and causes the productivity to be deteriorated. Further, the high Al ferritic stainless steel according to the present invention can be improved in toughness by adding Nb, V, Ti or the like for fixing C and / or N. For applications exposed to severe high-temperature atmospheres, Nb, V, T
It is effective to improve the high-temperature strength by adding 0.05% by weight or more of i or the like.
【0014】[0014]
【実施例】表1に示した組成をもつステンレス鋼溶湯5
6トンを溶製した。溶製中、VODを開放して、0.1
9重量%に相当する108kgのYを添加した。Y添加
後、再びVODを閉じ、溶湯にArガスを3分間吹き込
み、ガスバブリングによって溶湯を撹拌した。撹拌後、
溶湯を鋳造工程に送り、スラブに鋳造した。得られたス
ラブを成分分析した結果を、表1に併せ示す。このとき
の速度定数Kc は0.092/分であり、Xt =X0 ×
10(-Kc・t)に従って計算された鋼中のY濃度[Y]は
0.10重量%であった。この計算値は、表1に示した
実測値と同じ値であり、高い成分的中精度でY含有量を
調整できることが確認された。このあと鋳造までにYは
0.03重量%減少し、製品中のYは0.07重量%と
なった。DESCRIPTION OF THE PREFERRED EMBODIMENTS Stainless steel melt 5 having the composition shown in Table 1
6 tons were melted. During melting, VOD is released and 0.1
108 kg of Y, corresponding to 9% by weight, were added. After the addition of Y, the VOD was closed again, Ar gas was blown into the molten metal for 3 minutes, and the molten metal was stirred by gas bubbling. After stirring,
The molten metal was sent to a casting process and cast into a slab. Table 1 also shows the results of component analysis of the obtained slab. At this time, the rate constant K c is 0.092 / min, and X t = X 0 ×
The Y concentration [Y] in the steel calculated according to 10 (−Kc · t) was 0.10% by weight. This calculated value is the same value as the actually measured value shown in Table 1, and it has been confirmed that the Y content can be adjusted with high component-specific accuracy. Thereafter, by casting, Y decreased by 0.03% by weight, and Y in the product became 0.07% by weight.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【発明の効果】以上に説明したように、本発明の溶製方
法においては、鋼中に含まれる希土類金属,Y,アルカ
リ土類金属等の含有量を、撹拌継続時間により調整して
いる。この撹拌継続時間による成分調整は、希土類金
属,Y,アルカリ土類金属等の添加量が酸化反応に消費
されて低減していくことを前提にし、VOD工程におけ
る溶湯撹拌段階で鋼中のY濃度が撹拌継続時間に対して
高い相関性で比例関係にあることを利用している。そし
て、初期添加量及び撹拌継続時間から鋼中濃度を推定で
きるため、目標組成をもつ鋼材を高い歩留りで安定して
得ることが可能になる。また、目標成分への到達も撹拌
継続時間の調整だけで良いため、耐高温酸化特性に優れ
た高Alフェライト系ステンレス鋼が非常に簡単な操作
で安定的に製造される。As described above, in the smelting method of the present invention, the content of rare earth metal, Y, alkaline earth metal and the like contained in steel is adjusted by the duration of stirring. The component adjustment based on the stirring duration is based on the premise that the added amount of rare earth metal, Y, alkaline earth metal, etc. is consumed and reduced by the oxidation reaction, and the Y concentration in the steel in the molten metal stirring stage in the VOD process. Utilizes the fact that is highly proportional to the duration of stirring. Further, since the concentration in steel can be estimated from the initial addition amount and the stirring duration, it is possible to stably obtain a steel material having a target composition at a high yield. In addition, since the target component can be reached only by adjusting the duration of stirring, a high-Al ferritic stainless steel excellent in high-temperature oxidation resistance can be stably manufactured by a very simple operation.
【図1】 ラボテストにおける鋼中Y濃度の経時変化を
表したグラフFIG. 1 is a graph showing a time-dependent change in Y concentration in steel in a lab test.
【図2】 ラボテストの結果を一次反応を仮定して撹拌
継続時間と−log (Xt /X0 )を整理したグラフFigure 2 is a graph which organizes the stirring duration results assuming primary reaction of lab tests and -log (X t / X 0)
【図3】 実際のVOD操業に適用した場合の鋼中Y濃
度の経時変化を表したグラフFIG. 3 is a graph showing the change over time in the Y concentration in steel when applied to an actual VOD operation.
【図4】 実際のVOD操業の結果を一次反応を仮定し
て撹拌継続時間と−log (Xt /X0 )を整理したグラ
フFIG. 4 is a graph in which the results of actual VOD operation are summarized assuming the primary reaction and the duration of stirring and −log (X t / X 0 ).
【図5】 撹拌継続時間と鋼中Y濃度との関係にY添加
量が与える影響を表したグラフFIG. 5 is a graph showing the effect of the amount of Y added on the relationship between the duration of stirring and the Y concentration in steel.
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 33/04 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C22C 33/04
Claims (3)
ト系ステンレス鋼に希土類金属,Y及びアルカリ土類金
属の1種又は2種以上を合計で0.01〜0.2重量%
含ませる際、前記ステンレス鋼の溶湯に希土類金属,Y
及びアルカリ土類金属の1種又は2種以上を添加し、ガ
スバブリングにより溶湯を撹拌し、目標含有量Xt に応
じて次式(1)で定義される時点tで撹拌を停止するこ
とを特徴とする高Alフェライト系ステンレス鋼の溶製
方法。 t=log(X0 /Xt)/Kc ・・・・(1) 「ただし、t: 希土類金属,Y及びアルカリ土類金属
の1種又は2種以上を添加した後、溶湯の撹拌を継続す
る時間(分) X0: 添加直後における希土類金属,Y及びアルカリ土
類金属の初期濃度(モル%) Xt: 添加からt分経過した時点における希土類金属,
Y及びアルカリ土類元素の濃度(モル%) Kc: 見掛けの速度定数(/分)
」1. A ferritic stainless steel containing 3 to 6% by weight of Al and a total of 0.01 to 0.2% by weight of one or more of rare earth metals, Y and alkaline earth metals.
When including the rare earth metal, Y
And adding one or more alkaline earth metals, that the melt is stirred by gas bubbling stops stirred at time t defined by the following formula (1) according to the target content X t Melting method for high Al ferritic stainless steel. t = log (X 0 / X t ) / K c (1) “However, after adding one or more of rare earth metal, Y and alkaline earth metal, stirring of the molten metal is performed. Continuous time (minutes) X 0 : Initial concentration of rare earth metal, Y and alkaline earth metal immediately after addition (mol%) X t : Rare earth metal at time t after the addition,
Y and concentration of alkaline earth element (mol%) K c : apparent rate constant (/ min)
"
鋼は、3〜6重量%のAl及び0.01〜0.2重量%
の希土類金属,Y及びアルカリ土類金属の1種又は2種
以上の他に、C:0.03重量%以下,Si:0.25
重量%未満,Mn:0.25重量%未満,P:0.03
重量%以下,S:0.001重量%以下,N:0.03
重量%以下及びCr:15〜30重量%を含み、更に必
要に応じてMo:3重量%以下を含むものである高Al
フェライト系ステンレス鋼の溶製方法。2. The ferritic stainless steel according to claim 1, wherein 3 to 6% by weight of Al and 0.01 to 0.2% by weight.
In addition to one or more of rare earth metals, Y and alkaline earth metals, C: 0.03% by weight or less, Si: 0.25%
% By weight, Mn: less than 0.25% by weight, P: 0.03
Wt% or less, S: 0.001 wt% or less, N: 0.03
% Of Cr and 15 to 30% by weight of Mo and optionally 3% by weight or less of Mo.
Melting method of ferritic stainless steel.
除く合金元素の含有量が定まっているステンレス鋼溶湯
について見掛けの速度定数Kc を予め求め、0.05〜
0.1/分の範囲にある速度定数Kc を請求項1記載の
式(1)に代入して撹拌継続時間tを定める高Alフェ
ライト系ステンレス鋼の溶製方法。3. A rare earth metal, previously obtained the apparent rate constant K c for stainless steel melt content is definite alloy elements excluding Y and alkaline earth metals, 0.05
The method melting the high Al ferritic stainless steel to determine the assignment to stir duration t in equation (1) of claim 1, wherein the rate constant K c in the range of 0.1 / min.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26253393A JP3353969B2 (en) | 1993-10-20 | 1993-10-20 | Melting method of high Al ferritic stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26253393A JP3353969B2 (en) | 1993-10-20 | 1993-10-20 | Melting method of high Al ferritic stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07118789A JPH07118789A (en) | 1995-05-09 |
JP3353969B2 true JP3353969B2 (en) | 2002-12-09 |
Family
ID=17377126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26253393A Expired - Fee Related JP3353969B2 (en) | 1993-10-20 | 1993-10-20 | Melting method of high Al ferritic stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3353969B2 (en) |
-
1993
- 1993-10-20 JP JP26253393A patent/JP3353969B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07118789A (en) | 1995-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023062856A1 (en) | Ni-based alloy having excellent surface properties and production method thereof | |
JP4656007B2 (en) | Method of processing molten iron by adding Nd and Ca | |
JPH0790471A (en) | High mn and high n austenitic stainless steel cast slab and its production | |
JP3353969B2 (en) | Melting method of high Al ferritic stainless steel | |
JP3925697B2 (en) | Ti-containing Fe-Cr-Ni steel excellent in surface properties and casting method thereof | |
JP2991796B2 (en) | Melting method of thin steel sheet by magnesium deoxidation | |
JP3458831B2 (en) | Method for producing Cr-based stainless steel | |
JP2008266706A (en) | Method for continuously casting ferritic stainless steel slab | |
JP3319832B2 (en) | Manufacturing method of high Al ferritic stainless steel | |
JP3036373B2 (en) | Manufacturing method of oxide dispersion steel | |
WO2024127758A1 (en) | Austenite-based ni-cr-fe alloy having excellent oxidation resistance, and method for producing same | |
JP3870743B2 (en) | Steel continuous casting method | |
WO2024084877A1 (en) | Ni-cr-fe-mo-based alloy having excellent surface properties, and method for producing same | |
JP2002339048A (en) | HIGH Al FERRITE STAINLESS STEEL HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE | |
JP3807377B2 (en) | Ca treatment method for low Al molten steel | |
JPH10152755A (en) | Steel for steel sheet for can few in defect and its production | |
JP3297699B2 (en) | Method for producing oxide-dispersed steel | |
JPH11279623A (en) | Method for melting ferritic stainless steel containing high aluminum capable of suppressing erosion of refractory of refining container, and excellent in manufacture | |
JP2000034545A (en) | Austenitic heat resistant steel with improved hot workability, and its manufacture | |
JP2002206144A (en) | Fe-Ni BASED ALLOY HAVING EXCELLENT SURFACE PROPERTY AND PRODUCTION METHOD THEREFOR | |
JPH09209025A (en) | Production of hic resistant steel excellent in low temperature toughness in welded part | |
JP2024061288A (en) | Fe-Cr-Ni-BASED ALLOY HAVING EXCELLENT SURFACE CHARACTERISTICS, AND METHOD FOR MANUFACTURING THE SAME | |
JP3269465B2 (en) | How to preheat tundish | |
JPS61284517A (en) | Production of low-carbon steel material | |
SU926028A1 (en) | Method for refining low-carbon steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020910 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080927 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090927 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100927 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100927 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110927 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |